Flexible Perovskite Solar Cells: Low Temperature Processing, Material Design, and Pathways to Scalable Green Photovoltaics

Tao Ye , Zhenlong Wang , Shaoyang Ma , Zihui Liang , Binghe Ma , Yifan Wang , Xinrui Zhang , Haoyang Sun , Xingxu Zhang , Kai Tao , Congcong Wu , Dong Yang , Jinjun Deng , Jian Luo , Weizheng Yuan , Jin Qian , Tianming Li , Kai Wang

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70047

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70047 DOI: 10.1002/cnl2.70047
REVIEW

Flexible Perovskite Solar Cells: Low Temperature Processing, Material Design, and Pathways to Scalable Green Photovoltaics

Author information +
History +
PDF

Abstract

Flexible perovskite solar cells (FPSCs) have emerged as a promising next- generation photovoltaic technology due to their lightweight, conformal design, and compatibility with low-cost, scalable fabrication. This review systematically summarizes recent advances in FPSC development, focusing on low-temperature fabrication strategies, functional material engineering, and device integration. We first detail one- step and two-step deposition methods, along with other novel approaches for producing high-quality perovskite films on flexible substrates at reduced thermal budgets. Subsequently, we examine the design of key functional layers, including perovskite absorbers, electron and hole transport layers, flexible electrodes, and substrates, highlighting innovations that enhance performance and mechanical resilience. A dedicated section explores Sn-based perovskite solar cells as a low-toxicity alternative to lead-based systems, covering compositional optimization, device architecture, and their growing deployment in flexible configurations. This review further discusses the scalable realization of flexible perovskite solar modules, including module architecture, charge transport management, and environmental safety strategies such as lead encapsulation and sustainable substrates. We conclude with an overview of application scenarios ranging from wearable electronics and high-altitude platforms to self-powered IoT systems and evaluate commercialization prospects through integrated portable energy systems. Together, these insights provide a comprehensive roadmap toward the development of high-efficiency, mechanically robust, and environmentally responsible FPSCs for real-world deployment.

Keywords

flexible perovskite solar cells / lead free perovskites / low temperature processing / power conversion efficiency / scalable fabrication / wearable photovoltaics

Cite this article

Download citation ▾
Tao Ye, Zhenlong Wang, Shaoyang Ma, Zihui Liang, Binghe Ma, Yifan Wang, Xinrui Zhang, Haoyang Sun, Xingxu Zhang, Kai Tao, Congcong Wu, Dong Yang, Jinjun Deng, Jian Luo, Weizheng Yuan, Jin Qian, Tianming Li, Kai Wang. Flexible Perovskite Solar Cells: Low Temperature Processing, Material Design, and Pathways to Scalable Green Photovoltaics. Carbon Neutralization, 2025, 4(5): e70047 DOI:10.1002/cnl2.70047

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Zhou, P. Zhou, Y. Wu, F. Zhang, and Y. Wang, “Biomimetic Strategies for Flexible Battery Design and Applications,” Chemical Engineering Journal 513 (2025): 162778.

[2]

J. Zhao, X. Fan, H. Xie, et al., “Revolutionizing Wearable Sustainable Energy Enabled by Mechano-Electric Conversion Fibers,” Energy & Environmental Science 18 (2025): 3955.

[3]

S. Aftab, G. Koyyada, Z. Ali, et al., “Flexible Perovskite Solar Cells: A Revolutionary Approach for Wearable Electronics and Sensors,” Materials Today Energy 51 (2025): 101872.

[4]

R. Tian, S. Zhou, Y. Meng, C. Liu, and Z. Ge, “Material and Device Design of Flexible Perovskite Solar Cells for Next-Generation Power Supplies,” Advanced Materials 36 (2024): 2311473.

[5]

J. Liu, D. Zheng, K. Wang, et al., “Evolutionary Manufacturing Approaches for Advancing Flexible Perovskite Solar Cells,” Joule 8 (2024): 944–969.

[6]

Z. Liang, B. Jin, J. Cao, et al., “Chemi-Mechanically Peeling the Unstable Surface States of α-FAPbI3,” Small 18 (2022): 2204742.

[7]

Y. Wang, D. Zheng, K. Wang, et al., “Lattice Mismatch at the Heterojunction of Perovskite Solar Cells,” Angewandte Chemie International Edition 63 (2024): e202405878.

[8]

Z. Liang, J. Cao, Z. Zhou, et al., “Molecular Sublimation Enables 2D–3D Transformation of Orientational FAPbI3 Perovskites,” Nature Synthesis 4 (2025): 347–358.

[9]

H. Liu, H. Wu, Z. Zhou, et al., “Simultaneous Mechanical and Chemical Synthesis of Long-Range-Ordered Perovskites,” Nature Synthesis 4 (2025): 196–208.

[10]

S. Li, Y. Jiang, J. Xu, et al., “High-Efficiency and Thermally Stable FACsPbI3 Perovskite Photovoltaics,” Nature 635 (2024): 82–88.

[11]

Z. Li, C. Jia, H. Wu, et al., “In-Situ Cross-Linked Polymers for Enhanced Thermal Cycling Stability in Flexible Perovskite Solar Cells,” Angewandte Chemie International Edition 64 (2025): e202421063.

[12]

Z. Skafi, L. A. Castriotta, B. Taheri, et al., “Flexible Perovskite Solar Cells on Polycarbonate Film Substrates,” Advanced Energy Materials 14 (2024): 2400912.

[13]

X. Hu, L. Wang, S. Luo, H. Yan, and S. Chen, “Polymeric Charge-Transporting Materials for Inverted Perovskite Solar Cells,” Advanced Materials 37 (2024): 2412327.

[14]

L. Dong, S. Qiu, J. García Cerrillo, et al., “Fully Printed Flexible Perovskite Solar Modules With Improved Energy Alignment by Tin Oxide Surface Modification,” Energy & Environmental Science 17 (2024): 7097.

[15]

E. Parvazian and T. Watson, “The Roll-To-Roll Revolution to Tackle the Industrial Leap for Perovskite Solar Cells,” Nature Communications 15 (2024): 3983.

[16]

D. Gao, B. Li, Z. Li, et al., “Highly Efficient Flexible Perovskite Solar Cells Through Pentylammonium Acetate Modification With Certified Efficiency of 23.35%,” Advanced Materials 35 (2023): 2206387.

[17]

Z. Dai, S. K. Yadavalli, M. Chen, A. Abbaspourtamijani, Y. Qi, and N. P. Padture, “Interfacial Toughening With Self-Assembled Monolayers Enhances Perovskite Solar Cell Reliability,” Science 372 (2021): 618–622.

[18]

Q. Dong, C. Zhu, M. Chen, et al., “Interpenetrating Interfaces for Efficient Perovskite Solar Cells With High Operational Stability and Mechanical Robustness,” Nature Communications 12 (2021): 973.

[19]

J. Liu, Z. Zhao, J. Qian, et al., “Thermal Radiation Annealing for Overcoming Processing Temperature Limitation of Flexible Perovskite Solar Cells,” Advanced Materials 36 (2024): 24012.

[20]

W.-Q. Wu, P. N. Rudd, Z. Ni, et al., “Reducing Surface Halide Deficiency for Efficient and Stable Iodide-Based Perovskite Solar Cells,” Journal of the American Chemical Society 142 (2020): 3989–3996.

[21]

J. Chen, X. Fan, J. Wang, et al., “23.81%-Efficiency Flexible Inverted Perovskite Solar Cells With Enhanced Stability and Flexibility via a Lewis Base Passivation,” ACS Nano 18 (2024): 19190–19199.

[22]

H. Liang, W. Zhu, Z. Lin, et al., “Enhancing Efficiency and Stability of Inverted Flexible Perovskite Solar Cells via Multi-Functionalized Molecular Design,” Angewandte Chemie-International Edition 64 (2025): e202501267.

[23]

Y. Cao, L. Yang, N. Yan, et al., “Buried Interface Modification for High Performance and Stable Perovskite Solar Cells,” Energy & Environmental Science 18 (2025): 3659.

[24]

R. Verduci, V. Romano, G. Brunetti, et al., “Solar Energy in Space Applications: Review and Technology Perspectives,” Advanced Energy Materials 12 (2022): 2200125.

[25]

M. I. Ustinova, L. A. Frolova, A. V. Rasmetyeva, et al., “A Europium Shuttle for Launching Perovskites to Space: Using Eu2+/Eu3+redox Chemistry to Boost Photostability and Radiation Hardness of Complex Lead Halides,” Journal of Materials Chemistry A 12 (2024): 13219–13230.

[26]

Z. Zhu, D. Zhao, C.-C. Chueh, X. Shi, Z. Li, and A. K. Y. Jen, “Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers,” Joule 2 (2018): 168–183.

[27]

X. Zhu, D. Yu, X. Zhou, et al., “Interfacial Molecular Anchor for Ambient All-Bladed Perovskite Solar Modules,” Joule 9 (2025): 101919.

[28]

G. Xia, H. Liu, X. Zhao, X. Dong, S. Wang, and X. Li, “Seeding-Method-Processed Anatase TiO2 Film at Low Temperature for Efficient Planar Perovskite Solar Cell,” Chemical Engineering Journal 370 (2019): 1111–1118.

[29]

X. Hu, X. Meng, L. Zhang, et al., “A Mechanically Robust Conducting Polymer Network Electrode for Efficient Flexible Perovskite Solar Cells,” Joule 3 (2019): 2205–2218.

[30]

T. Nakamura, S. Yakumaru, M. A. Truong, et al., “Sn(IV)-Free Tin Perovskite Films Realized by In Situ Sn(0) Nanoparticle Treatment of the Precursor Solution,” Nature Communications 11 (2020): 3008.

[31]

J. Zhao, Z. Zhang, G. Li, M. H. Aldamasy, M. Li, and A. Abate, “Dimensional Tuning in Lead-Free Tin Halide Perovskite for Solar Cells,” Advanced Energy Materials 13 (2023): 2204233.

[32]

X. Liu, W. Zi, and S. (Frank) Liu, “p-Layer Bandgap Engineering for High Efficiency Thin Film Silicon Solar Cells,” Materials Science in Semiconductor Processing 39 (2015): 192–199.

