Buried Interface Modification for Reduced Open-Circuit Voltage Loss in Perovskite Solar Cells With Efficiency Exceeding 25.8%

Weiwei Sun , Kexiang Wang , Weifeng Liu , Yansheng Sun , Yukun Gao , Tingting You , Hong Lian , Xiaofeng Huang , Shuanglong Wang , Penggang Yin

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70042

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70042 DOI: 10.1002/cnl2.70042
RESEARCH ARTICLE

Buried Interface Modification for Reduced Open-Circuit Voltage Loss in Perovskite Solar Cells With Efficiency Exceeding 25.8%

Author information +
History +
PDF

Abstract

In n–i–p perovskite solar cells (PSCs), the buried interface of the perovskite layer is crucial for boosting both performance and stability. Here, multifunctional small molecule potassium trifluoromethanesulfonate (TFSK) is employed as an interlayer to efficiently bridge SnO2 and the buried perovskite film, simultaneously regulating interfacial energetics and morphology. This strategy provides several advantages: (1) TFSK passivates oxygen vacancy defects and surface hydroxyl groups on SnO2, while also improving energy level alignment; (2) TFSK modification induces a loose and porous morphology in PbI2, facilitating the diffusion of ammonium salts and promoting sufficient ionic reactions to high-quality FAPbI3 films; (3) TFSK interacts strongly with perovskite through Lewis acid–base interaction (between S=O groups and uncoordinated Pb²⁺) and hydrogen bonding (between F and formamidinium cations), significantly suppressing non-radiative recombination. Consequently, the quality of both SnO2 and perovskite films is significantly improved, which greatly boosts the power conversion efficiency of small-size PSCs to 25.82%, with a high open-circuit voltage of 1.19 V, a minimal voltage loss of 0.341 V, and negligible hysteresis. Moreover, the optimized SnO2/TFSK-based PSCs demonstrate improved storage, humidity, and thermal stability.

Keywords

buried interface / hysteresis / open-circuit voltage loss / perovskite solar cells / stability

Cite this article

Download citation ▾
Weiwei Sun, Kexiang Wang, Weifeng Liu, Yansheng Sun, Yukun Gao, Tingting You, Hong Lian, Xiaofeng Huang, Shuanglong Wang, Penggang Yin. Buried Interface Modification for Reduced Open-Circuit Voltage Loss in Perovskite Solar Cells With Efficiency Exceeding 25.8%. Carbon Neutralization, 2025, 4(5): e70042 DOI:10.1002/cnl2.70042

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Luo, X. Lin, F. Gao, et al., “Recent Progress in Perovskite Solar Cells: From Device to Commercialization,” Science China Chemistry 65 (2022): 2369–2416.

[2]

J. Zhou, L. Tan, Y. Liu, et al., “Highly Efficient and Stable Perovskite Solar Cells via a Multifunctional Hole Transporting Material,” Joule 8 (2024): 1691–1706.

[3]

M. A. Green, E. D. Dunlop, M. Yoshita, et al., “Solar Cell Efficiency Tables (Version 65),” Progress in Photovoltaics: Research and Applications 33 (2025): 3–15.

[4]

N. Yan, Z. Fang, Z. Dai, J. Feng, and S. Liu, “Buried Interface—The Key Issues for High Performance Inverted Perovskite Solar Cells,” Advanced Functional Materials 34 (2024): 2314039.

[5]

Y. Li, H. Xie, E. L. Lim, A. Hagfeldt, and D. Bi, “Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells,” Advanced Energy Materials 12 (2022): 2102730.

[6]

C. Altinkaya, E. Aydin, E. Ugur, et al., “Tin Oxide Electron-Selective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells,” Advanced Materials 33 (2021): 2005504.

[7]

J. J. Yoo, G. Seo, M. R. Chua, et al., “Efficient Perovskite Solar Cells via Improved Carrier Management,” Nature 590 (2021): 587–593.

[8]

M. Li, B. Jiao, Y. Peng, et al., “High-Efficiency Perovskite Solar Cells With Improved Interfacial Charge Extraction by Bridging Molecules,” Advanced Materials 36 (2024): 2406532.

[9]

P. Zhu, S. Gu, X. Luo, et al., “Simultaneous Contact and Grain-Boundary Passivation in Planar Perovskite Solar Cells Using SnO2–KCl Composite Electron Transport Layer,” Advanced Energy Materials 10 (2020): 1903083.

[10]

X. Ji, L. Bi, Q. Fu, et al., “Target Therapy for Buried Interface Enables Stable Perovskite Solar Cells With 25.05% Efficiency,” Advanced Materials 35 (2023): 2303665.

[11]

H. Guo, W. Xiang, Y. Fang, J. Li, and Y. Lin, “Molecular Bridge on Buried Interface for Efficient and Stable Perovskite Solar Cells,” Angewandte Chemie International Edition 62 (2023): e202304568.

