Integrating Flame-Retardant Li-Cu Anode With Self-Extinguishing Polymer Electrolyte for Coordinated Thermal Runaway Suppression in Solid-State Li Metal Batteries

Longfei Han , Mengdan Zhang , Xiangming Hu , Biao Kong , Wei Wang , Lihua Jiang , Yurui Deng , Yuan Cheng , Wei Wang

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70034

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70034 DOI: 10.1002/cnl2.70034
RESEARCH ARTICLE

Integrating Flame-Retardant Li-Cu Anode With Self-Extinguishing Polymer Electrolyte for Coordinated Thermal Runaway Suppression in Solid-State Li Metal Batteries

Author information +
History +
PDF

Abstract

Solid-state polymer electrolytes have emerged as a safer alternative to liquid electrolytes for lithium metal batteries, yet their flammability and the inherent combustion risks of lithium metal anodes during thermal runaway remain critical safety concerns. Herein, we propose a cost-effective lithium-copper composite anode that synergistically addresses both safety and lithium dendrite suppression challenges. The composite anode enables cells to achieve a fourfold enhancement in cycle lifespan compared with conventional lithium metal anodes. By integrating this non-flammable composite anode with a flame-retardant polymer electrolyte, we establish a dual-protection strategy for battery safety. Notably, the total heat release of composite anode-based batteries decreases by 80% compared to conventional lithium metal counterparts. This study provides a materials engineering solution that simultaneously improves both electrochemical performance and safety metrics for solid-state lithium metal batteries, paving the way for practical high-energy-density battery applications.

Keywords

flame-retardant / Li-Cu anode / lithium battery / safe polymer electrolyte / thermal runaway

Cite this article

Download citation ▾
Longfei Han, Mengdan Zhang, Xiangming Hu, Biao Kong, Wei Wang, Lihua Jiang, Yurui Deng, Yuan Cheng, Wei Wang. Integrating Flame-Retardant Li-Cu Anode With Self-Extinguishing Polymer Electrolyte for Coordinated Thermal Runaway Suppression in Solid-State Li Metal Batteries. Carbon Neutralization, 2025, 4(5): e70034 DOI:10.1002/cnl2.70034

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Zhang, V. Koverga, S. Liu, et al., “Single-Phase Local-High-Concentration Solid Polymer Electrolytes for Lithium-Metal Batteries,” Nature Energy 9 (2024): 386–400.

[2]

Y. Ye, R. Xu, W. Huang, et al., “Quadruple the Rate Capability of High-Energy Batteries Through a Porous Current Collector Design,” Nature Energy 9 (2024): 643–653.

[3]

C. Lu, H. Jiang, X. Cheng, et al., “High-Performance Fibre Battery With Polymer Gel Electrolyte,” Nature 629 (2024): 86–91.

[4]

H. X. Yang, Z. K. Liu, Y. Wang, N. W. Li, and L. Yu, “Multiscale Structural Gel Polymer Electrolytes With Fast Li+ Transport for Long-Life Li Metal Batteries,” Advanced Functional Materials 33 (2023): 2209837.

[5]

N. Xu, Y. Zhao, M. Ni, et al., “In-Situ Cross-Linked F- and P-Containing Solid Polymer Electrolyte for Long-Cycling and High-Safety Lithium Metal Batteries With Various Cathode Materials,” Angewandte Chemie International Edition 63 (2024): e202404400.

[6]

M. Xu, W. Yue, L. Zhang, et al., “Engineering Chitosan Into a Recyclable and Flame-Resistant Gel Electrolyte via a Dual Cross-Linking Strategy for Flexible Supercapacitors,” Green Chemistry 26 (2024): 918–926.

[7]

S. Rana, R. Kumar, and R. S. Bharj, “Current Trends, Challenges, and Prospects in Material Advances for Improving the Overall Safety of Lithium-Ion Battery Pack,” Chemical Engineering Journal 463 (2023): 142336.

[8]

M. Quant, O. Willstrand, T. Mallin, and J. Hynynen, “Ecotoxicity Evaluation of Fire-Extinguishing Water From Large-Scale Battery and Battery Electric Vehicle Fire Tests,” Environmental Science & Technology 57 (2023): 4821–4830.

[9]

J. Gui, Z. Huang, J. Lu, et al., “High-Safety Lithium Metal Batteries Enabled by Additive of Fire-Extinguishing Microcapsules,” Carbon Neutralization 4 (2025): e182.

[10]

H. Lu, A. Du, X. Lin, et al., “Rationally Coupling Thermal Tolerance, Thermal Conductance, and Overheating-Response in a Separator for Safe Batteries,” Energy & Environmental Science 17 (2024): 7860–7869.

[11]

Y.-S. Feng, Y.-N. Li, P. Wang, Z.-P. Guo, F.-F. Cao, and H. Ye, “Work-Function-Induced Interfacial Electron/Ion Transport in Carbon Hosts Toward Dendrite-Free Lithium Metal Anodes,” Angewandte Chemie International Edition 62 (2023): e202310132.

