Electrocatalytic Selenium Hosts Toward High-Voltage Nonaqueous Zinc-Selenium Batteries
Xiaoyun Wang , Jiguo Tu , Yan Li , Haiping Lei , Shuai Wang , Libo Chen , Meng Zhang , Shuqiang Jiao
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70053
Electrocatalytic Selenium Hosts Toward High-Voltage Nonaqueous Zinc-Selenium Batteries
The narrow electrochemical stability window (ESW), gaseous by-products, and interfacial issues in aqueous electrolytes have long hindered the advancement of Zn-ion batteries. Herein, we report the first application of a zinc trifluoromethylsulfonate/1-ethyl-3-methylimidazolium trifluoromethylsulfonate (Zn(TfO)2/[EMIm]TfO) ionic liquid electrolyte with wide ESW exceeding 3 V in nonaqueous zinc-selenium (Zn-Se) batteries. To further enhance the reaction kinetics, the Co single atoms anchored onto N-doped ordered mesoporous carbon (Co-N/C) with Co-N4 sites is designed as a Se host (Se@Co-N/C). Significantly, the Se@Co-N/C composite demonstrates an improved electrochemical performance, delivering a high discharge voltage of 1.5 V and a capacity of 410.6 mAh g−1. Comprehensive mechanistic studies reveal that the Co-N4 structure in the Co-N/C host acts as dual-function catalytic sites, lowering the energy barrier for both Zn(TfO)42− dissociation and Se(TfO)4 formation, thereby accelerating the conversion kinetics. This finding provides novel insights into designing stable Zn-Se batteries in nonaqueous ionic liquid electrolytes.
Co-N4 / electrocatalytic selenium hosts / ionic liquid / reaction kinetics / zinc-selenium batteries
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |