Milked-Extracted Macromolecules Constructing Bio-Interphase to Realise Dendrite-Free Aqueous Zinc Metal Batteries With Long Cycle Life

Jianfei Shi , Xin Shen , Yuting Qin , Jiahui Lu , Chengyin Wang , Tianyi Wang , Guoxiu Wang

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70046

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70046 DOI: 10.1002/cnl2.70046
RESEARCH ARTICLE

Milked-Extracted Macromolecules Constructing Bio-Interphase to Realise Dendrite-Free Aqueous Zinc Metal Batteries With Long Cycle Life

Author information +
History +
PDF

Abstract

Dairy-derived biomacromolecules offer a sustainable and bio-functional platform for interfacial engineering in aqueous zinc-ion batteries (AZIBs). Herein, we present a comparative study using three milk-based substances—casein (CA), whey protein (WP) and enzymatically hydrolysed whey protein peptides (WPPs)—to construct artificial solid electrolyte interphase (SEI) coatings on Zn metal anodes. These protein-based films, rich in functional groups such as ─COOH, ─NH₂ and ─SH, chelate with Zn2+ and form conformal, ion-conductive protection layers that mitigate side reactions and dendrite growth. Among them, the WPP-derived SEI exhibits superior interfacial compatibility and molecular mobility, promoting homogeneous Zn deposition and significantly enhanced cycling stability. Zn||Zn symmetric cells with the WPP coating achieved an ultralong lifespan exceeding 3000 h, markedly outperforming WP- and casein-based counterparts. Furthermore, Zn||V2O5 full batteries employing WPP-coated Zn anodes delivered a high capacity and extended cyclability. This study not only highlights the interfacial regulation mechanisms of dairy-derived biomolecules but also offers a green and cost-effective strategy for developing high-performance aqueous zinc-ion batteries.

Keywords

aqueous zinc metal batteries / bio-interphase / dendrite-free / whey protein peptide

Cite this article

Download citation ▾
Jianfei Shi, Xin Shen, Yuting Qin, Jiahui Lu, Chengyin Wang, Tianyi Wang, Guoxiu Wang. Milked-Extracted Macromolecules Constructing Bio-Interphase to Realise Dendrite-Free Aqueous Zinc Metal Batteries With Long Cycle Life. Carbon Neutralization, 2025, 4(5): e70046 DOI:10.1002/cnl2.70046

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Raza, A. Naveed, J. Chen, et al., “Zn Anode Sustaining High Rate and High Loading in Organic Electrolyte for Rechargeable Batteries,” Energy Storage Materials 46 (2022): 523–534.

[2]

R. Zhao, J. Yang, X. Han, et al., “Stabilizing Zn Metal Anodes via Cation/Anion Regulation Toward High Energy Density Zn-Ion Batteries,” Advanced Energy Materials 13 (2023): 2203542.

[3]

Y. Zhao, Y. Lu, H. Li, et al., “Few-Layer Bismuth Selenide Cathode for Low-Temperature Quasi-Solid-State Aqueous Zinc Metal Batteries,” Nature Communications 13 (2022): 752.

[4]

L. Zuo, D. Lu, T. Yang, et al., “Recent Achievements of Free-Standing Material and Interface Optimization in High-Energy-Density Flexible Lithium Batteries,” Carbon Neutralization 1 (2022): 316–345.

[5]

Y. Zhao, X. Chen, W. Guo, and C. Zha, “Emerging Strategies for the Improvement of Modifications in Aqueous Rechargeable Zinc-Iodine Batteries: Cathode, Anode, Separator, and Electrolyte,” Carbon Neutralization 3 (2024): 918–949.

[6]

H. Chen, W. Zhou, M. Chen, Q. Tian, X. Han, and J. Chen, “Ultrathin Zn-Free Anode Based on Ti3C2TX and Nanocellulose Enabling High-Durability Aqueous Hybrid Zn-Na Battery With Zn2+/Na+ Co-Intercalation Mechanism,” Nano Research 16, (2023): 536–544.

[7]

P. Kulkarni, H. Kumar Beere, M. Jalalah, et al., “Developing a High-Performance Aqueous Zinc Battery With Zn2+ Pre-intercalated V3O7·H2O Cathode Coupled With Surface Engineered Metallic Zinc Anode,” Journal of Electroanalytical Chemistry 924 (2022): 116851.

[8]

L. Wang, H. Yu, D. Chen, et al., “Steric Hindrance and Orientation Polarization by a Zwitterionic Additive to Stabilize Zinc Metal Anodes,” Carbon Neutralization 3 (2024): 996–1008.

[9]

S. Deng, B. Xu, X. Liu, et al., “Cationic Vacancy Modulation of Mn3O4 as a Superior Cathode for Durable Aqueous Zinc-Ion Batteries,” Advanced Functional Materials 35 (2025): 2413711.

