Progress and Perspectives of the Covalent Organic Frameworks in Boosting Ions Transportation for High-Energy Density Li Metal Batteries

Wanting Zhao , Guowei Gao , Yixi Hao , Lili Liu , Weiwei Fang , Yuping Wu

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (4) : e70028

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (4) :e70028 DOI: 10.1002/cnl2.70028
REVIEW

Progress and Perspectives of the Covalent Organic Frameworks in Boosting Ions Transportation for High-Energy Density Li Metal Batteries

Author information +
History +
PDF

Abstract

Lithium-ion batteries have gained widespread application due to their high energy density, stable discharge platforms, and broad operating temperature ranges. However, both liquid and solid-state battery systems face challenges in lithium metal battery development, primarily caused by uneven lithium deposition that induces dendrite growth, leading to SEI layer damage and eventual short-circuit failure. Covalent organic frameworks (COFs), crystalline porous materials constructed from organic building units through covalent bonds, have emerged as promising candidates for ion conduction systems owing to their high surface area, tunable pore structures, and diverse functional groups. This review examines the application of COF materials in various components of lithium metal batteries, including separators, SEI layers, and solid-state electrolytes. It systematically analyzes the performance requirements and research progress of COF-based solid-state electrolytes in different cathode systems, while providing perspectives on their future development in battery technologies.

Keywords

covalent organic frameworks / high-energy density / ions transportation / lithium metal battery / solid-state electrolyte

Cite this article

Download citation ▾
Wanting Zhao, Guowei Gao, Yixi Hao, Lili Liu, Weiwei Fang, Yuping Wu. Progress and Perspectives of the Covalent Organic Frameworks in Boosting Ions Transportation for High-Energy Density Li Metal Batteries. Carbon Neutralization, 2025, 4(4): e70028 DOI:10.1002/cnl2.70028

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Li, J. Lu, Z. Chen, and K. Amine, “30 Years of Lithium-Ion Batteries,” Advanced Materials 30 (2018): 1800561.

[2]

S. Xia, J. Song, Q. Zhou, et al., “A Separator With Double Coatings of Li4Ti5O12 and Conductive Carbon for Li-S Battery of Good Electrochemical Performance,” Advanced Science 10 (2023): 2301386.

[3]

L. Rui, W. Hao, F. Qiang, et al., “Stable Li-Metal Depositon on Lithiophilic 3D CuO Nanosheet-Decorated Cu Mesh,” Journal of Inorganic Materials 35 (2020): 882.

[4]

X. Xiong, W. Yan, Y. Zhu, et al., “Li4Ti5O12 Coating on Copper Foil as Ion Redistributor Layer for Stable Lithium Metal Anode,” Advanced Energy Materials 12 (2022): 2103112.

[5]

W. Li, B. Song, and A. Manthiram, “High-Voltage Positive Electrode Materials for Lithium-Ion Batteries,” Chemical Society Reviews 46 (2017): 3006–3059.

[6]

L. Liu, C. Zhou, W. Fang, et al., “Rational Design of Ru/TiO2/CNTs as Cathode: Promotion of Cycling Performance for Aprotic Lithium-Oxygen Battery,” Energy Materials 3 (2023): 300011.

[7]

X. Peng, C. Wang, Y. Liu, et al., “Critical Advances in Re-Engineering the Cathode-Electrolyte Interface in Alkali Metal-Oxygen Batteries,” Energy Materials 1 (2022): 100011.

[8]

S. Xia, Z. Lin, B. Peng, et al., “Sustainable Release of Mg(NO3)2 From a Separator Boosts the Electrochemical Performance of Lithium Metal as an Anode for Secondary Batteries,” Energy & Environmental Science 17 (2024): 5461–5467.

[9]

W. Lee, H. Li, Z. Du, and D. Feng, “Ion Transport Mechanisms in Covalent Organic Frameworks: Implications for Technology,” Chemical Society Reviews 53 (2024): 8182–8201.

[10]

R.-R. A, R. H, S.-Q. Xu, Q. Y. Qi, and X. Zhao, “Fabricating Organic Nanotubes Through Selective Disassembly of Two-Dimensional Covalent Organic Frameworks,” Journal of the American Chemical Society 142 (2019): 70–74.

[11]

Y. Ma, Y. Wang, H. Li, et al., “Three-Dimensional Chemically Stable Covalent Organic Frameworks Through Hydrophobic Engineering,” Angewandte Chemie International Edition 59 (2020): 19633–19638.