[12]

M.-S. Tu, Z.-H. Wang, Q.-H. Chen, Z.-P. Guo, F.-F. Cao, and H. Ye, “Li-Ion Nanorobots With Enhanced Mobility for Fast-Ion Conducting Polymer Electrolytes,” Energy & Environmental Science 18 (2025): 2873–2882.

[13]

Z. Yang, H. Jiang, X. Li, et al., “Fabricating Wide-Temperature-Range Quasi-Solid Sodium Batteries With Fast Ion Transport via Tin Additives,” Advanced Functional Materials 34 (2024): 2407713.

[14]

X. Yuan, B. Liu, M. Mecklenburg, and Y. Li, “Ultrafast Deposition of Faceted Lithium Polyhedra by Outpacing Sei Formation,” Nature 620 (2023): 86–91.

[15]

Z. Luo, Y. Cao, G. Xu, et al., “Recent Advances in Robust and Ultra-Thin Li Metal Anode,” Carbon Neutralization 3 (2024): 647–672.

[16]

C. Wang, C. Yang, Y. Du, Z. Guo, and H. Ye, “Spherical Lithium Deposition Enables High Li-Utilization Rate, Low Negative/Positive Ratio, and High Energy Density in Lithium Metal Batteries,” Advanced Functional Materials 33 (2023): 2303427.

[17]

L. Han, L. Wang, Z. Chen, et al., “Incombustible Polymer Electrolyte Boosting Safety of Solid-State Lithium Batteries: A Review,” Advanced Functional Materials 33 (2023): 2300892.

[18]

X. Zhang, L. Huang, B. Xie, et al., “Deciphering the Thermal Failure Mechanism of Anode-Free Lithium Metal Pouch Batteries,” Advanced Energy Materials 13 (2023): 202203648.

[19]

F. Yun, S. Liu, M. Gao, et al., “Investigation on Step Overcharge to Self-Heating Behavior and Mechanism Analysis of Lithium Ion Batteries,” Journal of Energy Chemistry 79 (2023): 301–311.

[20]

A. Yang, C. Yang, K. Xie, et al., “Benchmarking the Safety Performance of Organic Electrolytes for Rechargeable Lithium Batteries: A Thermochemical Perspective,” ACS Energy Letters 8 (2023): 836–843.

[21]

K. Yang, L. Zhang, W. Wang, et al., “Multiscale Modeling for Enhanced Battery Health Analysis: Pathways to Longevity,” Carbon Neutralization 3 (2024): 348–385.

[22]

C. Xian, S. Zhang, P. Liu, et al., “An Advanced Gel Polymer Electrolyte for Solid-State Lithium Metal Batteries,” Small 20 (2024): 2306381.

[23]

L. Wu, F. Pei, D. Cheng, et al., “Flame-Retardant Polyurethane-Based Solid-State Polymer Electrolytes Enabled by Covalent Bonding for Lithium Metal Batteries,” Advanced Functional Materials 34 (2024): 2310084.

[24]

F. Pei, L. Wu, Y. Zhang, et al., “Interfacial Self-Healing Polymer Electrolytes for Long-Cycle Solid-State Lithium-Sulfur Batteries,” Nature Communications 15 (2024): 351.

[25]

C. Jin, Z. Wu, G. Li, Z. Luo, and N.-W. Li, “Phosphazene-Based Flame-Retardant Artificial Interphase Layer for Lithium Metal Batteries,” Acta Physico-Chimica Sinica 41 (2025): 100094.

[26]

L. Liu, Y.-X. Yin, J.-Y. Li, S.-H. Wang, Y.-G. Guo, and L.-J. Wan, “Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogen-Doped Graphitic Carbon Foams for High-Performance Lithium Metal Anodes,” Advanced Materials 30 (2018): 1706216.

[27]

A. M. Bates, Y. Preger, L. Torres-Castro, K. L. Harrison, S. J. Harris, and J. Hewson, “Are Solid-State Batteries Safer Than Lithium-Ion Batteries?,” Joule 6 (2022): 742–755.

[28]

M. Schiemann, J. Bergthorson, P. Fischer, V. Scherer, D. Taroata, and G. Schmid, “A Review on Lithium Combustion,” Applied Energy 162 (2016): 948–965.

[29]

L. Yan, N. Wang, and Z. Xu, “Experimental Study on the Effectiveness and Safety of Cement Powder on Extinguishing Metal Magnesium Fires Based on Pneumatic Conveying Technology,” Case Studies in Thermal Engineering 37 (2022): 102279.

[30]

J. Hagauer, U. Matlschweiger, C. Tippelreither, M. Lutz, T. Hribernig, and M. Lackner, “Controlling Metal Fires Through Cellulose Flake Blanketing Followed by Water Spray Cooling,” Fire 5 (2022): 83.

[31]

J. Liu, L. Zhu, J. Wang, et al., “Phosphorus Flame Retardant Modified Aramid Nanofiber Separator for Advanced Safety Lithium-Sulfur Batteries,” Journal of Energy Storage 92 (2024): 112030.

