Optical Coupling Optimization Enables Cost-Effective Planar Silicon-Perovskite Tandem Solar Cells

Zishuo Wang , Xianggang Chen , Xuzheng Feng , Shuyi Liu , Jixiang Tang , Yuhang Xie , Xiaoxu Sun , Shuyuan Fan , Longfei Yan , Xing Li , Molang Cai

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70035

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70035 DOI: 10.1002/cnl2.70035
RESEARCH ARTICLE

Optical Coupling Optimization Enables Cost-Effective Planar Silicon-Perovskite Tandem Solar Cells

Author information +
History +
PDF

Abstract

Planar silicon/perovskite tandem solar cells exhibit significant advantages over textured architectures, including simplified fabrication, reduced cost, and scalability for industrial production. However, their planar configuration inherently leads to substantial optical losses. Here, we systematically analyze optical loss mechanisms in planar silicon/perovskite tandem devices and develop an optical simulation framework to address current-matching challenges between sub-cells. Through precise manipulation of hole transport layer thickness, we demonstrate synergistic optimization of parasitic absorption and reflection in the top cell. This approach yields a semi-transparent device with a short-circuit current density of 19.48 mA/cm² and a power conversion efficiency of 20.37%. An optical coupling model is established to determine optimal layer thicknesses under current-matched conditions for a tandem device. For bifacial configurations, active layer thickness and bandgap are co-optimized. Simulation results reveal that a 1.56 eV bandgap perovskite layer (800 nm) achieves 35.40% efficiency at 0.3 albedo. Cost analysis shows bifacial devices reduce the levelized cost of energy to $0.258/W at 0.3 albedo, representing a 12.8% reduction compared to single-sided Ag-coated counterparts. This study provides a comprehensive optical design strategy and cost-performance evaluation, offering critical insights for developing next-generation low-cost, high-efficiency tandem photovoltaic architectures.

Keywords

albedo / bifacial tandem solar cells / current matching / optical coupling management

Cite this article

Download citation ▾
Zishuo Wang, Xianggang Chen, Xuzheng Feng, Shuyi Liu, Jixiang Tang, Yuhang Xie, Xiaoxu Sun, Shuyuan Fan, Longfei Yan, Xing Li, Molang Cai. Optical Coupling Optimization Enables Cost-Effective Planar Silicon-Perovskite Tandem Solar Cells. Carbon Neutralization, 2025, 4(5): e70035 DOI:10.1002/cnl2.70035

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Q. Jiang, Y. Zhao, X. Zhang, et al., “Surface Passivation of Perovskite Film for Efficient Solar Cells,” Nature Photonics 13 (2019): 460–466.

[2]

P. Li, H. Xiong, L. Lin, et al., “Modeling and Simulation of Bifacial Perovskite/Pert-Silicon Tandem Solar Cells,” Solar Energy 227 (2021): 292–302.

[3]

Z. Li, X. Li, X. Feng, et al., “Strain Control of Mixed-Halide Wide-Bandgap Perovskites for Highly Efficient and Stable Solar Cells,” Solar RRL 7 (2023): 10.

[4]

Best Research-Cell Efficiency Chart. Nrel. 2025.

[5]

J. Chantana, Y. Kawano, T. Nishimura, A. Mavlonov, and T. Minemoto, “Thermodynamic Limit of Tandem Solar Cells under Different Solar Spectra and Their Perovskite Top Solar Cell,” Optical Materials 113 (2021): 110819.

[6]

Y. Li, B. Shi, Q. Xu, et al., “Wide Bandgap Interface Layer Induced Stabilized Perovskite/Silicon Tandem Solar Cells With Stability Over Ten Thousand Hours,” Advanced Energy Materials 11 (2021): 9.

[7]

P. Tockhorn, J. Sutter, A. Cruz, et al., “Nano-Optical Designs for High-Efficiency Monolithic Perovskite-Silicon Tandem Solar Cells,” Nature Nanotechnology 17 (2022): 1214–1221.

[8]

Z. Li, X. Li, X. Chen, et al., “In Situ Epitaxial Growth of Blocking Structure in Mixed-Halide Wide-Band-Gap Perovskites for Efficient Photovoltaics,” Joule 7 (2023): 1363–1381.

[9]

T. Li, W. A. Dunlap-Shohl, and D. B. Mitzi, “Bifacial Perovskite Solar Cells via a Rapid Lamination Process,” ACS Applied Energy Materials 3 (2020): 9493–9497.

[10]

H. Gu, C. Fei, G. Yang, et al., “Design Optimization of Bifacial Perovskite Minimodules for Improved Efficiency and Stability,” Nature Energy 8 (2023): 675–684.

[11]

J. Chen, X. Sun, Z. Wang, et al., “Rubidium Halide Additive Engineering for Efficient and Stable Bifacial Perovskite Solar Cells,” Advanced Functional Materials 35 (2025): 9.