[12]

J. Li, X. Jing, Q. Li, et al., “Bulk COFs and COF Nanosheets for Electrochemical Energy Storage and Conversion,” Chemical Society Reviews 49 (2020): 3565–3604.

[13]

D. Ongari, A. V. Yakutovich, L. Talirz, and B. Smit, “Building a Consistent and Reproducible Database for Adsorption Evaluation in Covalent–Organic Frameworks,” ACS Central Science 5 (2019): 1663–1675.

[14]

E. A. Gendy, J. Ifthikar, J. Ali, et al., “Removal of Heavy Metals by Covalent Organic Frameworks (COFs): A Review on Its Mechanism and Adsorption Properties,” Journal of Environmental Chemical Engineering 9 (2021): 105687.

[15]

S. Wei, R. Hou, Q. Zhu, et al., “Hybrid Materials Based on Covalent Organic Frameworks for Photocatalysis,” InfoMat 7 (2024): e12646.

[16]

K. Lu, T. Aung, N. Guo, R. Weichselbaum, and W. Lin, “Nanoscale Metal–Organic Frameworks for Therapeutic, Imaging, and Sensing Applications,” Advanced Materials 30 (2018): 1707634.

[17]

L. Liu, K. Ge, C. Zhou, et al., “A TEMPO-Anchored Covalent Organic Framework Towards High-Performance Lithium-Oxygen Batteries,” Chemical Engineering Journal 508 (2025): 160983.

[18]

S. Wang, Q. Wang, P. Shao, et al., “Exfoliation of Covalent Organic Frameworks Into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries,” Journal of the American Chemical Society 139 (2017): 4258–4261.

[19]

G. Zhao, H. Ma, C. Zhang, et al., “Constructing Donor–Acceptor-Linked COFs Electrolytes to Regulate Electron Density and Accelerate the Li+ Migration in Quasi-Solid-State Battery,” Nano-Micro Letters 17 (2024): 21.

[20]

X. Xu, S. Zhang, K. Xu, H. Chen, X. Fan, and N. Huang, “Janus Dione-Based Conjugated Covalent Organic Frameworks With High Conductivity as Superior Cathode Materials,” Journal of the American Chemical Society 145 (2022): 1022–1030.

[21]

Y. Wang, Q. Hao, Q. Lv, X. Shang, M. Wu, and Z. Li, “The Research Progress on COF Solid-State Electrolytes for Lithium Batteries,” Chemical Communications 60 (2024): 10046–10063.

[22]

H. Li, J. Liu, Y. Wang, et al., “Hollow Covalent Organic Framework (COF) Nanoreactors for Sustainable Photo/Electrochemical Catalysis,” Coordination Chemistry Reviews 523 (2025): 216240.

[23]

Z.-W. Yang, J.-J. Li, Y.-H. Wang, et al., “Metal/Covalent-Organic Framework-Based Biosensors for Nucleic Acid Detection,” Coordination Chemistry Reviews 491 (2023): 215249.

[24]

H. Pan, Y. Ren, Q. Wang, et al., “New Vitality of Covalent Organic Frameworks Endued by Phthalocyanine: Yesterday, Today, and Tomorrow,” Coordination Chemistry Reviews 527 (2025): 216404.

[25]

L. Goswami, A. Kushwaha, M. Shabbir, P. K. Dikshit, S. Oh, and U. Bhan, “Covalent Organic Frameworks (COFs) and COFs-Based Hybrid Architectonics: A Promising Material Platform for Organic Micropollutants Detection and Removal From Wastewater,” Coordination Chemistry Reviews 527 (2025): 216398.

[26]

A. Ozden, J. Li, S. Kandambeth, et al., “Energy- and Carbon-Efficient CO2/CO Electrolysis to Multicarbon Products via Asymmetric Ion Migration–Adsorption,” Nature Energy 8 (2023): 179–190.

[27]

X. Tian, L. Cao, K. Zhang, et al., “Molecular Weaving Towards Flexible Covalent Organic Framework Membranes for Efficient Gas Separations,” Angewandte Chemie International Edition 64 (2024): e202416864.

[28]

N. Zhou, Y. Ma, B. Hu, et al., “Construction of Ce-MOF@COF Hybrid Nanostructure: Label-Free Aptasensor for the Ultrasensitive Detection of Oxytetracycline Residues in Aqueous Solution Environments,” Biosensors and Bioelectronics 127 (2019): 92–100.