[33]

T. Ye, S.-L. Lim, X. Li, et al., “Pinhole-Free Mixed Perovskite Film for Bending Durable Mixed Perovskite Solar Cells,” Solar Energy Materials and Solar Cells 175 (2018): 111–117.

[34]

C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, and M. Graetzel, “High Efficiency Stable Inverted Perovskite Solar Cells Without Current Hysteresis,” Energy & Environmental Science 8 (2015): 2725.

[35]

M. Petrovic, T. Ye, C. Vijila, and S. Ramakrishna, “Influence of Charge Transport and Defects on the Performance of Planar and Mesostructured Perovskite Solar Cells,” Advanced Energy Materials 7 (2017): 1602610.

[36]

H. Zhou, Q. Chen, G. Li, et al., “Interface Engineering of Highly Efficient Perovskite Solar Cells,” Science 345 (2014): 542–546.

[37]

N. Pellet, P. Gao, G. Gregori, et al., “Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting,” Angewandte Chemie International Edition 53 (2014): 3151–3157.

[38]

Y. Chen, T. Chen, and L. Dai, “Layer-By-Layer Growth of CH3NH3PbI3−xClxfor Highly Efficient Planar Heterojunction Perovskite Solar Cells,” Advanced Materials 27 (2015): 1053–1059.

[39]

P. Cui, P. Fu, D. Wei, et al., “Reduced Surface Defects of Organometallic Perovskite by Thermal Annealing for Highly Efficient Perovskite Solar Cells,” RSC Advances 5 (2015): 75622–75629.

[40]

Z. Yao, D. Qu, Y. Guo, and H. Huang, “Grain Boundary Regulation of Flexible Perovskite Solar Cells via a Polymer Alloy Additive,” Organic Electronics 70 (2019): 205–210.

[41]

Z. Huang, X. Hu, C. Liu, et al., “Water-Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer,” Advanced Functional Materials 29 (2019): 1902629.

[42]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells,” Nature Materials 13 (2014): 897–903.

[43]

Z. Wang, L. Zeng, C. Zhang, et al., “Rational Interface Design and Morphology Control for Blade-Coating Efficient Flexible Perovskite Solar Cells With a Record Fill Factor of 81%,” Advanced Functional Materials 30 (2020): 2001240.

[44]

X. Dai, Y. Deng, C. H. Van Brackle, et al., “Scalable Fabrication of Efficient Perovskite Solar Modules on Flexible Glass Substrates,” Advanced Energy Materials 10 (2020): 1903108.

[45]

S. Gharibzadeh, P. Fassl, I. M. Hossain, et al., “Two Birds With One Stone: Dual Grain-Boundary and Interface Passivation Enables >22% Efficient Inverted Methylammonium-Free Perovskite Solar Cells,” Energy & Environmental Science 14 (2021): 5875.

[46]

P.-H. Huang, Y.-H. Wang, J.-C. Ke, and C.-J. Huang, “The Effect of Solvents on the Performance of CH3NH3PbI3 Perovskite Solar Cells,” Energies 10 (2017): 599.

[47]

Y.-H. Seo, E.-C. Kim, S.-P. Cho, S.-S. Kim, and S.-I. Na, “Hysteresis Data of Planar Perovskite Solar Cells Fabricated With Different Solvents,” Data in Brief 16 (2018): 418–422.

[48]

M. Vásquez-Montoya, J. F. Montoya, D. Ramirez, and F. Jaramillo, “Understanding the Precursor Chemistry for One-Step Deposition of Mixed Cation Perovskite Solar Cells by Methylamine Route,” Journal of Energy Chemistry 57 (2021): 386–391.

[49]

J. Burschka, N. Pellet, S.-J. Moon, et al., “Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells,” Nature 499 (2013): 316–319.

[50]

H. Li, C. Zuo, D. Angmo, H. Weerasinghe, M. Gao, and J. Yang, “Fully Roll-To-Roll Processed Efficient Perovskite Solar Cells via Precise Control on the Morphology of PbI2:CsI Layer,” Nano-Micro Letters 14 (2022): 79.

[51]

C.-Y. Chang, C.-Y. Chu, Y.-C. Huang, et al., “Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell,” ACS Applied Materials & Interfaces 7 (2015): 4955–4961.

[52]

Y. Wu, A. Islam, X. Yang, et al., “Retarding the Crystallization of PbI2 for Highly Teproducible Planar-Structured Perovskite Solar Cells via Sequential Deposition,” Energy & Environmental Science 7 (2014): 2934.

[53]

Y. Zhao, J. Wei, H. Li, et al., “A Polymer Scaffold for Self-Healing Perovskite Solar Cells,” Nature Communications 7 (2016): 10228.

[54]

J. H. Heo, D. H. Song, H. J. Han, et al., “Planar CH3NH3PbI3Perovskite Solar Cells With Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate,” Advanced Materials 27 (2015): 3424–3430.

[55]

X. Li, W. Li, Y. Yang, et al., “Defects Passivation With Dithienobenzodithiophene-Based π-Conjugated Polymer for Enhanced Performance of Perovskite Solar Cells,” Solar RRL 3 (2019): 1900029.

[56]

J. Feng, X. Zhu, Z. Yang, et al., “Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy,” Advanced Materials 30 (2018): 1801418.

[57]

T. Li, Y. Pan, Z. Wang, Y. Xia, Y. Chen, and W. Huang, “Additive Engineering for Highly Efficient Organic–Inorganic Halide Perovskite Solar Cells: Recent Advances and Perspectives,” Journal of Materials Chemistry A 5 (2017): 12602–12652.

[58]

Y. Guo, K. Shoyama, W. Sato, and E. Nakamura, “Polymer Stabilization of Lead(II) Perovskite Cubic Nanocrystals for Semitransparent Solar Cells,” Advanced Energy Materials 6 (2016): 1502317.

[59]

J. Mo, C. Zhang, J. Chang, et al., “Enhanced Efficiency of Planar Perovskite Solar Cells via a Two-Step Deposition Using DMF as an Additive to Optimize the Crystal Growth Behavior,” Journal of Materials Chemistry A 5 (2017): 13032–13038.

[60]

J. Huang, M. Wang, L. Ding, Z. Yang, and K. Zhang, “Hydrobromic Acid Assisted Crystallization of MAPbI3−xClxfor Enhanced Power Conversion Efficiency in Perovskite Solar Cells,” RSC Advances 6 (2016): 55720–55725.

[61]

X. Gong, M. Li, X.-B. Shi, H. Ma, Z.-K. Wang, and L.-S. Liao, “Controllable Perovskite Crystallization by Water Additive for High-Performance Solar Cells,” Advanced Functional Materials 25 (2015): 6671–6678.

[62]

X. Cao, G. Zhang, L. Jiang, et al., “Water, a Green Solvent for Fabrication of High-Quality CsPbBr(3) Films for Efficient Solar Cells,” ACS Applied Materials & Interfaces 12 (2020): 5925–5931.

[63]

T. Li, A. M. Zeidell, G. Findik, et al., “Phase-Pure Hybrid Layered Lead Iodide Perovskite Films Based on a Two-Step Melt-Processing Approach,” Chemistry of Materials 31 (2019): 4267–4274.

[64]

X. Liu, X. Tan, Z. Liu, et al., “Boosting the Efficiency of Carbon-Based Planar CsPbBr3 Perovskite Solar Cells by a Modified Multistep Spin-Coating Technique and Interface Engineering,” Nano Energy 56 (2019): 184–195.

[65]

C. Zuo, D. Vak, D. Angmo, L. Ding, and M. Gao, “One-Step Roll-To-Roll Air Processed High Efficiency Perovskite Solar Cells,” Nano Energy 46 (2018): 185–192.

[66]

D. Liu, M. K. Gangishetty, and T. L. Kelly, “Effect of CH3NH3PbI3thickness on Device Efficiency in Planar Heterojunction Perovskite Solar Cells,” Journal of Materials Chemistry A: Materials for Energy and Sustainability 2 (2014): 19873–19881.

[67]

M. Othman, F. Zheng, A. Seeber, et al., “Millimeter-Sized Clusters of Triple Cation Perovskite Enables Highly Efficient and Reproducible Roll-to-Roll Fabricated Inverted Perovskite Solar Cells,” Advanced Functional Materials 32 (2022): 2110700.

[68]

Q. Chen, H. Zhou, Z. Hong, et al., “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” Journal of the American Chemical Society 136 (2014): 622–625.

[69]

H. Wang, H. Bian, Z. Jin, et al., “Cesium Lead Mixed-Halide Perovskites for Low-Energy Loss Solar Cells With Efficiency Beyond 17,” Chemistry of Materials 31 (2019): 6231–6238.

[70]

D. Yang, R. Yang, J. Zhang, Z. Yang, S. Liu, and C. Li, “High Efficiency Flexible Perovskite Solar Cells Using Superior Low Temperature TiO2,” Energy & Environmental Science 8 (2015): 3208.

[71]

C. Wu, D. Wang, Y. Zhang, et al., “FAPbI3 Flexible Solar Cells With a Record Efficiency of 19.38% Fabricated in Air via Ligand and Additive Synergetic Process,” Advanced Functional Materials 29 (2019): 1902974.

[72]

S. Seo, I. Jeon, R. Xiang, et al., “Semiconducting Carbon Nanotubes as Crystal Growth Templates and Grain Bridges in Perovskite Solar Cells,” Journal of Materials Chemistry A 7 (2019): 12987–12992.

[73]

H. Hu, Z. Ren, P. W. K. Fong, et al., “Room-Temperature Meniscus Coating of >20% Perovskite Solar Cells: A Film Formation Mechanism Investigation,” Advanced Functional Materials 29 (2019): 1900092.

[74]

Q. Dong, M. Chen, Y. Liu, et al., “Flexible Perovskite Solar Cells With Simultaneously Improved Efficiency, Operational Stability, and Mechanical Reliability,” Joule 5 (2021): 1587–1601.

[75]

G. Tang, T. Wang, J. Cao, et al., “Highly Stable and Efficient Perovskite Solar Cells Passivated by a Functional Amorphous Layer,” Journal of Materials Chemistry A 9 (2021): 21708–21715.

[76]

J. Zhang, C. Huang, Y. Sun, and H. Yu, “Amino-Functionalized Niobium-Carbide MXene Serving as Electron Transport Layer and Perovskite Additive for the Preparation of High-Performance and Stable Methylammonium-Free Perovskite Solar Cells,” Advanced Functional Materials 32 (2022): 2113367.