[12]

X. Zhuang, D. Zhou, Y. Jia, et al., “Bottom-Up Defect Modification Through Oily-Allicin Modified Buried Interface Achieving Highly Efficient and Stable Perovskite Solar Cells,” Advanced Materials 36 (2024): 2403257.

[13]

Y. Wang, M. Feng, H. Chen, et al., “Highly Crystalized Cl-Doped SnO2 Nanocrystals for Stable Aqueous Dispersion Toward High-Performance Perovskite Photovoltaics,” Advanced Materials 36 (2024): 2305849.

[14]

H. Tan, X. Yu, W. Ren, et al., “A Versatile Bridging Molecule Managed the Buried SnO2/Perovskite Interface for Efficient and Stable Perovskite Solar Cells,” Small 21 (2025): 2500978.

[15]

P. Chen, Q. Zheng, Z. Jin, et al., “Buried Interface Engineering-Assisted Defects Control and Crystallization Manipulation Enables Stable Perovskite Solar Cells With Efficiency Exceeding 25%,” Advanced Functional Materials 34 (2024): 2409497.

[16]

C. Gong, C. Zhang, Q. Zhuang, et al., “Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells,” Nano-Micro Letters 15 (2022): 17.

[17]

Z. Liu, Y. Li, Z. Chen, et al., “Synergistically Regulating CBD-SnO2/Perovskite Buried Interface for Efficient FAPbI3 Perovskite Solar Cells,” Advanced Functional Materials 34 (2024): 2404173.

[18]

N. Nizamani, K.-L. Wang, R.-J. Jin, et al., “Dual-Functional Group Passivation to Foster Buried Interface Cohesion for High-Performance Perovskite Photovoltaics,” Chemical Engineering Journal 498 (2024): 155183.

[19]

M. Wang, H. Sun, M. Wang, L. Meng, and L. Li, “Uracil Induced Simultaneously Strengthening Grain Boundaries and Interfaces Enables High-Performance Perovskite Solar Cells With Superior Operational Stability,” Advanced Materials 36 (2024): 2306415.

[20]

M. Zhao, W.-M. Gu, K.-J. Jiang, et al., “2,2′-Bipyridyl-4,4′-Dicarboxylic Acid Modified Buried Interface of High-Performance Perovskite Solar Cells,” Angewandte Chemie International Edition 64 (2025): e202418176.

[21]

X. Tang, B. Shao, B. Li, et al., “Reconstruction of Electron-Selective Interface via Multifunctional Chemical Bridging Enables High-Performance Rigid and Flexible Perovskite Solar Cells,” ACS Energy Letters 9 (2024): 5679–5687.

[22]

Y. Yang, H. Huang, L. Yan, et al., “Compatible Soft-Templated Deposition and Surface Molecular Bridge Construction of SnO2 Enable Air-Fabricated Perovskite Solar Cells With Efficiency Exceeding 25.7%,” Advanced Energy Materials 14 (2024): 2400416.

[23]

S. You, H. Zeng, Z. Ku, et al., “Multifunctional Polymer-Regulated SnO2 Nanocrystals Enhance Interface Contact for Efficient and Stable Planar Perovskite Solar Cells,” Advanced Materials 32 (2020): 2003990.

[24]

Z. Zheng, Y. Ge, X. Yang, et al., “Stress Relaxation for Lead Iodide Nucleation in Efficient Perovskite Solar Cells,” Advanced Materials 37 (2025): 2412304.

[25]

W. Sun, K. Wang, W. Liu, et al., “Bidirectional Modification of Buried Interface Reduces Energy Loss for Planar Perovskite Solar Cells With Efficiency >23%,” Solar RRL 7 (2023): 2200991.

[26]

Y. Zhao, F. Ma, Z. Qu, et al., “Inactive (PbI2)2RbCl Stabilizes Perovskite Films for Efficient Solar Cells,” Science 377 (2022): 531–534.

[27]

H. Liu, Y. Gao, F. Xu, et al., “Enhanced Thermal and Photostability of Perovskite Solar Cells by a Multifunctional Eu (III) Trifluoromethanesulfonate Additive,” Advanced Functional Materials 34 (2024): 2315843.

[28]

D. Turnbull, “Kinetics of Heterogeneous Nucleation,” Journal of Chemical Physics 18 (1950): 198–203.

[29]

P. Ahlawat, A. Hinderhofer, E. A. Alharbi, et al., “A Combined Molecular Dynamics and Experimental Study of Two-Step Process Enabling Low-Temperature Formation of Phase-Pure Α-FaPbI3,” Science Advances 7 (2021): eabe3326.

[30]

W. Shao, H. Wang, F. Ye, et al., “Modulation of Nucleation and Crystallization in PbI2 Films Promoting Preferential Perovskite Orientation Growth for Efficient Solar Cells,” Energy & Environmental Science 16 (2023): 252–264.

