Towards High-Performance Lithium-Ion Batteries via Voltage Modulation of Silicon Anodes

Zhiwei Wu , Jianming Tao , Lixin Lin , Jiangjie Wang , Jiaxin Li , Sanjay Mathur , Yingbin Lin

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70052

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70052 DOI: 10.1002/cnl2.70052
RESEARCH ARTICLE

Towards High-Performance Lithium-Ion Batteries via Voltage Modulation of Silicon Anodes

Author information +
History +
PDF

Abstract

Silicon (Si) is a promising anode material for boosting the energy density of current lithium-ion batteries; however, Si anodes suffer from enormous volume modulations and unstable solid electrolyte interphases (SEI) associated with the voltage window. Nevertheless, the relationship between voltage changes and deterioration of electrochemical performance remains unclear. Through systematic investigation of Si anodes under various cut-off voltages, we reveal that an increased degree of delithiation generates high hoop stress around the particle surface, ultimately leading to SEI thickening, fragmentation, and reformation. Furthermore, residual Li retained within Si particles after delithiation facilitates bidirectional Li+ diffusion, from Si core to shell and from electrolyte to shell, during the subsequent lithiation process. This phenomenon reduces the internal Li+ concentration gradient, delays the formation of crystalline Li15Si4, and alters delithiation kinetics. In addition, we observed that maintaining the voltage window within a range that induces high hoop stress and prevents the formation of crystalline Li15Si4 enables the Si anode to achieve optimized cycling performance and capacity. This voltage modulation criterion is also applicable for nano-sized Si, graphite-Si composite anodes, and solid-state batteries. The practical effectiveness of this approach is demonstrated through the successful operation of 5 Ah LiCoO2/Si pouch cells, confirming that dynamic voltage control based on polarization can substantially enhance the cycle life of lithium-ion batteries.

Keywords

lithium-ion batteries / silicon anode / solid-state batteries / voltage modulation

Cite this article

Download citation ▾
Zhiwei Wu, Jianming Tao, Lixin Lin, Jiangjie Wang, Jiaxin Li, Sanjay Mathur, Yingbin Lin. Towards High-Performance Lithium-Ion Batteries via Voltage Modulation of Silicon Anodes. Carbon Neutralization, 2025, 4(5): e70052 DOI:10.1002/cnl2.70052

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Xiao, F. Shi, T. Glossmann, C. Burnett, and Z. Liu, “From Laboratory Innovations to Materials Manufacturing for Lithium-Based Batteries,” Nature Energy 8 (2023): 329–339.

[2]

G. G. Eshetu, H. Zhang, X. Judez, et al., “Production of High-Energy Li-Ion Batteries Comprising Silicon-Containing Anodes and Insertion-Type Cathodes,” Nature Communications 12 (2021): 5459.

[3]

L. Sun, Y. Liu, L. Wang, and Z. Jin, “Advances and Future Prospects of Micro-Silicon Anodes for High-Energy-Density Lithium-Ion Batteries: A Comprehensive Review,” Advanced Functional Materials 34 (2024): 2403032.

[4]

M. K. Majeed, R. Iqbal, A. Hussain, et al., “Silicon-Based Anode Materials for Lithium Batteries: Recent Progress, New Trends, and Future Perspectives,” Critical Reviews in Solid State and Materials Sciences 49 (2024): 221–253.

[5]

J. D. McBrayer, M.-T. F. Rodrigues, M. C. Schulze, et al., “Calendar Aging of Silicon-Containing Batteries,” Nature Energy 6 (2021): 866–872.

[6]

X. Huo, X. Gong, Y. Liu, Y. Yan, Z. Du, and W. Ai, “Conformal 3D Li/Li13Sn5 Scaffolds Anodes for High-Areal Energy Density Flexible Lithium Metal Batteries,” Advancement of Science 11 (2024): 2309254.

[7]

H. Liu, J. Zhang, P. Xiang, S. Zhang, S. Shi, and W. Liu, “Mobius Strip-Like” FeSn Alloy: A Novel Highly-Distorted 3D Hierarchical Porous Anode for Ultrafast and Stable Li Storage,” Energy Storage Materials 66 (2024): 103234.

[8]

Z. Li, Z. Zhao, S. Pan, et al., “ ,” Advanced Energy Materials 13 (2023): 2300874.

[9]

L. Wang, Y. Jiang, S.-Y. Li, et al., “Scalable Synthesis of N-Doped Si/G@Voids@C With Porous Structures for High-Performance Anode of Lithium-Ion Batteries,” Rare Metals 42 (2023): 4091–4102.

[10]

K. Sun, X. Xiao, W. Shang, et al., “  Unveiling the Interplay Between Silicon and Graphite in Composite Anodes for Lithium-Ion Batteries,” Small 20 (2024): 2405674.

[11]

M. Je, D.-Y. Han, J. Ryu, and S. Park, “Constructing Pure Si Anodes for Advanced Lithium Batteries,” Accounts of Chemical Research 56 (2023): 2213–2224.

