LiX Zeolites Hybrid Polyethylene Oxide-Based Polymer Electrolyte for Practical Lithium Metal Batteries

Yunlong Deng , Jing Chen , Yaowen Yue , Chunli Liu , Manying Cui , Qi Xiang , Hongyang Zhao , Zhenjiang Cao , Kai Jia , Li Jin , Yinhuan Li , Yatao Liu , Juan Wang , Guodong Feng , Kai Xi

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70037

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70037 DOI: 10.1002/cnl2.70037
RESEARCH ARTICLE

LiX Zeolites Hybrid Polyethylene Oxide-Based Polymer Electrolyte for Practical Lithium Metal Batteries

Author information +
History +
PDF

Abstract

Polymer solid electrolytes (PSEs) serve as safer alternatives to liquid electrolytes for lithium metal batteries (LMBs) owing to their enhanced thermal and electrochemical stability. However, the practical application of PSEs is constrained by low ionic conductivity and suboptimal electrochemical performance. In this study, we develop a composite solid polymer electrolyte (CSPE) by incorporating LiX zeolites into a polyethylene oxide (PEO) matrix to create Li+ transport channels with low curvature, thereby enhancing Li⁺ mobility. The introduction of LiX significantly improves the electrochemical properties of the CSPE, achieving a high ionic conductivity of 8.5 × 10−4 S cm−1 at 60°C, and a broadened electrochemical stability window of 4.6 V. As a result, Li | |LiFePO4 all-solid-state cells exhibit excellent cycling performance, retaining 132.8 mAh g−1 with 85.71% capacity retention after 800 cycles at 1C. Furthermore, all-solid-state pouch cells assembled with LiX-based CSPEs maintain stable operation even under mechanical abuse conditions (e.g., folding, twisting, and cutting), highlighting their potential for safe and flexible energy storage applications.

Keywords

all-solid-state batteries / composite solid polymer electrolytes / lithium metal batteries / LiX zeolites / polyethylene oxide

Cite this article

Download citation ▾
Yunlong Deng, Jing Chen, Yaowen Yue, Chunli Liu, Manying Cui, Qi Xiang, Hongyang Zhao, Zhenjiang Cao, Kai Jia, Li Jin, Yinhuan Li, Yatao Liu, Juan Wang, Guodong Feng, Kai Xi. LiX Zeolites Hybrid Polyethylene Oxide-Based Polymer Electrolyte for Practical Lithium Metal Batteries. Carbon Neutralization, 2025, 4(5): e70037 DOI:10.1002/cnl2.70037

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Shen, Y. Cheng, S. Sun, X. Ke, L. Liu, and Z. Shi, “The Critical Role of Inorganic Nanofillers in Solid Polymer Composite Electrolyte for Li+ Transportation,” Carbon Energy 3 (2021): 482–508.

[2]

L. Xu, J. Li, H. Shuai, et al., “Recent Advances of Composite Electrolytes for Solid-State Li Batteries,” Journal of Energy Chemistry 67 (2022): 524–548.

[3]

S. Liu, W. Liu, D. Ba, et al., “Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries,” Advanced Materials 35, (2023): 2110423.

[4]

S. Xia, X. Wu, Z. Zhang, Y. Cui, and W. Liu, “Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries,” Chem 5 (2019): 753–785.

[5]

J. Li, H. Zhang, Y. Cui, et al., “Constructing Robust Cathode/Li Interfaces and Intensifying Ion Transport Kinetics for Peo-Based Solid-State Lithium-Sulfur Batteries,” Chemical Engineering Journal 454 (2023): 140385.

[6]

P. Shi, J. Ma, M. Liu, et al., “A Dielectric Electrolyte Composite With High Lithium-Ion Conductivity for High-Voltage Solid-State Lithium Metal Batteries,” Nature Nanotechnology 18 (2023): 602–610.

[7]

N. Cheng, Z. Wang, Y. Lin, et al., “Breathable Dual-Mode Leather-Like Nanotextile for Efficient Daytime Radiative Cooling and Heating,” Advanced Materials 36 (2024): 2403223.

[8]

S. Xu, Z. Sun, C. Sun, et al., “Homogeneous and Fast Ion Conduction of Peo-Based Solid-State Electrolyte At Low Temperature,” Advanced Functional Materials 30 (2020): 2007172.

[9]

W. Liu, S. W. Lee, D. Lin, et al., “Enhancing Ionic Conductivity in Composite Polymer Electrolytes With Well-Aligned Ceramic Nanowires,” Nature Energy 2 (2017): 17035.

[10]

C. Chen, K. Wang, H. He, E. Hanc, M. Kotobuki, and L. Lu, “Processing and Properties of Garnet-Type Li7la3zr2o12 Ceramic Electrolytes,” Small 19 (2023): 2205550.

[11]

Q. Zhou, J. Ma, S. Dong, X. Li, and G. Cui, “Intermolecular Chemistry in Solid Polymer Electrolytes for High-Energy-Density Lithium Batteries,” Advanced Materials 31 (2019): 1902029.