[31]

K. Wang, W. Sun, W. Liu, et al., “Mitigating Interfacial and Bulk Defects via Chlorine Modulation for Htl-Free All-Inorganic CsPbI2Br Carbon-Based Perovskite Solar Cells With Efficiency Over 14,” Chemical Engineering Journal 445 (2022): 136781.

[32]

C. Luo, G. Zheng, F. Gao, et al., “Engineering the Buried Interface in Perovskite Solar Cells via Lattice-Matched Electron Transport Layer,” Nature Photonics 17 (2023): 856–864.

[33]

J. Liang, X. Hu, C. Wang, et al., “Origins and Influences of Metallic Lead in Perovskite Solar Cells,” Joule 6 (2022): 816–833.

[34]

H. Yang, Z. Xu, H. Wang, S. Qaid, O. F. Mohammed, and Z. Zang, “Iodide Management and Oriented Crystallization Modulation for High-Performance All-Air Processed Perovskite Solar Cells,” Advanced Materials 36 (2024): 2411721.

[35]

Y. Chen, Q. Wang, W. Tang, W. Qiu, Y. Wu, and Q. Peng, “Heterocyclic Amino Acid Molecule as a Multifunctional Interfacial Bridge for Improving the Efficiency and Stability of Quadruple Cation Perovskite Solar Cells,” Nano Energy 107 (2023): 108154.

[36]

R. Yin, R. Wu, W. Miao, et al., “Enhanced Anchoring Enables Highly Efficient and Stable Inverted Perovskite Solar Cells,” Nano Energy 125 (2024): 109544.

[37]

J. Y. Kim, J. W. Lee, H. S. Jung, H. Shin, and N. G. Park, “High-Efficiency Perovskite Solar Cells,” Chemical Reviews 120 (2020): 7867–7918.

[38]

X. Yuan, R. Li, Z. Xiong, et al., “Synergistic Crystallization Modulation and Defects Passivation via Additive Engineering Stabilize Perovskite Films for Efficient Solar Cells,” Advanced Functional Materials 33 (2023): 2215096.

[39]

D. Zheng, T. Zhu, Y. Yan, and T. Pauporté, “Controlling the Formation Process of Methylammonium-Free Halide Perovskite Films for a Homogeneous Incorporation of Alkali Metal Cations Beneficial to Solar Cell Performance,” Advanced Energy Materials 12 (2022): 2103618.

[40]

D.-Y. Son, S.-G. Kim, J.-Y. Seo, et al., “Universal Approach Toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering,” Journal of the American Chemical Society 140 (2018): 1358–1364.

[41]

M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, et al., “Maximizing and Stabilizing Luminescence From Halide Perovskites With Potassium Passivation,” Nature 555 (2018): 497–501.

[42]

G. Tong, L. K. Ono, Y. Liu, H. Zhang, T. Bu, and Y. Qi, “Up-Scalable Fabrication of SnO2 With Multifunctional Interface for High Performance Perovskite Solar Modules,” Nano-Micro Letters 13 (2021): 155.

[43]

Q. Xiao, Y. Zhao, Z. Huang, et al., “Benzoyl Sulfonyl Molecules for Bilateral Passivation and Crystalline Regulation at Buried Interfaces Toward High-Performance Perovskite Solar Cells,” Advanced Functional Materials 34 (2024): 2314472.

[44]

A. Guerrero, J. Bisquert, and G. Garcia-Belmonte, “Impedance Spectroscopy of Metal Halide Perovskite Solar Cells From the Perspective of Equivalent Circuits,” Chemical Reviews 121 (2021): 14430–14484.

[45]

K. Liu, S. Rafique, S. F. Musolino, et al., “Covalent Bonding Strategy to Enable Non-Volatile Organic Cation Perovskite for Highly Stable and Efficient Solar Cells,” Joule 7 (2023): 1033–1050.

[46]

X. Wang, S. Yi, Z. He, et al., “An Environmentally Friendly Natural Polymer as a Universal Interfacial Modifier for Fullerene and Non-Fullerene Polymer Solar Cells,” Sustainable Energy & Fuels 4 (2020): 1234–1241.

[47]

X. Liu, Q. Li, J. Zheng, et al., “Spidermen Strategy for Stable 24% Efficiency Perovskite Solar Cells,” Advanced Functional Materials 33 (2023): 2308108.

[48]

W. Chen, S. Liu, Q. Li, et al., “High-Polarizability Organic Ferroelectric Materials Doping for Enhancing the Built-In Electric Field of Perovskite Solar Cells Realizing Efficiency over 24%,” Advanced Materials 34 (2022): 2110482.

[49]

Q. Feng, X. Huang, Z. Tang, et al., “Governing PbI6 Octahedral Frameworks for High-Stability Perovskite Solar Modules,” Energy & Environmental Science 15 (2022): 4404–4413.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/