[29]

X. Wu, Z. Zhang, H. Lin, et al., “The Static and Dynamic Adsorptive Performance of a Nitrogen and Sulfur Functionalized 3D Chitosan Sponge for Mercury and Its Machine Learning Evaluation,” Carbohydrate Polymers 348 (2025): 122866.

[30]

J. Du, F. Jin, G. Jiang, X. Ma, and Z. Jin, “Surface-Active-Agent-Regulated Nano-COFs: Size Effects and Morphological Control for Enhanced Photocatalytic Hydrogen Production Performance,” Applied Catalysis B: Environment and Energy 370 (2025): 125167.

[31]

L. Huang, R. Guo, Q. Qiu, et al., “Triarylamine-Based Polyimide COFs for Achieving High Performance Ambipolar Multi-Color Electrochromic Energy-Storage Films,” Chemical Engineering Journal 497 (2024): 155018.

[32]

S. Xu, J. Wu, X. Wang, and Q. Zhang, “Recent Advances in the Utilization of Covalent Organic Frameworks (COFs) as Electrode Materials for Supercapacitors,” Chemical Science 14 (2023): 13601–13628.

[33]

G. Zhao, Y. Zhang, Z. Gao, et al., “Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Performance Li Storage,” ACS Energy Letters 5 (2020): 1022–1031.

[34]

J. Liu, H. Zhan, N. Wang, et al., “Palladium Nanoparticles on Covalent Organic Framework Supports as Catalysts for Suzuki–Miyaura Cross-Coupling Reactions,” ACS Applied Nano Materials 4 (2021): 6239–6249.

[35]

X. Zhang, S. Cheng, C. Fu, et al., “Advancements and Challenges in Organic–Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries,” Nano-Micro Letters 17 (2024): e-ISSN: 2150–5551.

[36]

S. Dong, L. Sheng, L. Wang, et al., “Challenges and Prospects of All-Solid-State Electrodes for Solid-State Lithium Batteries,” Advanced Functional Materials 33 (2023): 2304371.

[37]

L. Wang, Z. Chen, Y. Liu, Y. Li, H. Zhang, and X. He, “Safety Perceptions of Solid-State Lithium Metal Batteries,” eTransportation 16 (2023): 100239.

[38]

C. Zhang, Q. Hu, Y. Shen, and W. Liu, “Fast-Charging Solid-State Lithium Metal Batteries: A Review,” Advanced Energy and Sustainability Research 3 (2022): 2100203.

[39]

X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu, and L. Lu, “Polymer-Based Solid-State Electrolytes for High-Energy-Density Lithium-Ion Batteries – Review,” Advanced Energy Materials 13 (2023): 2301746.

[40]

D. K. Maurya, B. Bazri, P. Srivastava, et al., “Ceramic Rich Composite Electrolytes: An Overview of Paradigm Shift Toward Solid Electrolytes for High-Performance Lithium-Metal Batteries,” Advanced Energy Materials 14 (2024): 2402402.

[41]

Q. Yang, G. Li, D. Shi, et al., “Composite Solid Electrolyte With Continuous and Fast Organic–Inorganic Ion Transport Highways Created by 3D Crimped Nanofibers@Functional Ceramic Nanowires,” Small 19 (2023): 2301521.

[42]

Z. Jiang, S. Wang, X. Chen, et al., “Tape-Casting Li0.34La0.56TiO3 Ceramic Electrolyte Films Permit High Energy Density of Lithium-Metal Batteries,” Advanced Materials 32 (2019): 1906221.

[43]

A. Belous, G. Kolbasov, L. Kovalenko, E. Boldyrev, S. Kobylianska, and B. Liniova, “All Solid-State Battery Based on Ceramic Oxide Electrolytes With Perovskite and NASICON Structure,” Journal of Solid State Electrochemistry 22 (2018): 2315–2320.

[44]

S. Woo and B. Kang, “Superior Compatibilities of a LISICON-Type Oxide Solid Electrolyte Enable High Energy Density All-Solid-State Batteries,” Journal of Materials Chemistry A 10 (2022): 23185–23194.

[45]

R. Inada, S. Yasuda, M. Tojo, K. Tsuritani, T. Tojo, and Y. Sakurai, “Development of Lithium-Stuffed Garnet-Type Oxide Solid Electrolytes With High Ionic Conductivity for Application to All-Solid-State Batteries,” Frontiers in Energy Research 4 (2016): 00028.

[46]

J. Wu, S. Liu, F. Han, et al., “Lithium/Sulfide All-Solid-State Batteries Using Sulfide Electrolytes,” Advanced Materials 33 (2020): 2000751.