[10]

M. Al-Abbasi, Y. Zhao, H. He, et al., “Challenges and Protective Strategies on Zinc Anode Toward Practical Aqueous Zinc-Ion Batteries,” Carbon Neutralization 3 (2024): 108–141.

[11]

H. Yu, D. Chen, T. Zhang, et al., “Insight on the Double-Edged Sword Role of Water Molecules in the Anode of Aqueous Zinc-Ion Batteries,” Small Structures 3 (2022): 2200143.

[12]

X. Lei, Z. Ma, L. Bai, et al., “Porous ZnP Matrix for Long-Lifespan and Dendrite-Free Zn Metal Anodes,” Battery Energy 2 (2023): 20230024.

[13]

Y. Tang, J. H. Li, C. L. Xu, M. Liu, B. Xiao, and P. F. Wang, “Electrode/Electrolyte Interfacial Engineering for Aqueous Zn-Ion Batteries,” Carbon Neutralization 2 (2023): 186–212.

[14]

Y. Li, H. Ba, Z. Wang, et al., “Electrolyte pH and Operating Potential: Critical Factors Regulating the Anodic Oxidation and Zinc Storage Mechanisms in Aqueous Zinc Ion Battery,” Materials Today Energy 39 (2024): 101460.

[15]

B. F. Cui, Y. Gao, X. P. Han, and W. B. Hu, “Reversible Zn Stripping/Plating Achieved by Surface Thin Sn Layer for High-Performance Aqueous Zinc Metal Batteries,” Journal of Materials Science & Technology 117 (2022): 72–78.

[16]

S. Deng, B. Xu, J. Zhao, and H. Fu, “Advanced Design for Anti-Freezing Aqueous Zinc-Ion Batteries,” Energy Storage Materials 70 (2024): 103490.

[17]

H. R. Wang, S. Z. Deng, S. Wang, et al., “High-Entropy Electrolytes With High Disordered Solvation Structures for Ultra-Stable Zinc Metal Anodes,” Angewandte Chemie-International Edition 64 (2025): e202422395.

[18]

Y. Ai, C. Yang, Z. Yin, et al., “Biomimetic Superstructured Interphase for Aqueous Zinc-Ion Batteries,” Journal of the American Chemical Society 146 (2024): 15496–15505.

[19]

T. Wang, Y. Li, J. Zhang, et al., “Immunizing Lithium Metal Anodes Against Dendrite Growth Using Protein Molecules to Achieve High Energy Batteries,” Nature Communications 11 (2020): 5429.

[20]

X. Cai, X. Wang, Z. Bie, et al., “A Layer-by-Layer Self-Assembled Bio-Macromolecule Film for Stable Zinc Anode,” Advanced Materials 36 (2024): e2306734.

[21]

H. Wang, P. Feng, F. Fu, et al., “Lignin-Derived Carbon Materials for Catalysis and Electrochemical Energy Storage,” Carbon Neutralization 1 (2022): 277–297.

[22]

J. Lu, J. Yang, Z. Zhang, C. Wang, J. Xu, and T. Wang, “Silk Fibroin Coating Enables Dendrite-Free Zinc Anode for Long-Life Aqueous Zinc-Ion Batteries,” Chemsuschem 15 (2022): e202200656.

[23]

R. Zhao, Z. Feng, R. Kuang, et al., “UV-Polymerized Zincophilic Ion-Enhanced Interfacial Layer With High Ion Transference Number for Ultrastable Zn Metal Anodes,” Carbon Neutralization 4 (2025): e194.

[24]

Y. Liu, N. Qi, T. Song, et al., “Highly Flexible and Lightweight Organic Solar Cells on Biocompatible Silk Fibroin,” ACS Applied Materials & Interfaces 6 (2014): 20670–20675.

[25]

R. Wang, S. He, Y. Xuan, and C. Cheng, “Preparation and Characterization of Whey Protein Hydrolysate-Zn Complexes,” Journal of Food Measurement and Characterization 14 (2020): 254–261.

[26]

B. Wang, S. Xiao, X. Chen, and J. Wang, “Structural Characterisation, Gastrointestinal Digestion Stability and Transepithelial Transport Study of Casein Peptide-Zinc Chelate,” International Journal of Food Science & Technology 57 (2022): 2770–2778.

[27]

L. Zhou, X. Chen, Z. Shao, Y. Huang, and D. P. Knight, “Effect of Metallic Ions on Silk Formation in the Mulberry Silkworm, Bombyx mori,” Journal of Physical Chemistry B 109 (2005): 16937–16945.

[28]

W. Shao, C. Li, C. Wang, et al., “Stabilization of Zinc Anode by Trace Organic Corrosion Inhibitors for Long Lifespan,” Chinese Chemical Letters 36 (2025): 109531.

[29]

Y. Zhong, X. Xie, Z. Zeng, B. Lu, G. Chen, and J. Zhou, “Triple-Function Hydrated Eutectic Electrolyte for Enhanced Aqueous Zinc Batteries,” Angewandte Chemie International Edition 62 (2023): e202310577.