[77]

L. Zhou, X. Guo, Z. Lin, et al., “Interface Engineering of Low Temperature Processed All-Inorganic CsPbI2Br Perovskite Solar Cells Toward PCE Exceeding 14,” Nano Energy 60 (2019): 583–590.

[78]

Z. Wang, X. Liu, Y. Lin, et al., “Hot-Substrate Deposition of All-Inorganic Perovskite Films for Low-Temperature Processed High-Efficiency Solar Cells,” Journal of Materials Chemistry A 7 (2019): 2773–2779.

[79]

L. Qiu, S. He, Y. Jiang, et al., “Hybrid Chemical Vapor Deposition Enables Scalable and Stable Cs-FA Mixed Cation Perovskite Solar Modules With a Designated Area of 91.8 cm2 approaching 10% Efficiency,” Journal of Materials Chemistry A 7 (2019): 6920–6929.

[80]

D. Zhao, C. Chen, C. Wang, et al., “Efficient Two-Terminal All-Perovskite Tandem Solar Cells Enabled by High-Quality Low-Bandgap Absorber Layers,” Nature Energy 3 (2018): 1093–1100.

[81]

B. Zhang, W. Bi, Y. Wu, et al., “High-Performance CsPbIBr(2) Perovskite Solar Cells: Effectively Promoted Crystal Growth by Antisolvent and Organic Ion Strategies,” ACS Applied Materials & Interfaces 11 (2019): 33868–33878.

[82]

S.-C. Yun, S. Ma, H.-C. Kwon, et al., “Amino Acid Salt-Driven Planar Hybrid Perovskite Solar Cells With Enhanced Humidity Stability,” Nano Energy 59 (2019): 481–491.

[83]

J. Yang, J. Luo, C. Yi, Y. Shi, Y. Zhou, and G. Zheng, “Spin-Triplet Superconductivity in K2Cr3As3,” Science Advances 7 (2021): eabg3749.

[84]

Z. Song, W. Xu, Y. Wu, et al., “Incorporating of Lanthanides Ions Into Perovskite Film for Efficient and Stable Perovskite Solar Cells,” Small 16 (2020): 2001770.

[85]

M. Du, X. Zhu, L. Wang, et al., “High-Pressure Nitrogen-Extraction and Effective Passivation to Attain Highest Large-Area Perovskite Solar Module Efficiency,” Advanced Materials 32 (2020): 2004979.

[86]

X. Meng, Z. Xing, X. Hu, et al., “Stretchable Perovskite Solar Cells With Recoverable Performance,” Angewandte Chemie International Edition 59 (2020): 16602–16608.

[87]

P. Li, H. Jiang, A. Barr, et al., “Reusable Polyacrylonitrile-Sulfur Extractor of Heavy Metal Ions From Wastewater (Adv. Funct. Mater. 51/2021,” Advanced Functional Materials 31 (2021): 2103252.

[88]

C. Liu, J. Sun, X.-F. Jiang, et al., “A Universal Tactic of Using Lewis-Base Polymer-CNTs Composites as Additives for High Performance cm2-Sized and Flexible Perovskite Solar Cells,” Science China Chemistry 64 (2021): 281–292.

[89]

Q. Wang, Y. Lu, R. L. He, et al., “Spin Selectivity in Chiral Hybrid Cobalt Halide Films With Ultrasmooth Surface,” Small Methods 6 (2022): 2200048.

[90]

X. Zhou, J. Qiu, J. Li, et al., “Reduced Defects and Enhanced Vbi in Perovskite Absorbers Through Synergetic Passivating Effect Using 4-Methoxyphenylacetic Acid,” Journal of Power Sources 518 (2022): 230734.

[91]

L. Cheng, K. Meng, Z. Qiao, et al., “Tailoring Interlayer Spacers for Efficient and Stable Formamidinium-Based Low-Dimensional Perovskite Solar Cells,” Advanced Materials 34 (2022): 2106380.

[92]

D. Chen, Y. Wang, H. Zhou, et al., “Current and Future Trends for Polymer Micro/Nanoprocessing in Industrial Applications (Adv. Mater. 52/2022,” Advanced Materials 34 (2022): 2200320.

[93]

Z. Xu, R. Chen, Y. Wu, et al., “Br-Containing Alkyl Ammonium Salt-Enabled Scalable Fabrication of High-Quality Perovskite Films for Efficient and Stable Perovskite Modules,” Journal of Materials Chemistry A 7 (2019): 26849–26857.

[94]

L. Li, S. Tu, G. You, et al., “Enhancing Performance and Stability of Perovskite Solar Cells Through Defect Passivation With a Polyamide Derivative Obtained From Benzoxazine-Isocyanide Chemistry,” Chemical Engineering Journal 431 (2022): 133951.

[95]

H. Zeng, L. Li, F. Liu, et al., “Improved Performance and Stability of Perovskite Solar Modules by Regulating Interfacial Ion Diffusion With Nonionic Cross-Linked 1D Lead-Iodide,” Advanced Energy Materials 12 (2022): 2102820.

[96]

B. Yang, M. Wang, X. Hu, T. Zhou, and Z. Zang, “Highly Efficient Semitransparent CsPbIBr2 Perovskite Solar Cells via Low-Temperature Processed In2S3 as Electron-Transport-Layer,” Nano Energy 57 (2019): 718–727.

[97]

C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, et al., “Flexible High Efficiency Perovskite Solar Cells,” Energy & Environmental Science 7 (2014): 994.

[98]

D. Liu and T. L. Kelly, “Perovskite Solar Cells With a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques,” Nature Photonics 8 (2014): 133–138.

[99]

B. J. Kim, D. H. Kim, Y.-Y. Lee, et al., “Highly Efficient and Bending Durable Perovskite Solar Cells: Toward a Wearable Power Source,” Energy & Environmental Science 8 (2015): 916.

[100]

S. S. Shin, W. S. Yang, J. H. Noh, et al., “High-Performance Flexible Perovskite Solar Cells Exploiting Zn2SnO4 Prepared in Solution Below 100°C,” Nature Communications 6 (2015): 7410.

[101]

J. H. Heo, M. H. Lee, H. J. Han, B. R. Patil, J. S. Yu, and S. H. Im, “Highly Efficient Low Temperature Solution Processable Planar Type CH3NH3PbI3perovskite Flexible Solar Cells,” Journal of Materials Chemistry A 4 (2016): 1572–1578.

[102]

J. Feng, Z. Yang, D. Yang, et al., “E-Beam Evaporated Nb2O5 as an Effective Electron Transport Layer for Large Flexible Perovskite Solar Cells,” Nano Energy 36 (2017): 1–8.

[103]

K. Wang, Y. Shi, L. Gao, et al., “W(Nb)O x -Based Efficient Flexible Perovskite Solar Cells: From Material Optimization to Working Principle,” Nano Energy 31 (2017): 424–431.

[104]

D. Yang, R. Yang, X. Ren, et al., “Hysteresis-Suppressed High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for Effective Electron Transport,” Advanced Materials 28 (2016): 5206–5213.

[105]

C. Wang, L. Guan, D. Zhao, et al., “Water Vapor Treatment of Low-Temperature Deposited SnO2Electron Selective Layers for Efficient Flexible Perovskite Solar Cells,” ACS Energy Letters 2 (2017): 2118–2124.

[106]

K. Huang, Y. Peng, Y. Gao, et al., “High-Performance Flexible Perovskite Solar Cells via Precise Control of Electron Transport Layer,” Advanced Energy Materials 9 (2019): 1901419.

[107]

W. Hu, W. Zhou, X. Lei, et al., “Low-Temperature In Situ Amino Functionalization of TiO2 Nanoparticles Sharpens Electron Management Achieving over 21% Efficient Planar Perovskite Solar Cells,” Advanced Materials 31 (2019): 1806095.

[108]

H. S. Jung and N.-G. Park, “Perovskite Solar Cells: From Materials to Devices,” Small 11 (2015): 10–25.

[109]

P. P. Boix, K. Nonomura, N. Mathews, and S. G. Mhaisalkar, “Current Progress and Future Perspectives for Organic/Inorganic Perovskite Solar Cells,” Materials Today 17 (2014): 16–23.

[110]

T. Ye, S. Ma, X. Jiang, L. Wei, C. Vijila, and S. Ramakrishna, “Performance Enhancement of Tri-Cation and Dual-Anion Mixed Perovskite Solar Cells by Au@SiO2 Nanoparticles,” Advanced Functional Materials 27 (2017): 1606545.

[111]

Y. Tanaka, S. L. Lim, W. P. Goh, et al., “Fabrication of Mesoporous Titania Nanoparticles With Controlled Porosity and Connectivity for Studying the Photovoltaic Properties in Perovskite Solar Cells,” ChemNanoMat 4 (2018): 394–400.

[112]

S. Ma, T. Ye, T. Wu, et al., “Hollow Rice Grain-Shaped TiO2 Nanostructures for High-Efficiency and Large-Area Perovskite Solar Cells,” Solar Energy Materials and Solar Cells 191 (2019): 389–398.

[113]

F. Giordano, A. Abate, J. P. C. Baena, et al., “Enhanced Electronic Properties in Mesoporous TiO2 via Lithium Doping for High-Efficiency Perovskite Solar Cells,” Nature Communications 7 (2016): 10379.

[114]

M. Dürr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles, “Low-Temperature Fabrication of Dye-Sensitized Solar Cells by Transfer of Composite Porous Layers,” Nature Materials 4 (2005): 607–611.

[115]

M. Shahiduzzaman, M. Ismail Hossain, S. Otani, et al., “Low-Temperature Treated Anatase TiO2 Nanophotonic-Structured Contact Design for Efficient Triple-Cation Perovskite Solar Cells,” Chemical Engineering Journal 426 (2021): 131831.

[116]

B. J. Kim, S. L. Kwon, M.-c Kim, et al., “High-Efficiency Flexible Perovskite Solar Cells Enabled by an Ultrafast Room-Temperature Reactive Ion Etching Process,” ACS Applied Materials & Interfaces 12 (2020): 7125–7134.