[47]

J. C. Bachman, S. Muy, A. Grimaud, et al., “Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction,” Chemical Reviews 116 (2015): 140–162.

[48]

M. Dirican, C. Yan, P. Zhu, and X. Zhang, “Composite Solid Electrolytes for All-Solid-State Lithium Batteries,” Materials Science and Engineering: R: Reports 136 (2019): 27–46.

[49]

X. Zhang and J. W. Fergus, “Solid Electrolytes for Lithium Batteries,” International Journal of Technology 9 (2018): 1178.

[50]

T. Wang, Q. Yu, Z. Li, et al., “The Potential of Solid-State Potassium-Ion Batteries With Polymer-Based Electrolytes,” Carbon Energy 7 (2025): e670.

[51]

A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, and O. M. Yaghi, “Porous, Crystalline, Covalent Organic Frameworks,” Science 310 (2005): 1166–1170.

[52]

Z. Li, C. Hsueh, Z. Tang, et al., “Rational Design of Imine-Linked Three-Dimensional Mesoporous Covalent Organic Frameworks With Bor Topology,” SusMat 2 (2022): 197–205.

[53]

K. Wang, B. Hou, J. Dong, H. Niu, Y. Liu, and Y. Cui, “Controlling the Degree of Interpenetration in Chiral Three-Dimensional Covalent Organic Frameworks via Steric Tuning,” Journal of the American Chemical Society 146 (2024): 21466–21475.

[54]

Q. An, H. e Wang, G. Zhao, et al., “Understanding Dual-Polar Group Functionalized COFs for Accelerating Li-Ion Transport and Dendrite-Free Deposition in Lithium Metal Anodes,” Energy & Environmental Materials 6 (2022): e12345.

[55]

Y. Zhang, X. Zhang, J. Huang, et al., “Lamellar COF Solid-State Electrolytes for Robust Ambient-Temperature Lithium-Ion Transfer Enhanced by PEI-Driven Channel Alignment,” Green Energy & Environment 10 (2024): 982–993.

[56]

G. Zhao, Z. Mei, L. Duan, et al., “COF-Based Single Li+ Solid Electrolyte Accelerates the Ion Diffusion and Restrains Dendrite Growth in Quasi-Solid-State Organic Batteries,” Carbon Energy 5 (2022): e248.

[57]

F.-F. Yang, X.-L. Wang, J. Tian, Y. Yin, and L. Liang, “Vitrification-Enabled Enhancement of Proton Conductivity in Hydrogen-Bonded Organic Frameworks,” Nature Communications 15 (2024): 3930.

[58]

Z. Zeng, J. Cheng, Y. Li, et al., “Composite Cathode for All-Solid-State Lithium Batteries: Progress and Perspective,” Materials Today Physics 32 (2023): 101009.

[59]

G.-T. Park, J.-I. Yoon, G.-H. Kim, N. Y. Park, B. C. Park, and Y. K. Sun, “Ni-Rich Cathode Materials Enabled by Cracked-Surface Protection Strategy for High-Energy Lithium Batteries,” Materials Science and Engineering: R: Reports 164 (2025): 100945.

[60]

Y. Ge, J. Li, Y. Meng, and D. Xiao, “Tuning the Structure Characteristic of the Flexible Covalent Organic Framework (COF) Meets a High Performance for Lithium-Sulfur Batteries,” Nano Energy 109 (2023): 108297.

[61]

H. Wang, J. Jiang, T. Wan, Y. Luo, G. Liu, and J. Li, “A COF-Coated Ordered Porous Framework as Multifunctional Polysulfide Barrier Towards High-Performance Lithium-Sulfur Batteries,” Journal of Colloid and Interface Science 638 (2023): 542–551.

[62]

L. P. Hou, Y. Li, Z. Li, et al., “Electrolyte Design for Improving Mechanical Stability of Solid Electrolyte Interphase in Lithium–Sulfur Batteries,” Angewandte Chemie International Edition 62 (2023): e202305466.

[63]

K. Zhou, X. Dai, L. Zhang, et al., “Enhancing Stability and Safety of Commercial Solid-State Lithium Batteries Through Ternary Eutectic Solvents for Solid-State Electrolyte Interface Modification,” Advanced Energy Materials 15 (2024): 2402782.

[64]

W. Li, S. Han, C. Xiao, et al., “High-Voltage Single-Ion Covalent Organic Framework Electrolytes Enabled by Nitrile Migration Ladders for Lithium Metal Batteries,” Angewandte Chemie International Edition 63 (2024): e202410392.