[32]

Q. Liu, Y. Feng, J. Liu, et al., “In Situ Integration of a Flame Retardant Quasisolid Gel Polymer Electrolyte With a Si-Based Anode for High-Energy Li-Ion Batteries,” ACS Nano 18 (2024): 13384–13396.

[33]

W. Tang, T. Zhou, Y. Duan, M. Zhou, Z. Li, and R. Liu, “Nonflammable In Situ PDOL-Based Gel Polymer Electrolyte for High-Energy-Density and High Safety Lithium Metal Batteries,” Carbon Neutralization 3 (2024): 386–395.

[34]

Y. Zhang, L. Yu, X.-D. Zhang, et al., “A Smart Risk-Responding Polymer Membrane for Safer Batteries,” Science Advances 9 (2023): eade5802.

[35]

A. Du, H. Lu, S. Liu, et al., “Breaking the Trade-Off Between Ionic Conductivity and Mechanical Strength in Solid Polymer Electrolytes for High-Performance Solid Lithium Batteries,” Advanced Energy Materials 14 (2024): 2400808.

[36]

D.-A. Lim, J.-H. Seok, D. Hong, K. H. Ahn, C. H. Lee, and D.-W. Kim, “Non-Flammable Gel Polymer Electrolyte for Enhancing the Safety and High-Temperature Performance of Lithium-Ion Batteries,” ACS Applied Materials & Interfaces 16 (2024): 14822–14831.

[37]

X. Jiang, F. Liu, M. Bai, et al., “Breaking Solvation Dominance of Phosphate via Dipole–Dipole Chemistry in Gel Polymer Electrolyte,” ACS Energy Letters 9 (2024): 3369–3379.

[38]

Y. Du, Y. Xie, L. Chen, et al., “High-Performance Nonflammable Gel Polymer Electrolyte With 3D Interpenetrating Network for Advanced Lithium-Ion Batteries,” Chemical Engineering Journal 493 (2024): 152810.

[39]

Y. Xie, L. Feng, D. Li, et al., “A Novel Flame-Retardant Nitrile-Based Gel Polymer Electrolyte for Quasi-Solid-State Lithium Metal Batteries,” Colloids and Surfaces, A: Physicochemical and Engineering Aspects 670 (2023): 131487.

[40]

Y. Tang, Y. Xiong, L. Wu, X. Xiong, T. Me, and X. Wang, “A Solid-State Lithium Battery With PVDF-HFP-Modified Fireproof Ionogel Polymer Electrolyte,” ACS Applied Energy Materials 6 (2023): 4016–4026.

[41]

J. Song, K. Liao, J. Si, et al., “Phosphonate-Functionalized Ionic Liquid Gel Polymer Electrolyte With High Safety for Dendrite-Free Lithium Metal Batteries,” ACS Applied Materials & Interfaces 15 (2023): 2901–2910.

[42]

Y. Liu, J. Zhang, R. Niu, et al., “Manufacturing of High Strength and High Conductivity Copper With Laser Powder Bed Fusion,” Nature Communications 15 (2024): 1283.

[43]

L. Zhu, J. Chen, Y. Wang, et al., “Tunneling Interpenetrative Lithium Ion Conduction Channels in Polymer-in-Ceramic Composite Solid Electrolytes,” Journal of the American Chemical Society 146 (2024): 6591–6603.

[44]

L. Han, C. Liao, X. Mu, et al., “Flame-Retardant ADP/PEO Solid Polymer Electrolyte for Dendrite-Free and Long-Life Lithium Battery by Generating Al, P-Rich Sei Layer,” Nano Letters 21 (2021): 4447–4453.

[45]

L. Han, Y. Liu, C. Liao, et al., “Noncombustible 7 mm-Thick Solid Polymer Electrolyte for Highly Energy Density Solid State Lithium Batteries,” Nano Energy 112 (2023): 108448.

[46]

C. Liao, L. Han, W. Wang, et al., “Non-Flammable Electrolyte With Lithium Nitrate as the Only Lithium Salt for Boosting Ultra-Stable Cycling and Fire-Safety Lithium Metal Batteries,” Advanced Functional Materials 33 (2023): 2212605.

[47]

Y. Zhang, Y. Wu, H. Li, J. Chen, D. Lei, and C. Wang, “A Dual-Function Liquid Electrolyte Additive for High-Energy Non-Aqueous Lithium Metal Batteries,” Nature Communications 13 (2022): 1297.

[48]

Q. Zheng, Y. Yamada, R. Shang, et al., “A Cyclic Phosphate-Based Battery Electrolyte for High Voltage and Safe Operation,” Nature Energy 5 (2020): 291–298.

[49]

Y. Liu, L. Han, C. Liao, H. Yu, Y. Kan, and Y. Hu, “Ultra-Thin, Non-Combustible Peo Polymer Solid Electrolyte for High Safety Polymer Lithium Metal Batteries,” Chemical Engineering Journal 468 (2023): 143222.

RIGHTS & PERMISSIONS

2025 The Authors. Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

45

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/