[117]

X. Liu, J. Wu, G. Li, et al., “Defect Control Strategy by Bifunctional Thioacetamide at Low Temperature for Highly Efficient Planar Perovskite Solar Cells,” ACS Applied Materials & Interfaces 12 (2020): 12883–12891.

[118]

W. Hu, Z. Wen, X. Yu, et al., “In Situ Surface Fluorination of TiO2 Nanocrystals Reinforces Interface Binding of Perovskite Layer for Highly Efficient Solar Cells With Dramatically Enhanced Ultraviolet-Light Stability,” Advanced Science 8 (2021): 2004662.

[119]

M. Shahiduzzaman, D. Kuwahara, M. Nakano, et al., “Low-Temperature Processed TiOx Electron Transport Layer for Efficient Planar Perovskite Solar Cells,” Nanomaterials 10 (2020): 1676.

[120]

B. Ding, S.-Y. Huang, Q.-Q. Chu, et al., “Low-Temperature SnO2-Modified TiO2 Yields Record Efficiency for Normal Planar Perovskite Solar Modules,” Journal of Materials Chemistry A 6 (2018): 10233–10242.

[121]

J. Dagar, S. Castro-Hermosa, M. Gasbarri, et al., “Efficient Fully Laser-Patterned Flexible Perovskite Modules and Solar Cells Based on Low-Temperature Solution-Processed SnO2/Mesoporous-TiO2 Electron Transport Layers,” Nano Research 11 (2018): 2669–2681.

[122]

X. Liu, Z. Wu, Y. Zhang, and C. Tsamis, “Low Temperature Zn-Doped TiO2 as Electron Transport Layer for 19% Efficient Planar Perovskite Solar Cells,” Applied Surface Science 471 (2019): 28–35.

[123]

Y. Xu, J. Duan, X. Yang, et al., “Lattice-Tailored Low-Temperature Processed Electron Transporting Materials Boost the Open-Circuit Voltage of Planar CsPbBr3 Perovskite Solar Cells Up to 1.654 V,” Journal of Materials Chemistry A 8 (2020): 11859–11866.

[124]

Y. Duan, G. Zhao, X. Liu, et al., “Low-Temperature Processed Tantalum/Niobium Co-Doped TiO2 Electron Transport Layer for High-Performance Planar Perovskite Solar Cells,” Nanotechnology 32 (2021): 245201.

[125]

C. Liu, M. Cai, Y. Yang, et al., “A C60/TiOxbilayer for Conformal Growth of Perovskite Films for UV Stable Perovskite Solar Cells,” Journal of Materials Chemistry A 7 (2019): 11086–11094.

[126]

M. J. Paik, J. W. Yoo, J. Park, et al., “SnO2–TiO2 Hybrid Electron Transport Layer for Efficient and Flexible Perovskite Solar Cells,” ACS Energy Letters 7 (2022): 1864–1870.

[127]

M. M. Tavakoli, R. Tavakoli, P. Yadav, and J. Kong, “A Graphene/ZnO Electron Transfer Layer Together With Perovskite Passivation Enables Highly Efficient and Stable Perovskite Solar Cells,” Journal of Materials Chemistry A 7 (2019): 679–686.

[128]

M. Fahim, I. Firdous, W. Zhang, and W. A. Daoud, “Bifunctional Interfacial Engineering for Piezo-Phototronic Enhanced Photovoltaic Performance of Wearable Perovskite Solar Cells,” Nano Energy 86 (2021): 106127.

[129]

Q. Dong, J. Li, Y. Shi, et al., “Improved SnO2 Electron Transport Layers Solution-Deposited at Near Room Temperature for Rigid or Flexible Perovskite Solar Cells With High Efficiencies,” Advanced Energy Materials 9 (2019): 1900834.

[130]

X. Yang, H. Yang, X. Hu, et al., “Low-Temperature Interfacial Engineering for Flexible CsPbI2Br Perovskite Solar Cells With High Performance Beyond 15,” Journal of Materials Chemistry A 8 (2020): 5308–5314.

[131]

G. Liu, Y. Zhong, H. Mao, et al., “Highly Efficient and Stable ZnO-Based MA-Free Perovskite Solar Cells via Overcoming Interfacial Mismatch and Deprotonation Reaction,” Chemical Engineering Journal 431 (2022): 134235.

[132]

C. Liu, L. Zhang, X. Zhou, et al., “Hydrothermally Treated SnO2 as the Electron Transport Layer in High-Efficiency Flexible Perovskite Solar Cells With a Certificated Efficiency of 17.3%,” Advanced Functional Materials 29 (2019): 1807604.

[133]

C. Chen, Y. Jiang, J. Guo, et al., “Solvent-Assisted Low-Temperature Crystallization of SnO2Electron-Transfer Layer for High-Efficiency Planar Perovskite Solar Cells,” Advanced Functional Materials 29 (2019): 1900557.

[134]

R. Azmi, N. Nurrosyid, S.-H. Lee, et al., “Shallow and Deep Trap State Passivation for Low-Temperature Processed Perovskite Solar Cells,” ACS Energy Letters 5 (2020): 1396–1403.

[135]

M. Zhong, Y. Liang, J. Zhang, Z. Wei, Q. Li, and D. Xu, “Highly Efficient Flexible MAPbI3solar Cells With a Fullerene Derivative-Modified SnO2 layer as the Electron Transport Layer,” Journal of Materials Chemistry A 7 (2019): 6659–6664.

[136]

L. Qiu, Z. Liu, L. K. Ono, et al., “Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer,” Advanced Functional Materials 29 (2019): 1806779.

[137]

Y. Zhou, S. Yang, X. Yin, et al., “Enhancing Electron Transportviagraphene Quantum dot/SnO2 Composites for Efficient and Durable Flexible Perovskite Photovoltaics,” Journal of Materials Chemistry A 7 (2019): 1878–1888.

[138]

S. N. Vijayaraghavan, J. Wall, L. Li, G. Xing, Q. Zhang, and F. Yan, “Low-Temperature Processed Highly Efficient Hole Transport Layer Free Carbon-Based Planar Perovskite Solar Cells With SnO2 Quantum Dot Electron Transport Layer,” Materials Today Physics 13 (2020): 100204.

[139]

Y. Yang, H. Lu, S. Feng, et al., “Modulation of Perovskite Crystallization Processes Towards Highly Efficient and Stable Perovskite Solar Cells With MXene Quantum Dot-Modified SnO2,” Energy & Environmental Science 14 (2021): 3447.

[140]

J. Ye, Y. Li, A. A. Medjahed, et al., “Doped Bilayer Tin(IV) Oxide Electron Transport Layer for High Open-Circuit Voltage Planar Perovskite Solar Cells With Reduced Hysteresis,” Small 17 (2021): 2005671.

[141]

H. Liu, Z. Zhang, Z. Su, et al., “Semi-Planar Non-Fullerene Molecules Enhance the Durability of Flexible Perovskite Solar Cells,” Advanced Science 9 (2022): 2105739.

[142]

L. Fan, P. Wang, M. Wang, et al., “Exploring Low-Temperature Processed Multifunctional HEPES-Au NSs-Modified SnO2 for Efficient Planar Perovskite Solar Cells,” Chemical Engineering Journal 427 (2022): 131832.

[143]

X. Li, Z. Shi, F. Behrouznejad, et al., “Highly Efficient Flexible Perovskite Solar Cells With Vacuum-Assisted Low-Temperature Annealed SnO2 Electron Transport Layer,” Journal of Energy Chemistry 67 (2022): 1–7.

[144]

Z. Li, Z. Wang, C. Jia, et al., “Annealing Free Tin Oxide Electron Transport Layers for Flexible Perovskite Solar Cells,” Nano Energy 94 (2022): 106919.

[145]

C. Liu, Z. Zhao, Y. Liu, et al., “Carbon Dots Decorated Zinc Cobaltite Nanowires-Assembled Hierarchical Arrays Supported on Nickel Foam as Binder-Free Electrodes for High Performance Supercapacitors,” Journal of Power Sources 519 (2022): 230814.

[146]

J. Chung, S. S. Shin, K. Hwang, et al., “Record-Efficiency Flexible Perovskite Solar Cell and Module Enabled by a Porous-Planar Structure as an Electron Transport Layer,” Energy & Environmental Science 13 (2020): 4854.

[147]

C. Jiang, Q. Dong, C. Zhang, et al., “Ozone-Mediated Controllable Hydrolysis for a High-Quality Amorphous NbO(x) Electron Transport Layer in Efficient Perovskite Solar Cells,” ACS Applied Materials & Interfaces 12 (2020): 15194–15201.

[148]

B. Yang, R. Ma, Z. Wang, et al., “Efficient Gradient Potential Top Electron Transport Structures Achieved by Combining an Oxide Family for Inverted Perovskite Solar Cells With High Efficiency and Stability,” ACS Applied Materials & Interfaces 13 (2021): 27179–27187.

[149]

C. Liu, Y. Yang, C. Zhang, et al., “Tailoring C60 for Efficient Inorganic CsPbI2Br Perovskite Solar Cells and Modules,” Advanced Materials 32 (2020): 1907361.

[150]

G. Yin, H. Zhao, J. Feng, et al., “Low-Temperature and Facile Solution-Processed Two-Dimensional TiS2as an Effective Electron Transport Layer for UV-Stable Planar Perovskite Solar Cells,” Journal of Materials Chemistry A 6 (2018): 9132–9138.

[151]

D. H. Shin, J. S. Ko, S. K. Kang, and S.-H. Choi, “Enhanced Flexibility and Stability in Perovskite Photodiode-Solar Cell Nanosystem Using MoS(2) Electron-Transport Layer,” ACS Applied Materials & Interfaces 12 (2020): 4586–4593.

[152]

X. Liu, P. Li, Y. Zhang, et al., “High-Efficiency Perovskite Solar Cells Based on Self-Assembly n-Doped Fullerene Derivative With Excellent Thermal Stability,” Journal of Power Sources 413 (2019): 459–466.

[153]

S. Ma, X. Gu, A. K. Kyaw, D. H. Wang, S. Priya, and T. Ye, “Fully Inorganic CsSnI(3)-Based Solar Cells With >6% Efficiency and Enhanced Stability Enabled by Mixed Electron Transport Layer,” ACS Applied Materials & Interfaces 13 (2021): 1345–1352.