[12]

Z. Cheng, H. Jiang, X. Zhang, F. Cheng, M. Wu, and H. Zhang, “Fundamental Understanding and Facing Challenges in Structural Design of Porous Si-Based Anodes for Lithium-Ion Batteries,” Advanced Functional Materials 33 (2023): 2301109.

[13]

N. Kim, Y. Kim, J. Sung, and J. Cho, “Issues Impeding the Commercialization of Laboratory Innovations for Energy-Dense Si-Containing Lithium-Ion Batteries,” Nature Energy 8 (2023): 921–933.

[14]

E. Feyzi, A. K. M R, X. Li, S. Deng, J. Nanda, and K. Zaghib, “A Comprehensive Review of Silicon Anodes for High-Energy Lithium-Ion Batteries: Challenges, Latest Developments, and Perspectives,” Next Energy 5 (2024): 100176.

[15]

L. Wang, J. Yu, S. Li, et al., “Recent Advances In Interface Engineering of Silicon Anodes for Enhanced Lithium-Ion Battery Performance,” Energy Storage Materials 66 (2024): 103243.

[16]

M. Khan, S. Yan, M. Ali, et al., “Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries: Overcoming Challenges and Real-World Applications,” Nano-Micro Letters 16 (2024): 179.

[17]

S. S. Zhang, “Unveiling Electrochemical Properties of Silicon for Stable Cycling Performance of Silicon Anode Materials,” Journal of the Electrochemical Society 171 (2024): 070518.

[18]

A. L. Bhat, J.-K. Chang, and Y.-S. Su, “Investigating operating protocols to extend the lifespan of silicon anodes in Li-ion batteries ,” Electrochimica Acta 481 (2024): 143948.

[19]

A. J. Smith, Y. Fang, A. Mikheenkova, et al., “  Localized Lithium Plating Under Mild Cycling Conditions in High-Energy Lithium-Ion Batteries,” Journal of Power Sources 573 (2023): 233118.

[20]

M. Wetjen, S. Solchenbach, D. Pritzl, J. Hou, V. Tileli, and H. A. Gasteiger, “Morphological Changes of Silicon Nanoparticles and the Influence of Cutoff Potentials in Silicon-Graphite Electrodes,” Journal of the Electrochemical Society 165 (2018): A1503–A1514.

[21]

K. Kimura, T. Matsumoto, H. Nishihara, T. Kasukabe, T. Kyotani, and H. Kobayashi, “Improvement of Cyclability of Li-Ion Batteries Using C-Coated Si Nanopowder Electrode Fabricated From Si Swarf With Limitation of Delithiation Capacity,” Journal of the Electrochemical Society 164 (2017): A995–A1001.

[22]

S. D. Beattie, M. J. Loveridge, M. J. Lain, et al., “Understanding Capacity Fade in Silicon Based Electrodes for Lithium-Ion Batteries Using Three Electrode Cells and Upper Cut-Off Voltage Studies,” Journal of Power Sources 302 (2016): 426–430.

[23]

J. Yang, X. Zhang, M. Hou, et al., “  Research Advances in Interface Engineering of Solid-State Lithium Batteries,” Carbon Neutralization 4 (2025): e188.

[24]

S.-Y. Ham, E. Sebti, A. Cronk, et al., “  Overcoming Low Initial Coulombic Efficiencies of Si Anodes Through Prelithiation in All-Solid-State Batteries,” Nature Communications 15 (2024): 2991.

[25]

J. Liu, S. Y. Lee, J. Yoo, S. Kim, J.-H. Kim, and H. Cho, “Real-Time Observation of Mechanical Evolution of Micro-Sized Si Anodes by In Situ Atomic Force Microscopy,” ACS Materials Letters 4 (2022): 840–846.

[26]

Z. Zhang, Z. Sun, X. Han, et al., “An All-Electrochem-Active Silicon Anode Enabled by Spontaneous Li–Si Alloying for Ultra-High Performance Solid-State Batteries,” Energy & Environmental Science 17 (2024): 1061–1072.

[27]

C. Fan, K. Liu, Y. Ren, and Q. Peng, “Characterization and Identification Towards Dynamic-Based Electrical Modeling of Lithium-Ion Batteries,” Journal of Energy Chemistry 92 (2024): 738–758.

[28]

A. L. Bhat and Y.-S. Su, “ Unraveling the Coulombic Efficiency Trough of Silicon Anodes in Li-Ion Batteries,” Small Science 5 (2025): 2500131.

[29]

Q. Wang, Y. Huang, J. Xu, X. Yu, H. Li, and L. Chen, “Interface and Mechanical Degradation Mechanisms of the Silicon Anode in Sulfide-Based Solid-State Batteries at High Temperatures,” Chinese Physics B 33 (2024): 088201.

[30]

Y. Lu, C.-Z. Zhao, J.-Q. Huang, and Q. Zhang, “The Timescale Identification Decoupling Complicated Kinetic Processes in Lithium Batteries,” Joule 6 (2022): 1172–1198.

[31]

J. Tao, L. Liu, J. Han, et al., “New Perspectives on Spatial Dynamics of Lithiation and Lithium Plating in Graphite/Silicon Composite Anodes,” Energy Storage Materials 60 (2023): 102809.