[65]

J. Song, S. Xia, N. Wang, et al., “A Separator With Double Layers Individually Modified by LiAlO2 Solid Electrolyte and Conductive Carbon for High-Performance Lithium–Sulfur Batteries,” Advanced Materials 37 (2024): 2418295.

[66]

L. Bi, J. Xiao, Y. Song, et al., “Sulfhydryl-Functionalized COF-Based Electrolyte Strengthens Chemical Affinity Toward Polysulfides in Quasi-Solid-State Li-S Batteries,” Carbon Energy 6 (2024): e544.

[67]

Y. Zhao, Y. Han, and Y. Yu, “Design of Electronic Conductive Covalent-Organic Frameworks and Their Opportunities in Lithium Batteries,” Chemical Engineering Journal 497 (2024): 154997.

[68]

C. Zhou, K. Lu, S. Zhou, et al., “Strategies Toward Anode Stabilization in Nonaqueous Alkali Metal–Oxygen Batteries,” Chemical Communications 58 (2022): 8014–8024.

[69]

L. Liu, Y. Liu, C. Wang, et al., “Li2O2 Formation Electrochemistry and Its Influence on Oxygen Reduction/Evolution Reaction Kinetics in Aprotic Li–O2 Batteries,” Small Methods 6 (2021): 2101280.

[70]

H. Shen, E. Yi, S. Heywood, et al., “Scalable Freeze-Tape-Casting Fabrication and Pore Structure Analysis of 3D LLZO Solid-State Electrolytes,” ACS Applied Materials & Interfaces 12 (2019): 3494–3501.

[71]

C. Niu, W. Luo, C. Dai, C. Yu, and Y. Xu, “High-Voltage-Tolerant Covalent Organic Framework Electrolyte With Holistically Oriented Channels for Solid-State Lithium Metal Batteries With Nickel-Rich Cathodes,” Angewandte Chemie International Edition 60 (2021): 24915–24923.

[72]

W. Gong, Y. Ouyang, S. Guo, et al., “Covalent Organic Framework With Multi-Cationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in All-Solid-State Batteries,” Angewandte Chemie International Edition 62 (2023): e202302505.

[73]

G. Feng, Q. Ma, D. Luo, et al., “Designing Cooperative Ion Transport Pathway in Ultra-Thin Solid-State Electrolytes Toward Practical Lithium Metal Batteries,” Angewandte Chemie International Edition 64 (2024): e202413306.

[74]

K. Jeong, S. Park, G. Y. Jung, et al., “Solvent-Free, Single Lithium-Ion Conducting Covalent Organic Frameworks,” Journal of the American Chemical Society 141 (2019): 5880–5885.

[75]

Z. Li, Z. W. Liu, Z. Li, et al., “Defective 2D Covalent Organic Frameworks for Postfunctionalization,” Advanced Functional Materials 30 (2020): 1909267.

[76]

Z. Shan, M. Wu, Y. Du, et al., “Covalent Organic Framework-Based Electrolytes for Fast Li+ Conduction and High-Temperature Solid-State Lithium-Ion Batteries,” Chemistry of Materials 33 (2021): 5058–5066.

[77]

T. Liu, Y. Zhong, Z. Yan, et al., “Fabrication of Scalable Covalent Organic Framework Membrane-Based Electrolytes for Solid-State Lithium Metal Batteries,” Angewandte Chemie International Edition 63 (2024): e202411535.

[78]

K. L. Loo, J. W. Ho, C.-H. Chung, M. W. Moon, and P. J. Yoo, “Ion-Transporting Channel-Embedded MOF-in-COF Structures as Composite Quasi-Solid Electrolytes With Highly Enhanced Electrochemical Properties,” Journal of Materials Chemistry A 12 (2024): 7875–7885.

[79]

J. Xu, S. An, X. Song, et al., “Towards High Performance Li–S Batteries via Sulfonate-Rich COF-Modified Separator,” Advanced Materials 33 (2021): 2105178.

[80]

W. Wang, Z. Yang, Y. Zhang, et al., “Highly Stable Lithium Metal Anode Enabled by Lithiophilic and Spatial-Confined Spherical-Covalent Organic Framework,” Energy Storage Materials 46 (2022): 374–383.

[81]

J. Zhang, B. Hu, A. Zhu, et al., “Single-Ion-Conducted Covalent Organic Framework Serving as Li-Ion Pump in Polyethylene Oxide-Based Electrolyte for Robust Solid-State Li–S Batteries,” Journal of Colloid and Interface Science 678 (2025): 105–113.