[154]

L. Huang, D. Zhang, S. Bu, R. Peng, Q. Wei, and Z. Ge, “Synergistic Interface Energy Band Alignment Optimization and Defect Passivation toward Efficient and Simple-Structured Perovskite Solar Cell,” Advanced Science 7 (2020): 1902656.

[155]

S. Huang, Q. Dong, Y. Lu, L. Duan, and D. Zhang, “Outstanding Performance of Electron-Transport-Layer-Free Perovskite Solar Cells Using a Novel Small-Molecule Interlayer Modified FTO Substrate,” Chemical Engineering Journal 422 (2021): 130001.

[156]

Q. Wang, L. Velasco, B. Breitung, et al., “High-Entropy Energy Materials in the Age of Big Data: A Critical Guide to Next-Generation Synthesis and Applications,” Advanced Energy Materials 11 (2021): 2102724.

[157]

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient Organometal Trihalide Perovskite Planar-Heterojunction Solar Cells on Flexible Polymer Substrates,” Nature Communications 4 (2013): 2761.

[158]

Q. Wang, C. Bi, and J. Huang, “Doped Hole Transport Layer for Efficiency Enhancement in Planar Heterojunction Organolead Trihalide Perovskite Solar Cells,” Nano Energy 15 (2015): 275–280.

[159]

K.-G. Lim, H.-B. Kim, J. Jeong, H. Kim, J. Y. Kim, and T.-W. Lee, “Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Self-Organized Polymeric Hole Extraction Layers With High Work Function,” Advanced Materials 26 (2014): 6461–6466.

[160]

X. Yin, P. Chen, M. Que, et al., “Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOxHole Contacts,” ACS Nano 10 (2016): 3630–3636.

[161]

H. Zhang, J. Cheng, F. Lin, et al., “Pinhole-Free and Surface-Nanostructured NiOxFilm by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells With Good Stability and Reproducibility,” ACS Nano 10 (2016): 1503–1511.

[162]

J. W. Jo, M.-S. Seo, M. Park, et al., “Improving Performance and Stability of Flexible Planar-Heterojunction Perovskite Solar Cells Using Polymeric Hole-Transport Material,” Advanced Functional Materials 26 (2016): 4464–4471.

[163]

W.-J. Gao, H.-J. Yu, J. Chen, et al., “Simple Hole-Transporting Materials Containing Twin-Carbazole Moiety and Unconjugated Flexible Linker for Efficient and Stable Perovskite Solar Cells,” Chemical Engineering Journal 405 (2021): 126434.

[164]

S. Cong, G. Zou, Y. Lou, et al., “Fabrication of Nickel Oxide Nanopillar Arrays on Flexible Electrodes for Highly Efficient Perovskite Solar Cells,” Nano Letters 19 (2019): 3676–3683.

[165]

D. Ouyang, J. Zheng, Z. Huang, L. Zhu, and W. C. H. Choy, “An Efficacious Multifunction Codoping Strategy on a Room-Temperature Solution-Processed Hole Transport Layer for Realizing High-Performance Perovskite Solar Cells,” Journal of Materials Chemistry A 9 (2021): 371–379.

[166]

G. Kakavelakis, T. Maksudov, D. Konios, et al., “Efficient and Highly Air Stable Planar Inverted Perovskite Solar Cells With Reduced Graphene Oxide Doped PCBM Electron Transporting Layer,” Advanced Energy Materials 7 (2017): 1602120.

[167]

X. Hu, Z. Huang, X. Zhou, et al., “Wearable Large-Scale Perovskite Solar-Power Source via Nanocellular Scaffold,” Advanced Materials 29 (2017): 1703236.

[168]

S. S. Reddy, S. Shin, U. K. Aryal, et al., “Highly Efficient Air-Stable/Hysteresis-Free Flexible Inverted-Type Planar Perovskite and Organic Solar Cells Employing a Small Molecular Organic Hole Transporting Material,” Nano Energy 41 (2017): 10–17.

[169]

Q. He, K. Yao, X. Wang, X. Xia, S. Leng, and F. Li, “Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells,” ACS Applied Materials & Interfaces 9 (2017): 41887–41897.

[170]

C. S. Lee, N. U. Kim, H. J. Min, et al., “Mille-Feuille-Like Heterostructures Through In Situ Cross-Linking Approach for High Power Density Supercapacitor,” Chemical Engineering Journal 412 (2021): 128746.

[171]

L. Bai, Z. Wang, Y. Han, et al., “Diarylfluorene-Based Nano-Molecules as Dopant-Free Hole-Transporting Materials Without Post-Treatment Process for Flexible p-i-n Type Perovskite Solar Cells,” Nano Energy 46 (2018): 241–248.

[172]

F. Zhang, Z. Yao, Y. Guo, et al., “Polymeric, Cost-Effective, Dopant-Free Hole Transport Materials for Efficient and Stable Perovskite Solar Cells,” Journal of the American Chemical Society 141 (2019): 19700–19707.

[173]

D. Yang, T. Sano, Y. Yaguchi, H. Sun, H. Sasabe, and J. Kido, “Achieving 20% Efficiency for Low-Temperature-Processed Inverted Perovskite Solar Cells,” Advanced Functional Materials 29 (2019): 1807556.

[174]

Z. Yu, S. R. Ha, J. H. Park, et al., “Water-Stable Polymer Hole Transport Layer in Organic and Perovskite Light-Emitting Diodes,” Journal of Power Sources 478 (2020): 228810.

[175]

H. Bao, M. Du, H. Wang, et al., “Samarium-Doped Nickel Oxide for Superior Inverted Perovskite Solar Cells: Insight Into Doping Effect for Electronic Applications,” Advanced Functional Materials 31 (2021): 2102452.

[176]

Q. Lian, P.-l Wang, G. Wang, et al., “Doping Free and Amorphous NiOx Film via UV Irradiation for Efficient Inverted Perovskite Solar Cells,” Advanced Science 9 (2022): 2201543.

[177]

C. Hanmandlu, M. Sahoo, C.-C. Liu, et al., “Few-Layer Fluorine-Functionalized Graphene Hole-Selective Contacts for Efficient Inverted Perovskite Solar Cells,” Chemical Engineering Journal 430 (2022): 132831.

[178]

Z. Pan, H. Gao, Y. Yang, et al., “Phenylfluorenamine-Functionalized Poly(N-Vinylcarbazole)S as Dopant-Free Polymer Hole-Transporting Materials for Inverted Quasi-2D Perovskite Solar Cells,” Journal of Energy Chemistry 69 (2022): 123–131.

[179]

C. Long, K. Huang, J. Chang, et al., “Creating a Dual-Functional 2D Perovskite Layer at the Interface to Enhance the Performance of Flexible Perovskite Solar Cells,” Small 17 (2021): 2102368.

[180]

X. Li, X. Tang, Y. Yang, et al., “A Dopant-Free Polymer as Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells,” Progress in Photovoltaics: Research and Applications 26 (2018): 994–1002.

[181]

K. Poorkazem, D. Liu, and T. L. Kelly, “Fatigue Resistance of a Flexible, Efficient, and Metal Oxide-Free Perovskite Solar Cell,” Journal of Materials Chemistry A 3 (2015): 9241–9248.

[182]

Y. Zhang, Z. Wu, P. Li, et al., “Fully Solution-Processed TCO-Free Semitransparent Perovskite Solar Cells for Tandem and Flexible Applications,” Advanced Energy Materials 8 (2018): 1701569.

[183]

P. Ma, Y. Lou, S. Cong, et al., “Malleability and Pliability of Silk-Derived Electrodes for Efficient Deformable Perovskite Solar Cells,” Advanced Energy Materials 10 (2020): 1903357.

[184]

J. Han, S. Yagi, and T. Ichitsubo, “Suppressive Effect of Fe Cations in Mg(Mn1−xFex)2O4 Positive Electrodes on Oxidative Electrolyte Decomposition for Mg Rechargeable Batteries,” Journal of Power Sources 435 (2019): 226768.

[185]

S. H. Shin, D. H. Shin, and S.-H. Choi, “Enhancement of Stability of Inverted Flexible Perovskite Solar Cells by Employing Graphene-Quantum-Dots Hole Transport Layer and Graphene Transparent Electrode Codoped With Gold Nanoparticles and Bis(trifluoromethanesulfonyl)amide,” Acs Sustainable Chemistry & Engineering 7 (2019): 13178.

[186]

M. Tian, C. Y. Woo, J. W. Choi, et al., “Printable Free-Standing Hybrid Graphene/Dry-Spun Carbon Nanotube Films as Multifunctional Electrodes for Highly Stable Perovskite Solar Cells,” ACS Applied Materials & Interfaces 12 (2020): 54806–54814.

[187]

I. Jeong, H. Jung, M. Park, et al., “A Tailored TiO2 Electron Selective Layer for High-Performance Flexible Perovskite Solar Cells via Low Temperature UV Process,” Nano Energy 28 (2016): 380–389.

[188]

J. Yoon, H. Sung, G. Lee, et al., “Superflexible, High-Efficiency Perovskite Solar Cells Utilizing Graphene Electrodes: Towards Future Foldable Power Sources,” Energy & Environmental Science 10 (2017): 337.

[189]

Q. Sun, J.-D. Chen, J.-W. Zheng, et al., “Surface Plasmon-Assisted Transparent Conductive Electrode for Flexible Perovskite Solar Cells,” Advanced Optical Materials 7 (2019): 1900847.

[190]

S. Kang, J. Jeong, S. Cho, et al., “Ultrathin, Lightweight and Flexible Perovskite Solar Cells With an Excellent Power-Per-Weight Performance,” Journal of Materials Chemistry A 7 (2019): 1107–1114.

[191]

F. Yang, J. Liu, Z. Lu, et al., “Recycled Utilization of a Nanoporous Au Electrode for Reduced Fabrication Cost of Perovskite Solar Cells,” Advanced Science 7 (2020): 1902474.

[192]

J. Zhang, X. Li, M. Zhong, et al., “Near 90% Transparent ITO-Based Flexible Electrode With Double-Sided Antireflection Layers for Highly Efficient Flexible Optoelectronic Devices,” Small 18 (2022): 2201716.

[193]

J. Zhang, Y. Sun, and H. Yu, “Reducing Energy Loss via Adjusting the Anode Work Function and Perovskite Layer Morphology for the Efficient and Stable Hole Transporting Layer-Free Perovskite Solar Cells,” Chemical Engineering Journal 431 (2022): 133948.