[32]

B. Py, A. Maradesa, and F. Ciucci, “  From Theory to Practice: Unlocking the Distribution of Capacitive Times in ElectroChemical Impedance Spectroscopy,” Electrochimica Acta 479 (2024): 143741.

[33]

C. Plank, T. Rüther, L. Jahn, et al., “  A Review on the Distribution of Relaxation Times Analysis: A Powerful Tool for Process Identification of Electrochemical Systems,” Journal of Power Sources 594 (2024): 233845.

[34]

J. Tao, Z. Yan, J. Yang, J. Li, Y. Lin, and Z. Huang, “Boosting the Cell Performance of the SiOx@C Anode Material via Rational Design of a Si-Valence Gradient,” Carbon Energy 4 (2022): 129–141.

[35]

R. Blume, D. Rosenthal, J.-P. Tessonnier, H. Li, A. Knop-Gericke, and R. Schlögl, “Characterizing Graphitic Carbon With X-Ray Photoelectron Spectroscopy: A Step-By-Step Approach,” ChemCatChem 7 (2015): 2871–2881.

[36]

J. Tao, L. Lu, B. Wu, et al., “Dramatic Improvement Enabled by Incorporating Thermal Conductive Tin into Si-Based Anodes for Lithium Ion Batteries,” Energy Storage Materials 29 (2020): 367–376.

[37]

C. Cao, I. I. Abate, E. Sivonxay, et al., “Solid Electrolyte Interphase on Native Oxide-Terminated Silicon Anodes for Li-Ion Batteries,” Joule 3 (2019): 762–781.

[38]

A. Kato, H. Kowada, M. Deguchi, C. Hotehama, A. Hayashi, and M. Tatsumisago, “XPS and Sem Analysis Between Li/Li3PS4 Interface With Au Thin Film for All-Solid-State Lithium Batteries,” Solid State Ionics 322 (2018): 1–4.

[39]

R. Guo and B. M. Gallant, “Li2O Solid Electrolyte Interphase: Probing Transport Properties at the Chemical Potential of Lithium,” Chemistry of Materials 32 (2020): 5525–5533.

[40]

M. Schellenberger, R. Golnak, W. G. Quevedo Garzon, S. Risse, and R. Seidel, “Accessing the Solid Electrolyte Interphase on Silicon Anodes for Lithium-Ion Batteries In-Situ Through Transmission Soft X-Ray Absorption Spectroscopy,” Materials Today Advances 14 (2022): 100215.

[41]

J. Tao, D. Wang, Y. Yang, et al., “  Swallowing Lithium Dendrites in All-Solid-State Battery by Lithiation with Silicon Nanoparticles,” Advancement of Science 9 (2022): 2103786.

[42]

S.-B. Son, J. E. Trevey, H. Roh, et al., “Microstructure Study of Electrochemically Driven LixSi,” Advanced Energy Materials 1 (2011): 1199–1204.

[43]

H. Huo, M. Jiang, Y. Bai, et al., “Chemo-Mechanical Failure Mechanisms of the Silicon Anode in Solid-State Batteries,” Nature Materials 23 (2024): 543–551.

[44]

N. Ding, J. Xu, Y. X. Yao, et al., “Determination of the Diffusion Coefficient of Lithium Ions in Nano-Si,” Solid State Ionics 180 (2009): 222–225.

[45]

Kausthubharam , P. K. Koorata, S. Panchal, R. Fraser, and M. Fowler, “  Combined Influence of Concentration-Dependent Properties, Local Deformation and Boundary Confinement on the Migration of Li-Ions in Low-Expansion Electrode Particle During Lithiation,” Journal of Energy Storage 52 (2022): 104908.

[46]

L. S. Vasconcelos, de, R. Xu, and K. Zhao, “  Quantitative Spatiotemporal Li Profiling Using Nanoindentation,” Journal of the Mechanics and Physics of Solids 144 (2020): 104102.

[47]

M. Tanaka, J. B. Hooper, and D. Bedrov, “Role of Plasticity in Mechanical Failure of Solid Electrolyte Interphases on Nanostructured Silicon Electrode: Insight From Continuum Level Modeling,” ACS Applied Energy Materials 1 (2018): 1858–1863.

[48]

Q. Sun, G. Zeng, J. Li, et al., “Is Soft Carbon a More Suitable Match for SiOx in Li-Ion Battery Anodes?” Small 19 (2023): 2302644.

[49]

J. Moon, H. C. Lee, H. Jung, et al., “Interplay Between Electrochemical Reactions and Mechanical Responses in Silicon–Graphite Anodes and Its Impact on Degradation,” Nature Communications 12 (2021): 2714.

[50]

Y. Huang, C. Xu, J. Gao, et al., “  Easily Obtaining Excellent Performance High-voltage LiCoO2 via Pr6O11 Modification,” Energy & Environmental Materials 6 (2023): e12311.

[51]

Y. Lyu, X. Wu, K. Wang, et al., “  An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries,” Advanced Energy Materials 11 (2021): 2000982.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/