[12]

S. C. Sand, J. L. M. Rupp, and B. Yildiz, “A Critical Review on Li-Ion Transport, Chemistry and Structure of Ceramic–Polymer Composite Electrolytes for Solid State Batteries,” Chemical Society Reviews 54 (2025): 178–200.

[13]

Z. Xiong, Z. Wang, W. Zhou, et al., “4.2v Polymer All-Solid-State Lithium Batteries Enabled by High-Concentration Peo Solid Electrolytes,” Energy Storage Materials 57 (2023): 171–179.

[14]

R. Fang, H. Xu, B. Xu, X. Li, Y. Li, and J. B. Goodenough, “Reaction Mechanism Optimization of Solid-State Li–S Batteries With a Peo-Based Electrolyte,” Advanced Functional Materials 31 (2021): 2001812.

[15]

Z. Sun, K. Xi, J. Chen, et al., “Expanding the Active Charge Carriers of Polymer Electrolytes in Lithium-Based Batteries Using an Anion-Hosting Cathode,” Nature Communications 13 (2022): 3209.

[16]

D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, and G. Wang, “Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects,” Chem 5 (2019): 2326–2352.

[17]

J. Wen, Q. Zhao, X. Jiang, et al., “Graphene Oxide Enabled Flexible Peo-Based Solid Polymer Electrolyte for All-Solid-State Lithium Metal Battery,” ACS Applied Energy Materials 4 (2021): 3660–3669.

[18]

Z. Sun, Y. Li, S. Zhang, et al., “G-C3n4 Nanosheets Enhanced Solid Polymer Electrolytes With Excellent Electrochemical Performance, Mechanical Properties, and Thermal Stability,” Journal of Materials Chemistry A 7 (2019): 11069–11076.

[19]

L. Chen, Y. Li, S. P. Li, L. Z. Fan, C. W. Nan, and J. B. Goodenough, “Peo/Garnet Composite Electrolytes for Solid-State Lithium Batteries: From ‘Ceramic-In-Polymer’ to ‘Polymer-In-Ceramic’,” Nano Energy 46 (2018): 176–184.

[20]

J. Zhang, N. Zhao, M. Zhang, et al., “Flexible and Ion-Conducting Membrane Electrolytes for Solid-State Lithium Batteries: Dispersion of Garnet Nanoparticles in Insulating Polyethylene Oxide,” Nano Energy 28 (2016): 447–454.

[21]

Z. Wan, D. Lei, W. Yang, et al., “Low Resistance–Integrated All-Solid-State Battery Achieved by Li7la3zr2o12 Nanowire Upgrading Polyethylene Oxide (Peo) Composite Electrolyte and Peo Cathode Binder,” Advanced Functional Materials 29 (2019): 1805301.

[22]

S. Tang, W. Guo, and Y. Fu, “Advances in Composite Polymer Electrolytes for Lithium Batteries and Beyond,” Advanced Energy Materials 11 (2021): 2000802.

[23]

O. Sheng, H. Hu, T. Liu, et al., “Interfacial and Ionic Modulation of Poly (Ethylene Oxide) Electrolyte via Localized Iodization to Enable Dendrite-Free Lithium Metal Batteries,” Advanced Functional Materials 32 (2022): 2111026.

[24]

J. Yin, X. Xu, S. Jiang, et al., “High Ionic Conductivity Peo-Based Electrolyte With 3d Framework for Dendrite-Free Solid-State Lithium Metal Batteries At Ambient Temperature,” Chemical Engineering Journal 431 (2022): 133352.

[25]

X. Zhang, S. Cheng, C. Fu, et al., “Advancements and Challenges in Organic–Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries,” Nano-Micro Letters 17 (2024): 2.

[26]

D. Cai, D. Wang, Y. Chen, et al., “A Highly Ion-Conductive Three-Dimensional Llzao-Peo/Litfsi Solid Electrolyte for High-Performance Solid-State Batteries,” Chemical Engineering Journal 394 (2020): 124993.

[27]

L. Hu, T. Yang, X. Yan, et al., “In Situ Construction of Lif–Li3n-Rich Interface Contributed to Fast Ion Diffusion in All-Solid-State Lithium–Sulfur Batteries,” ACS Nano 18 (2024): 8463–8474.

[28]

X. Zhang, C. Fu, S. Cheng, et al., “Novel Peo-Based Composite Electrolyte for Low-Temperature All-Solid-State Lithium Metal Batteries Enabled by Interfacial Cation-Assistance,” Energy Storage Materials 56 (2023): 121–131.

[29]

Y. H. Chen, P. Lennartz, K. L. Liu, et al., “Towards All-Solid-State Polymer Batteries: Going Beyond Peo With Hybrid Concepts,” Advanced Functional Materials 33 (2023): 2300501.

[30]

X. Wang, H. Zhai, B. Qie, et al., “Rechargeable Solid-State Lithium Metal Batteries With Vertically Aligned Ceramic Nanoparticle/Polymer Composite Electrolyte,” Nano Energy 60 (2019): 205–212.

[31]

M. Li, M. Kolek, J. Frerichs, et al., “Investigation of Polymer/Ceramic Composite Solid Electrolyte System: The Case of Peo/Lgps Composite Electrolytes,” ACS Sustainable Chemistry & Engineering 9 (2021): 11314–11322.