[194]

E. Lee, J. Ahn, H.-C. Kwon, et al., “All-Solution-Processed Silver Nanowire Window Electrode-Based Flexible Perovskite Solar Cells Enabled With Amorphous Metal Oxide Protection,” Advanced Energy Materials 8 (2018): 1702182.

[195]

T. Van-Dang, S. V. N. Pammi, B.-J. Park, Y. Han, C. Jeon, and S.-G. Yoon, “Transfer-Free Graphene Electrodes for Super-Flexible and Semi-Transparent Perovskite Solar Cells Fabricated Under Ambient Air,” Nano Energy 65 (2019): 104018.

[196]

D. Yang, X. Zhang, Y. Hou, et al., “28.3%-Efficiency Perovskite/Silicon Tandem Solar Cell by Optimal Transparent Electrode for High Efficient Semitransparent Top Cell,” Nano Energy 84 (2021): 105934.

[197]

I. Jeon, J. Yoon, N. Ahn, et al., “Carbon Nanotubes Versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells,” Journal of Physical Chemistry Letters 8 (2017): 5395–5401.

[198]

H. Xie, X. Yin, Y. Guo, et al., “Hole Transport Free Flexible Perovskite Solar Cells With Cost-Effective Carbon Electrodes,” Nanotechnology 32 (2021): 105205.

[199]

R. Li, X. Xiang, X. Tong, J. Zou, and Q. Li, “Wearable Double-Twisted Fibrous Perovskite Solar Cell,” Advanced Materials 27 (2015): 3831–3835.

[200]

L. Qiu, J. Deng, X. Lu, Z. Yang, and H. Peng, “Integrating Perovskite Solar Cells Into a Flexible Fiber,” Angewandte Chemie International Edition 53 (2014): 10425–10428.

[201]

L. Qiu, S. He, J. Yang, et al., “An All-Solid-State Fiber-Type Solar Cell Achieving 9.49% Efficiency,” Journal of Materials Chemistry A 4 (2016): 10105–10109.

[202]

X. Liu, L. Hu, R. Wang, et al., “Flexible Perovskite Solar Cells via Surface-Confined Silver Nanoparticles on Transparent Polyimide Substrates,” Polymers 11 (2019): 427.

[203]

B. Abdollahi Nejand, P. Nazari, S. Gharibzadeh, V. Ahmadi, and A. Moshaii, “All-Inorganic Large-Area Low-Cost and Durable Flexible Perovskite Solar Cells Using Copper Foil as a Substrate,” Chemical Communications 53 (2017): 747–750.

[204]

J.-I. Park, J. H. Heo, S.-H. Park, et al., “Highly Flexible Insno Electrodes on Thin Colourless Polyimide Substrate for High-Performance Flexible CH3NH3PbI3 Perovskite Solar Cells,” Journal of Power Sources 341 (2017): 340–347.

[205]

C. Jia, X. Zhao, Y.-H. Lai, et al., “Highly Flexible, Robust, Stable and High Efficiency Perovskite Solar Cells Enabled by Van Der Waals Epitaxy on Mica Substrate,” Nano Energy 60 (2019): 476–484.

[206]

J. Troughton, D. Bryant, K. Wojciechowski, et al., “Highly Efficient, Flexible, Indium-Free Perovskite Solar Cells Employing Metallic Substrates,” Journal of Materials Chemistry A: Materials for Energy and Sustainability 3 (2015): 9141–9145.

[207]

M. Li, J. Zhou, L. Tan, et al., “Multifunctional Succinate Additive for Flexible Perovskite Solar Cells With More Than 23% Power-Conversion Efficiency,” With More Than 23% Power-Conversion Efficiency,” Innovation 3 (2022): 100310.

[208]

J. Xi, Z. Wu, B. Jiao, et al., “Multichannel Interdiffusion Driven FASnI3Film Formation Using Aqueous Hybrid Salt/Polymer Solutions Toward Flexible Lead-Free Perovskite Solar Cells,” Advanced Materials 29 (2017): 1606964.

[209]

R. Guo, L. Rao, Q. Liu, et al., “Atmospheric Stable and Flexible Sn-Based Perovskite Solar Cells via a Bio-Inspired Antioxidative Crystal Template,” Journal of Energy Chemistry 66 (2022): 612–618.

[210]

L. Rao, X. Meng, S. Xiao, et al., “Wearable Tin-Based Perovskite Solar Cells Achieved by a Crystallographic Size Effect,” Angewandte Chemie International Edition 60 (2021): 14693–14700.

[211]

J. Qiu, Y. Xia, Y. Zheng, et al., “2D Intermediate Suppression for Efficient Ruddlesden–Popper (RP) Phase Lead-Free Perovskite Solar Cells,” ACS Energy Letters 4 (2019): 1513–1520.

[212]

T. Ye, X. Wang, K. Wang, et al., “Localized Electron Density Engineering for Stabilized B-γ CsSnI3-Based Perovskite Solar Cells With Efficiencies >10%,” ACS Energy Letters 6 (2021): 1480.

[213]

S. Lee and D.-W. Kang, “Highly Efficient and Stable Sn-Rich Perovskite Solar Cells by Introducing Bromine,” ACS Applied Materials & Interfaces 9 (2017): 22432–22439.

[214]

J. Zhao, L. Wei, C. Jia, et al., “Metallic Tin Substitution of Organic Lead Perovskite Films for Efficient Solar Cells,” Journal of Materials Chemistry A 6 (2018): 20224–20232.

[215]

X. Xu, C.-C. Chueh, Z. Yang, et al., “Ascorbic Acid as An Effective Antioxidant Additive to Enhance the Efficiency and Stability of Pb/Sn-Based Binary Perovskite Solar Cells,” Nano Energy 34 (2017): 392–398.

[216]

Y. Zhu, Y. Zhu, X. Huang, et al., “High Energy Density Polymer Dielectrics Interlayered by Assembled Boron Nitride Nanosheets,” Advanced Energy Materials 9 (2019): 1802774.

[217]

G. Xu, P. Bi, S. Wang, et al., “Integrating Ultrathin Bulk-Heterojunction Organic Semiconductor Intermediary for High-Performance Low-Bandgap Perovskite Solar Cells With Low Energy Loss,” Advanced Functional Materials 28 (2018): 1804427.

[218]

Z. Zhang, J. Liang, Y. Zheng, et al., “Balancing Crystallization Rate in a Mixed Sn–Pb Perovskite Film for Efficient and Stable Perovskite Solar Cells of More Than 20% Efficiency,” Journal of Materials Chemistry A 9 (2021): 17830–17840.

[219]

T. Jiang, Z. Chen, X. Chen, et al., “Realizing High Efficiency over 20% of Low-Bandgap Pb–Sn-Alloyed Perovskite Solar Cells by In Situ Reduction of Sn4+,” Solar Rrl 4 (2020): 1900467.

[220]

J. Tong, Z. Song, D. H. Kim, et al., “Carrier Lifetimes of >1 μs in Sn-Pb Perovskites Enable Efficient All-Perovskite Tandem Solar Cells,” Science 364 (2019): 475–479.

[221]

Z. Yu, X. Chen, S. P. Harvey, et al., “Gradient Doping in Sn–Pb Perovskites by Barium Ions for Efficient Single-Junction and Tandem Solar Cells,” Advanced Materials 34 (2022): 2110351.

[222]

X. Zhou, L. Zhang, X. Wang, et al., “Highly Efficient and Stable GABr-Modified Ideal-Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency With a Record SmallVocDeficit of 0.33 V,” Advanced Materials 32 (2020): 1908107.

[223]

T. Zhang, H. Ban, Q. Sun, et al., “Preventing Inhomogeneous Elemental Distribution and Phase Segregation in Mixed Pb-Sn Inorganic Perovskites via Incorporating PbS Quantum Dots,” Journal of Energy Chemistry 65 (2022): 179–185.

[224]

M. Liu, H. Pasanen, H. Ali-Löytty, et al., “B-Site Co-Alloying With Germanium Improves the Efficiency and Stability of All-Inorganic Tin-Based Perovskite Nanocrystal Solar Cells,” Angewandte Chemie International Edition 59 (2020): 22117–22125.

[225]

T. Yokoyama, Y. Nishitani, Y. Miyamoto, et al., “Improving the Open-Circuit Voltage of Sn-Based Perovskite Solar Cells by Band Alignment at the Electron Transport Layer/Perovskite Layer Interface,” ACS Applied Materials & Interfaces 12 (2020): 27131–27139.

[226]

S. Wang, M. Mandal, H. Zhang, et al., “Odd–Even Alkyl Chain Effects on the Structure and Charge Carrier Transport of Two-Dimensional Sn-Based Perovskite Semiconductors,” Journal of the American Chemical Society 146 (2024): 19128–19136.

[227]

S. Wang, S. Frisch, H. Zhang, et al., “Grain Engineering for Improved Charge Carrier Transport in Two-Dimensional Lead-Free Perovskite Field-Effect Transistors,” Materials Horizons 9 (2022): 2633–2643.

[228]

Y. Sun, S. Yang, Z. Pang, et al., “Preferred Film Orientation to Achieve Stable and Efficient Sn-Pb Binary Perovskite Solar Cells,” ACS Applied Materials & Interfaces 13 (2021): 10822–10836.

[229]

H. Kim, J. W. Lee, G. R. Han, et al., “Highly Efficient Hole Transport Layer-Free Low Bandgap Mixed Pb–Sn Perovskite Solar Cells Enabled by a Binary Additive System,” Advanced Functional Materials 32 (2022): 2110069.

[230]

J. Tong, Q. Jiang, A. J. Ferguson, et al., “Carrier Control in Sn–Pb Perovskites via 2D Cation Engineering for All-Perovskite Tandem Solar Cells With Improved Efficiency and Stability,” Nature Energy 7 (2022): 642–651.

[231]

J. Cao, L. Hok-Leung, Y. Xu, et al., “High-Performance Tin–Lead Mixed-Perovskite Solar Cells With Vertical Compositional Gradient,” Advanced Materials 34 (2022): 2107729.