[30]

Q. Ren, X. Tang, X. Zhao, et al., “A Zincophilic Interface Coating for the Suppression of Dendrite Growth in Zinc Anodes,” Nano Energy 109 (2023): 108306.

[31]

P. Xu, C. Wang, B. Zhao, Y. Zhou, and H. Cheng, “An Interfacial Coating With High Corrosion Resistance Based on Halloysite Nanotubes for Anode Protection of Zinc-Ion Batteries,” Journal of Colloid and Interface Science 602 (2021): 859–867.

[32]

H. Y. Liu, J. G. Wang, W. Hua, et al., “Navigating Fast and Uniform Zinc Deposition via a Versatile Metal-Organic Complex Interphase,” Energy & Environmental Science 15 (2022): 1872–1881.

[33]

Y. Wang, Z. Wang, W. K. Pang, et al., “Solvent Control of Water O–H Bonds for Highly Reversible Zinc Ion Batteries,” Nature Communications 14 (2023): 2720.

[34]

L. Li, H. Yang, Z. Yuan, et al., “The Organic Ligand Etching Method for Constructing In Situ Terraced Protective Layer Toward Stable Aqueous Zn Anode,” Small 19 (2023): e2305554.

[35]

L. Zhang, J. R. Lu, and T. A. Waigh, “Electronics of Peptide and Protein-Based Biomaterials,” Advances in Colloid and Interface Science 287 (2021): 102319.

[36]

S. Doakhan, M. Montazer, A. Rashidi, R. Moniri, and M. B. Moghadam, “Influence of Sericin/TiO2 Nanocomposite on Cotton Fabric: Part 1. Enhanced Antibacterial Effect,” Carbohydrate Polymers 94 (2013): 737–748.

[37]

T. B. Song, Z. H. Huang, X. R. Zhang, J. W. Ni, and H. M. Xiong, “Nitrogen-Doped and Sulfonated Carbon Dots as a Multifunctional Additive to Realize Highly Reversible Aqueous Zinc-Ion Batteries,” Small 19 (2023): e2205558.

[38]

N. T. Mai, T. T. Thuy, D. M. Mott, and S. Maenosono, “Chemical Synthesis of Blue-Emitting Metallic Zinc Nano-Hexagons,” CrystEngComm 15 (2013): 6606–6610.

[39]

J. H. Lin, R. A. Patil, R. S. Devan, et al., “Photoluminescence Mechanisms of Metallic Zn Nanospheres, Semiconducting ZnO Nanoballoons, and Metal-Semiconductor Zn/ZnO Nanospheres,” Scientific Reports 4 (2014): 6967.

[40]

Q. Ren, X. Tang, K. He, et al., “Long-Cycling Zinc Metal Anodes Enabled by an In Situ Constructed ZnO Coating Layer,” Advanced Functional Materials 34 (2024): 2312220.

[41]

Q. Liu, L. Jiang, and L. Guo, “Precursor-Directed Self-Assembly of Porous ZnO Nanosheets as High-Performance Surface-Enhanced Raman Scattering Substrate,” Small 10 (2014): 48–51.

[42]

M. Zhou, S. Guo, J. Li, et al., “Surface-Preferred Crystal Plane for a Stable and Reversible Zinc Anode,” Advanced Materials 33 (2021): e2100187.

[43]

Z. Huang, Z. Li, Y. Wang, et al., “Regulating Zn (002) Deposition Toward Long Cycle Life for Zn Metal Batteries,” ACS Energy Letters 8 (2022): 372–380.

[44]

B. Niu, Z. Li, S. Cai, et al., “Robust Zn Anode Enabled by a Hydrophilic Adhesive Coating for Long-Life Zinc-Ion Hybrid Supercapacitors,” Chemical Engineering Journal 442 (2022): 136217.

[45]

Q. Gou, H. Luo, Q. Zhang, et al., “Electrolyte Regulation of Bio-Inspired Zincophilic Additive Toward High-Performance Dendrite-Free Aqueous Zinc-Ion Batteries,” Small 19 (2023): 2207502.

[46]

W. Zhang, C. Zhang, H. Wang, and H. Wang, “TEGDME Electrolyte Additive for High-Performance Zinc Anodes,” Chemical Research in Chinese Universities 39 (2023): 1037–1043.

[47]

C. Wang, Y. Gao, L. Sun, et al., “Anti-Catalytic and Zincophilic Layers Integrated Zinc Anode Towards Efficient Aqueous Batteries for Ultra-Long Cycling Stability,” Nano Research 15 (2022): 8076–8082.

[48]

M. M. Khan, Y. Zhao, Q. Liu, et al., “Manganese-Based Polyanionic Cathode Materials for Sodium-Ion Batteries With High Energy and Long Lifespan,” Journal of Energy Storage 116 (2025): 116038.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/