[32]

H. Xu, P. H. Chien, J. Shi, et al., “High-Performance All-Solid-State Batteries Enabled by Salt Bonding to Perovskite in Poly(Ethylene Oxide),” Proceedings of the National Academy of Sciences of the United States of America 116 (2019): 18815–18821.

[33]

G. Lu, H. Wei, C. Shen, et al., “Bifunctional Mof Doped Peo Composite Electrolyte for Long-Life Cycle Solid Lithium Ion Battery,” ACS Applied Materials & Interfaces 14 (2022): 45476–45483.

[34]

K. Wang, Y. Li, L. H. Xie, X. Li, and J. R. Li, “Construction and Application of Base-Stable Mofs: A Critical Review,” Chemical Society Reviews 51 (2022): 6417–6441.

[35]

H. Liu, H. Pan, M. Yan, X. Zhang, and Y. Jiang, “Extraordinary Ionic Conductivity Excited by Hierarchical Ion-Transport Pathways in Mof-Based Quasi-Solid Electrolytes,” Advanced Materials 35 (2023): 2300888.

[36]

M. Yi, J. Li, M. Wang, et al., “Suppressing Structural Degradation of Single Crystal Nickel-Rich Cathodes in Peo-Based All-Solid-State Batteries: Mechanistic Insight and Performance,” Energy Storage Materials 54 (2023): 579–588.

[37]

H. Jamal, F. Khan, S. Hyun, S. W. Min, and J. H. Kim, “Enhancement of the Ionic Conductivity of a Composite Polymer Electrolyte via Surface Functionalization of Ssz-13 Zeolite for All-Solid-State Li-Metal Batteries,” Journal of Materials Chemistry A 9 (2021): 4126–4137.

[38]

W. J. Roth, M. Opanasenko, M. Mazur, B. Gil, J. Čejka, and T. Sasaki, “Current State and Perspectives of Exfoliated Zeolites,” Advanced Materials 36 (2024): 2307341.

[39]

B. Hu, S. Han, J. Zhang, et al., “Toward Robust Solid-State Lithium Metal Batteries by Stabilizing a Polyethylene Oxide-Based Solid Electrolyte Interface With a Biomass Polymer Filler,” Journal of Colloid and Interface Science 650 (2023): 203–210.

[40]

S. Qian, H. Zhu, C. Sun, et al., “Liquid Metal Loaded Molecular Sieve: Specialized Lithium Dendrite Blocking Filler for Polymeric Solid-State Electrolyte,” Advanced Materials 36 (2024): 2313456.

[41]

C. He, H. Ying, L. Cai, et al., “Tailoring Stable Peo-Based Electrolyte/Electrodes Interfaces via Molecular Coordination Regulating Enables 4.5 V Solid-State Lithium Metal Batteries,” Advanced Functional Materials 34 (2024): 2410350.

[42]

J. Li, R. Li, W. Wang, K. Lan, and D. Zhao, “Ordered Mesoporous Crystalline Frameworks Toward Promising Energy Applications,” Advanced Materials 36 (2024): 2311460.

[43]

J. Huang, C. Li, D. Jiang, et al., “Solid-State Electrolytes for Lithium Metal Batteries: State-of-The-Art and Perspectives,” Advanced Functional Materials 35 (2025): 2411171.

[44]

N. Ding, T. Zhou, W. Weng, et al., “Multivariate Synthetic Strategy for Improving Crystallinity of Zwitterionic Squaraine-Linked Covalent Organic Frameworks With Enhanced Photothermal Performance,” Small 18, (2022): 2201275.

[45]

Y. Cui, Q. Zhao, X. Wu, et al., “An Interface-Bridged Organic–Inorganic Layer That Suppresses Dendrite Formation and Side Reactions for Ultra-Long-Life Aqueous Zinc Metal Anodes,” Angewandte Chemie International Edition 59 (2020): 16594–16601.

[46]

X. Chi, M. Li, J. Di, et al., “A Highly Stable and Flexible Zeolite Electrolyte Solid-State Li–Air Battery,” Nature 592 (2021): 551–557.

[47]

Y. Ma, C. Wang, K. Yang, et al., “Ultrathin and Robust Composite Electrolyte for Stable Solid-State Lithium Metal Batteries,” ACS Applied Materials & Interfaces 15 (2023): 17978–17985.

[48]

Y. Zhang, W. Lu, L. Cong, et al., “Cross-Linking Network Based on Poly(Ethylene Oxide): Solid Polymer Electrolyte for Room Temperature Lithium Battery,” Journal of Power Sources 420 (2019): 63–72.

[49]

C. Wang, T. Wang, L. Wang, et al., “Differentiated Lithium Salt Design for Multilayered Peo Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery,” Advanced Science 6 (2019): 1901036.

[50]

Y. Zou, Z. Ao, Z. Zhang, et al., “Metal-Organic Framework Modified Peo-Based Solid Electrolyte for High-Performance All-Solid-State Lithium Metal Batteries,” Chemical Engineering Science 275 (2023): 118705.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/