[232]

W.-G. Choi, C.-G. Park, Y. Kim, and T. Moon, “Sn Perovskite Solar Cells via 2D/3D Bilayer Formation Through a Sequential Vapor Process,” ACS Energy Letters 5 (2020): 3461–3467.

[233]

T. Mahmoudi, W.-Y. Rho, M. Kohan, Y. H. Im, S. Mathur, and Y.-B. Hahn, “Suppression of Sn2+/Sn4+ Oxidation in Tin-Based Perovskite Solar Cells With Graphene-Tin Quantum Dots Composites in Active Layer,” Nano Energy 90 (2021): 106495.

[234]

F. Li, X. Hou, Z. Wang, et al., “FA/MA Cation Exchange for Efficient and Reproducible Tin-Based Perovskite Solar Cells,” ACS Applied Materials & Interfaces 13 (2021): 40656–40663.

[235]

X.-L. Li, L.-L. Gao, Q.-Q. Chu, Y. Li, B. Ding, and G.-J. Yang, “Green Solution-Processed Tin-Based Perovskite Films for Lead-Free Planar Photovoltaic Devices,” ACS Applied Materials & Interfaces 11 (2019): 3053–3060.

[236]

C. Wang, F. Gu, Z. Zhao, et al., “Self-Repairing Tin-Based Perovskite Solar Cells With a Breakthrough Efficiency Over 11%,” Advanced Materials 32 (2020): 1907623.

[237]

W. Gu, X. Xu, J. Chen, et al., “Oriented Perovskite Crystal Towards Efficient Charge Transport in FASnI3 Perovskite Solar Cells,” Solar Rrl 4 (2020): 2000153.

[238]

F. Gu, C. Wang, Z. Zhao, et al., “Tin(II) Acetylacetonate as a New Type of Tin Compensator Additive for Tin-Based Perovskite Solar Cells,” ACS Applied Materials & Interfaces 13 (2021): 44157–44164.

[239]

Y. Lin, J. Liu, J. Hu, et al., “In Situ Interfacial Passivation of Sn-Based Perovskite Films With a Bi-Functional Ionic Salt for Enhanced Photovoltaic Performance,” ACS Applied Materials & Interfaces 13 (2021): 58809–58817.

[240]

T.-B. Song, T. Yokoyama, C. C. Stoumpos, et al., “Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells,” Journal of the American Chemical Society 139 (2017): 836–842.

[241]

T.-B. Song, T. Yokoyama, S. Aramaki, and M. G. Kanatzidis, “Performance Enhancement of Lead-Free Tin-Based Perovskite Solar Cells With Reducing Atmosphere-Assisted Dispersible Additive,” ACS Energy Letters 2 (2017): 897–903.

[242]

J. Li, P. Hu, Y. Chen, Y. Li, and M. Wei, “Enhanced Performance of Sn-Based Perovskite Solar Cells by Two-Dimensional Perovskite Doping,” Acs Sustainable Chemistry & Engineering 8 (2020): 8624.

[243]

T. Ye, K. Wang, Y. Hou, et al., “Ambient-Air-Stable Lead-Free CsSnI3Solar Cells With Greater Than 7.5% Efficiency,” Journal of the American Chemical Society 143 (2021): 4319–4328.

[244]

H. Lai, S. Olthof, S. Ren, et al., “Unveiling the GeI2-Assisted Oriented Growth of Perovskite Crystallite for High-Performance Flexible Sn Perovskite Solar Cells,” Energy & Environmental Materials 8 (2025): e12791.

[245]

J. Yang, Z. Wang, X. Zhao, et al., “Guiding Vertical Growth and Improving the Buried Interface of Pb–Sn Perovskite Films With 2D Perovskite Seeds for Efficient Narrow-Bandgap Perovskite Solar Cells and Tandems,” Energy & Environmental Science 18, no. 6 (2025): 2883–2894.

[246]

G. Xing, C. Li, W. Gao, et al., “Molecule Anchoring Strategy Promotes Vertically Homogeneous Crystallization and Aligned Interfaces for Efficient Pb–Sn Perovskite Solar Cells and Tandem Device,” Advanced Materials 36 (2024): 2404185.

[247]

N. Ren, L. Tan, M. Li, et al., “25%—Efficiency Flexible Perovskite Solar Cells via Controllable Growth of SnO2,” iEnergy 3 (2024): 39–45.

[248]

Y. Chen, S. Yamaguchi, A. Sato, D. Xue, and K. Marumoto. “Operando Spin Observation Elucidating Performance-Improvement Mechanisms During Operation of Ruddlesden–Popper Sn-Based Perovskite Solar Cells,” NPJ Flexible Electronics 9 (2025): 1.

[249]

G. D. Spyropoulos, P. Kubis, N. Li, et al., “Flexible Organic Tandem Solar Modules With 6% Efficiency: Combining Roll-to-Roll Compatible Processing With High Geometric Fill Factors,” Energy & Environmental Science 7 (2014): 3284.

[250]

M. Wong-Stringer, T. J. Routledge, T. McArdle, et al., “A Flexible Back-Contact Perovskite Solar Micro-Module,” Energy & Environmental Science 12 (2019): 1928.

[251]

V. Babu, M. A. Mejia Escobar, R. Fuentes Pineda, M. Ścigaj, P. Spinelli, and K. Wojciechowski, “Toward Up-Scaling the Four-Terminal All-Perovskite Tandem Solar Modules on Flexible Substrates,” Materials Today Energy 28 (2022): 101073.

[252]

U. Kim, M. Han, J. Jang, et al., “Foldable Perovskite Solar Cells and Modules Enabled by Mechanically Engineered Ultrathin Indium-Tin-Oxide Electrodes,” Advanced Energy Materials 13 (2023): 2203198.

[253]

J. K. Pious, Y. Zwirner, H. Lai, et al., “Revealing the Role of Tin Fluoride Additive in Narrow Bandgap Pb-Sn Perovskites for Highly Efficient Flexible All-Perovskite Tandem Cells,” ACS Applied Materials & Interfaces 15 (2023): 10150–10157.

[254]

D. Yang, R. Yang, C. Zhang, et al., “Highest-Efficiency Flexible Perovskite Solar Module by Interface Engineering for Efficient Charge-Transfer,” Advanced materials 35 (2023): e2302484.

[255]

Z. Yi, B. Xiao, X. Li, Y. Luo, Q. Jiang, and J. Yang, “Novel Dual-Modification Strategy Using Ce-Containing Compounds Toward High-Performance Flexible Perovskite Solar Cells,” Nano Energy 109 (2023): 108241.

[256]

B. Fan, J. Xiong, Y. Zhang, et al., “A Bionic Interface to Suppress the Coffee-Ring Effect for Reliable and Flexible Perovskite Modules With a Near-90% Yield Rate,” Advanced Materials 34 (2022): 2201840.

[257]

T. Lei, F. Li, X. Zhu, et al., “Flexible Perovskite Solar Modules With Functional Layers Fully Vacuum Deposited,” Solar Rrl 4 (2020): 2000292.

[258]

L. A. Castriotta, R. Fuentes Pineda, V. Babu, et al., “Light-Stable Methylammonium-Free Inverted Flexible Perovskite Solar Modules on PET Exceeding 10.5% on a 15.7 cm(2) Active Area,” ACS Applied Materials & Interfaces 13 (2021): 29576–29584.

[259]

X. Meng, Z. Cai, Y. Zhang, et al., “Bio-Inspired Vertebral Design for Scalable and Flexible Perovskite Solar Cells,” Nature Communications 11 (2020): 3016.

[260]

T. Bu, J. Li, F. Zheng, et al., “Universal Passivation Strategy to Slot-Die Printed SnO2 for Hysteresis-Free Efficient Flexible Perovskite Solar Module,” Nature Communications 9 (2018): 4609.

[261]

T. Bu, S. Shi, J. Li, et al., “Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules,” ACS Applied Materials & Interfaces 10 (2018): 14922–14929.

[262]

O. Y. Gong, G. S. Han, S. Lee, et al., “Van der Waals Force-Assisted Heat-Transfer Engineering for Overcoming Limited Efficiency of Flexible Perovskite Solar Cells,” ACS Energy Letters 7 (2022): 2893–2903.

[263]

J. Luo, L. Tang, S. Wang, et al., “Manipulating Ga Growth Profile Enables All-Flexible High-Performance Single-Junction Cigs and 4 T Perovskite/Cigs Tandem Solar Cells,” Chemical Engineering Journal 455 (2023): 140960.

[264]

X. Zhu, H. Dong, J. Chen, et al., “Photoinduced Cross Linkable Polymerization of Flexible Perovskite Solar Cells and Modules by Incorporating Benzyl Acrylate,” Advanced Functional Materials 32 (2022): 2202408.

[265]

A. Kotta, I. Seo, H.-S. Shin, and H.-K. Seo, “Room-Temperature Processed Hole-Transport Layer in Flexible Inverted Perovskite Solar Cell Module,” Chemical Engineering Journal 435 (2022): 134805.

[266]

R. Zhang, Z. Huang, W. Chen, et al., “A Self-Assembled Vertical-Gradient and Well-Dispersed MXene Structure for Flexible Large-Area Perovskite Modules,” Advanced Functional Materials 33 (2023): 2210063.

[267]

G. Bai, Z. Wu, J. Li, et al., “High Performance Perovskite Sub-Module With Sputtered SnO2 Electron Transport Layer,” Solar Energy 183 (2019): 306–314.

[268]

J. Gong, S. B. Darling, and F. You, “Perovskite Photovoltaics: Life-Cycle Assessment of Energy and Environmental Impacts,” Energy & Environmental Science 8 (2015): 1953.

[269]

N. Espinosa, L. Serrano-Luján, A. Urbina, and F. C. Krebs, “Solution and Vapour Deposited Lead Perovskite Solar Cells: Ecotoxicity From a Life Cycle Assessment Perspective,” Solar Energy Materials and Solar Cells 137 (2015): 303–310.

[270]

L. Serrano-Lujan, N. Espinosa, T. T. Larsen-Olsen, J. Abad, A. Urbina, and F. C. Krebs, “Tin- and Lead-Based Perovskite Solar Cells Under Scrutiny: An Environmental Perspective,” Advanced Energy Materials 5 (2015): 1501119.