[12]

C. Liu, H. Xi, H. Yan, et al., “Photon Redistribution of Two-Terminal Perovskite/Si Tandem Solar Cells Induced by the Optical Coupling Layer for Higher Power Conversion Efficiency,” Semiconductor Science and Technology 36 (2021): 065019.

[13]

P. Shi, J. Xu, I. Yavuz, et al., “Strain Regulates the Photovoltaic Performance of Thick-Film Perovskites,” Nature Communications 15 (2024): 2579.

[14]

L. Xu, F. Xu, J. Liu, X. Zhang, A. S. Subbiah, and S. De Wolf, “Bandgap Optimization for Bifacial Tandem Solar Cells,” ACS Energy Letters 8 (2023): 3114–3121.

[15]

R. Santbergen, R. Mishima, T. Meguro, et al., “Minimizing Optical Losses in Monolithic Perovskite/C-Si Tandem Solar Cells With a Flat Top Cell,” Optics Express 24 (2016): A1288–A1299.

[16]

L. Mazzarella, Y. H. Lin, S. Kirner, et al., “Infrared Light Management Using a Nanocrystalline Silicon Oxide Interlayer in Monolithic Perovskite/Silicon Heterojunction Tandem Solar Cells With Efficiency Above 25,” Advanced Energy Materials 9 (2019): 9.

[17]

C. Liu, H. Xi, H. Yan, et al., “Photon Redistribution of Two-Terminal Perovskite/Si Tandem Solar Cells Induced by the Optical Coupling Layer for Higher Power Conversion Efficiency,” Semiconductor Science and Technology 36 (2021): 065019.

[18]

K. Liu, A. A. Miskevich, V. A. Loiko, et al., “Interference Effects Induced by Electrodes and Their Influences on the Distribution of Light Field in Perovskite Absorber and Current Matching of Perovskite/Silicon Tandem Solar Cell,” Solar Energy 252 (2023): 252–259.

[19]

J. Tang, J. Xue, H. Xu, et al., “Power Generation Density Boost of Bifacial Tandem Solar Cells Revealed by High Throughput Optoelectrical Modelling,” Energy & Environmental Science 17 (2024): 6068–6078.

[20]

M. De Bastiani, A. S. Subbiah, M. Babics, et al., “Bifacial Perovskite/Silicon Tandem Solar Cells,” Joule 6 (2022): 1431–1445.

[21]

M. Bacha, A. Saadoune, I. Youcef, and O. terghini, “Design and Numerical Investigation of Perovskite/Silicon Tandem Solar Cell,” Optical Materials 131 (2022): 112671.

[22]

P. Zhao, Y. Hao, M. Yue, et al., “Device Simulation of Organic-Inorganic Halide Perovskite/Crystalline Silicon Four-Terminal Tandem Solar Cell With Various Antireflection Materials,” IEEE Journal of Photovoltaics 8 (2018): 1685–1691.

[23]

X. Cui, X. Li, Z. Wang, et al., “MoO3/Au/Ag/MoO3 Multilayer Transparent Electrode Enables High Light Utilization of Semitransparent Perovskite Solar Cells,” Device 3 (2025): 100558.

[24]

H. Fujiwara and R. W. Collins, Spectroscopic Ellipsometry for Photovoltaics: Volume 2: Applications and Optical Data of Solar Cell Materials, Vol. 214 (Springer, 2019).

[25]

A. Nakane, H. Tampo, M. Tamakoshi, et al., “Quantitative Determination of Optical and Recombination Losses in Thin-Film Photovoltaic Devices Based on External Quantum Efficiency Analysis,” Journal of Applied Physics 120 (2016): 61–1067.

[26]

X. Chen, Z. Yuan, S. Fan, et al., “Enhanced Light Transmittance of Electron Transport Layer Through Bilayer SnO2 for High-Performance Semitransparent Perovskite Solar Cells,” Chemsuschem 18 (2025): e202402582.

[27]

F. Hou, C. Han, O. Isabella, et al., “Inverted Pyramidally-Textured PDMS Antireflective Foils for Perovskite/Silicon Tandem Solar Cells With Flat Top Cell,” Nano Energy 56 (2019): 234–240.

[28]

S. Wang, H. Sun, P. Wang, et al., “Small Molecule Regulatory Strategy for Inorganic Perovskite Solar Cells With 368 Mv of Voc Deficit and Its Application in Tandem Devices,” Advanced Energy Materials 14 (2024): 9.

[29]

Z. Li, Y. Zhao, X. Wang, et al., “Cost Analysis of Perovskite Tandem Photovoltaics,” Joule 2 (2018): 1559–1572.

[30]

G. Li and H. Chen, “Manufacturing Cost Analysis of Single-Junction Perovskite Solar Cells,” Solar RRL 8 (2024): 7.

[31]

J. J. Cordell, M. Woodhouse, and E. L. Warren, “Technoeconomic Analysis of Perovskite/Silicon Tandem Solar Modules,” Joule 9 (2024): 101781.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/