[271]

I. Celik, Z. Song, A. J. Cimaroli, Y. Yan, M. J. Heben, and D. Apul, “Life Cycle Assessment (LCA) of Perovskite PV Cells Projected From Lab to Fab,” Solar Energy Materials and Solar Cells 156 (2016): 157–169.

[272]

Q. Li, C. Monticelli, and A. Zanelli, “Life Cycle Assessment of Organic Solar Cells and Perovskite Solar Cells With Graphene Transparent Electrodes,” Renewable Energy 195 (2022): 906–917.

[273]

Z. Li, X. Wu, B. Li, et al., “Sulfonated Graphene Aerogels Enable Safe-to-Use Flexible Perovskite Solar Modules,” Advanced Energy Materials 12 (2022): 2103236.

[274]

X. Meng, X. Hu, Y. Zhang, et al., “A Biomimetic Self-Shield Interface for Flexible Perovskite Solar Cells With Negligible Lead Leakage,” Advanced Functional Materials 31 (2021): 2106460.

[275]

L. Gao, L. Chao, M. Hou, et al., “Flexible, Transparent Nanocellulose Paper-Based Perovskite Solar Cells,” Npj Flexible Electronics 3 (2019): 4.

[276]

S. Chen, Y. Deng, H. Gu, et al., “Trapping Lead in Perovskite Solar Modules With Abundant and Low-Cost Cation-Exchange Resins,” Nature Energy 5 (2020): 1003–1011.

[277]

K. Wang, T. Ye, X. Huang, et al., “One-Key-Reset” Recycling of Whole Perovskite Solar Cell,” Matter 4 (2021): 2522–2541.

[278]

J. Qi, S. Chen, C. Lan, et al., “Large-Grained Perovskite Films Enabled by One-Step Meniscus-Assisted Solution Printing of Cross-Aligned Conductive Nanowires for Biodegradable Flexible Solar Cells,” Advanced Energy Materials 10 (2020): 2001185.

[279]

C. Li, S. Cong, Z. Tian, et al., “Flexible Perovskite Solar Cell-Driven Photo-Rechargeable Lithium-Ion Capacitor for Self-Powered Wearable Strain Sensors,” Nano Energy 60 (2019): 247–256.

[280]

X. Hu, Z. Huang, F. Li, et al., “Nacre-Inspired Crystallization and Elastic 'Brick-and-Mortar' Structure for a Wearable Perovskite Solar Module,” Energy & Environmental Science 12 (2019): 979.

[281]

G. Lee, M.-c Kim, Y. W. Choi, et al., “Ultra-Flexible Perovskite Solar Cells With Crumpling Durability: Toward a Wearable Power Source,” Energy & Environmental Science 12 (2019): 3182.

[282]

J. Zhao, Z. Xu, Z. Zhou, et al., “A Safe Flexible Self-Powered Wristband System by Integrating Defective MnO2–xNanosheet-Based Zinc-Ion Batteries With Perovskite Solar Cells,” ACS Nano 15 (2021): 10597–10608.

[283]

K. Zhu, Z. Lu, S. Cong, et al., “Ultraflexible and Lightweight Bamboo-Derived Transparent Electrodes for Perovskite Solar Cells,” Small 15 (2019): 1902878.

[284]

M. Kaltenbrunner, G. Adam, E. D. Głowacki, et al., “Flexible High Power-Per-Weight Perovskite Solar Cells With Chromium Oxide–Metal Contacts for Improved Stability in Air,” Nature Materials 14 (2015): 1032–1039.

[285]

I. Cardinaletti, T. Vangerven, S. Nagels, et al., “Organic and Perovskite Solar Cells for Space Applications,” Solar Energy Materials and Solar Cells 182 (2018): 121–127.

[286]

Y. Tu, G. Xu, X. Yang, et al., “Mixed-Cation Perovskite Solar Cells in Space,” Science China-Physics Mechanics & Astronomy 62 (2019): 974221.

[287]

D. Angmo, S. Yan, D. Liang, et al., “Toward Rollable Printed Perovskite Solar Cells for Deployment in Low-Earth Orbit Space Applications,” ACS Applied Energy Materials 7 (2024): 1777–1791.

[288]

B. A. Seid, S. Sarisozen, F. Peña-Camargo, et al., “Understanding and Mitigating Atomic Oxygen-Induced Degradation of Perovskite Solar Cells for Near-Earth Space Applications,” Small 20 (2024): 2311097.

[289]

J. C. N. Timothy J Peshek, G. F. Meyering, and M. H. Briggs. “Perovskite-Based Photovoltaics: A New Pathway to Ultra- Low-Cost Space Power,” NASA Technology Portfolio System2017.

[290]

B. Farhadi, I. Marriam, S. Yang, et al., “Highly Efficient Photovoltaic Energy Storage Hybrid System Based on Ultrathin Carbon Electrodes Designed for a Portable and Flexible Power Source,” Journal of Power Sources 422 (2019): 196–207.

[291]

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. Samuel, “Efficient Indoor p-i-n Hybrid Perovskite Solar Cells Using Low Temperature Solution Processed NiO as Hole Extraction Layers,” Solar Energy Materials & Solar Cells 201 (2019): 110071.

[292]

S. Wang, P. R. Edwards, M. Abdelsamie, et al., “Chlorine Retention Enables the Indoor Light Harvesting of Triple Halide Wide Bandgap Perovskites,” Journal of Materials Chemistry A 11 (2023): 12328–12341.

[293]

J. Min, S. Demchyshyn, J. R. Sempionatto, et al., “An Autonomous Wearable Biosensor Powered by a Perovskite Solar Cell,” Nature Electronics 6 (2023): 630–641.

[294]

C. Teixeira, P. Spinelli, L. A. Castriotta, et al., “Charge Extraction in Flexible Perovskite Solar Cell Architectures for Indoor Applications – With up to 31% Efficiency,” Advanced Functional Materials 32 (2022): 2206761.

[295]

R. Liu, Y. Liu, H. Zou, T. Song, and B. Sun, “Integrated Solar Capacitors for Energy Conversion and Storage,” Nano Research 10 (2017): 1545–1559.

[296]

M. Z. Qamar, Z. Khalid, R. Shahid, et al., “Advancement In Indoor Energy Harvesting Through Flexible Perovskite Photovoltaics for Self- Powered IoT Applications,” Nano Energy 129 (2024): 109994.

[297]

M. Cai, Y. Wu, H. Chen, X. Yang, Y. Qiang, and L. Han, “Cost-Performance Analysis of Perovskite Solar Modules,” Advanced Science 4 (2017): 1600269.

[298]

J. E. Haysom, O. Jafarieh, H. Anis, K. Hinzer, and D. Wright, “Learning Curve Analysis of Concentrated Photovoltaic Systems,” Progress in Photovoltaics: Research and Applications 23 (2015): 1678–1686.

[299]

P. Roy, A. Ghosh, F. Barclay, A. Khare, and E. Cuce, “Perovskite Solar Cells: A Review of the Recent Advances,” Coatings 12 (2022): 1089.

[300]

K. Hwang, Y.-S. Jung, Y.-J. Heo, et al., “Toward Large Scale Roll-To-Roll Production of Fully Printed Perovskite Solar Cells,” Advanced Materials 27 (2015): 1241–1247.

[301]

C. Zuo, A. D. Scully, and M. Gao, “Drop-Casting Method to Screen Ruddlesden-Popper Perovskite Formulations for Use in Solar Cells,” ACS Applied Materials & Interfaces 13 (2021): 56217–56225.

[302]

K. Yang, F. Li, C. P. Veeramalai, and T. Guo, “A Facile Synthesis of CH3NH3PbBr3 Perovskite Quantum Dots and Their Application in Flexible Nonvolatile Memory,” Applied Physics Letters 110 (2017): 083102.

[303]

T. J. Routledge, M. Wong-Stringer, O. S. Game, et al., “Low-Temperature, High-Speed Reactive Deposition of Metal Oxides for Perovskite Solar Cells,” Journal of Materials Chemistry A 7 (2019): 2283–2290.

[304]

C. Dong, J. Chen, C.-H. Chen, et al., “Annealing-Free Perovskite Films by EDOT-Assisted Anti-Solvent Strategy for Flexible Indoor and Outdoor Photovoltaics,” Nano Energy 94 (2022): 106866.

[305]

J. Troughton, K. Hooper, and T. M. Watson, “Humidity Resistant Fabrication of CH3NH3PbI3 Perovskite Solar Cells and Modules,” Nano Energy 39 (2017): 60–68.

[306]

E. G. Jeong, Y. Jeon, S. H. Cho, and K. C. Choi, “Textile-Based Washable Polymer Solar Cells for Optoelectronic Modules: Toward Self-Powered Smart Clothing,” Energy & Environmental Science 12 (2019): 1878.

[307]

A. Yi, S. Chae, S. Won, et al., “Roll-Transferred Graphene Encapsulant for Robust Perovskite Solar Cells,” Nano Energy 77 (2020): 105182.

[308]

L. Xu, X. Fu, F. Liu, et al., “A Perovskite Solar Cell Textile That Works at −40 to 160°C,” Journal of Materials Chemistry A 8 (2020): 5476–5483.

[309]

Y. Hwang, A. Sadhu, S. Shin, et al., “An Intrinsically Micro-/Nanostructured Pollen Substrate With Tunable Optical Properties for Optoelectronic Applications,” Advanced Materials 33 (2021): 2100566.

[310]

H. Yang, Y. Zhou, Y. Yang, et al., “Crystal Facet Engineering Induced Anisotropic Transport of Charge Carriers in a Perovskite,” Journal of Materials Chemistry C 6 (2018): 11707–11713.

[311]

Y.-Y. Gao, B. Han, W.-Y. Zhao, Z.-C. Ma, Y.-S. Yu, and H.-B. Sun, “Light-Responsive Actuators Based on Graphene,” Frontiers in Chemistry 7 (2019): 506.

[312]

Z. Wang, Y. Wang, X. Zhang, et al., “Flexible Photovoltaic Micro-Power System Enabled With a Customized MPPT,” Applied Energy 367 (2024): 123425.

[313]

B.-Y. Yu, Z.-H. Wang, L. Ju, et al., “Flexible and Wearable Hybrid RF and Solar Energy Harvesting System,” IEEE Transactions on Antennas and Propagation 70 (2022): 2223–2233.

RIGHTS & PERMISSIONS

2025 The Authors. Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/