[82]

X.-X. Wang, X.-W. Chi, M.-L. Li, D. H. Guan, C. L. Miao, and J. J. Xu, “An Integrated Solid-State Lithium-Oxygen Battery With Highly Stable Anionic Covalent Organic Frameworks Electrolyte,” Chem 9 (2023): 394–410.

[83]

W. Gong, Y. Ouyang, S. Guo, et al., “Covalent Organic Framework With Multi-Cationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in All-Solid-State Batteries,” Angewandte Chemie International Edition 62 (2023): e202302505.

[84]

S. Zheng, Y. Fu, S. Bi, et al., “Three-Dimensional Covalent Organic Framework With Dense Lithiophilic Sites as Protective Layer to Enable High-Performance Lithium Metal Battery,” Angewandte Chemie International Edition 64 (2024): e202417973.

[85]

W. Qin, D. Han, X. Zhang, et al., “Redox-Active Metal-Covalent Organic Frameworks for Dendrite-Free Lithium Metal Batteries,” Advanced Materials 37 (2025): 2418638.

[86]

Y. Zhang, J. Duan, D. Ma, et al., “Three-Dimensional Anionic Cyclodextrin-Based Covalent Organic Frameworks,” Angewandte Chemie International Edition 56 (2017): 16313–16317.

[87]

Q. Wu and Y. Qi, “Revealing Heterogeneous Electric Double Layer (EDL) Structures of Localized High-Concentration Electrolytes (LHCEs) and Their Impact on Solid–Electrolyte Interphase (SEI) Formation in Lithium Batteries,” Energy & Environmental Science 18 (2025): 3036–3046.

[88]

B. Hao, W. Chen, J. Wu, Z. Jiang, X. Chen, and Z. Jiang, “Long-Term Cycling Stability and Dendrite Suppression in Garnet-Type Solid-State Lithium Batteries via Plasma-Induced Artificial SEI Layer Formation,” Advanced Functional Materials (2025): 2502429, https://doi.org/10.1002/adfm.202502429.

[89]

Y. Xu, Y. Zhang, H. Zhao, et al., “Inside Front Cover: Optimizing the Selectivity of CH4 Electrosynthesis From CO2 over Cuprates Through Cu─O Bond Length Descriptor (Angew. Chem. Int. Ed. 24/2025),” Angewandte Chemie International Edition 64 (2025): e202422040.

[90]

X. Wang, D. Zhai, H. Xie, et al., “H3PO4-Impregnated Covalent Organic Framework Membrane on Separators to Prevent Lithium Metal Anode Dendrite Growth,” ACS Applied Materials & Interfaces 16 (2024): 54539–54547.

[91]

P. Zhao, Y. Zhang, B. Sun, et al., “Enhancing Anion-Selective Catalysis for Stable Lithium Metal Pouch Cells Through Charge,” Angewandte Chemie 63 (2024): e202317016.

[92]

K. Wang, X. Qiao, H. Ren, Y. Chen, and Z. Zhang, “Industrialization of Covalent Organic Frameworks,” Journal of the American Chemical Society 147 (2025): 8063–8082.

[93]

H. Wang, X.-M. Lu, Y. Sun, et al., “Intramolecular Dual Donor-Acceptor Featured Covalent Organic Frameworks Enabled by Gating Effects for Ultra-Stable Na-Metal Batteries,” Angewandte Chemie International Edition (2025): e202508503, https://doi.org/10.1002/anie.202508503.

[94]

Y. Li, M. Liu, J. Wu, J. Li, X. Yu, and Q. Zhang, “Highly Stable β-ketoenamine-based Covalent Organic Frameworks (COFs): Synthesis and Optoelectrical Applications,” Frontiers of Optoelectronics 15 (2022): 38.

[95]

F. Meng, S. Bi, Z. Sun, et al., “Synthesis of Ionic Vinylene-Linked Covalent Organic Frameworks Through Quaternization-Activated Knoevenagel Condensation,” Angewandte Chemie International Edition 60 (2021): 13614–13620.

[96]

W. Jiang, J. Zhou, X. Zhong, et al., “Axial Alignment of Covalent Organic Framework Membranes for Giant Osmotic Energy Harvesting,” Nature Sustainability 8 (2025): 446–455.

[97]

W. Meng, S. Chen, Z. Guo, et al., “Three-Dimensional Cationic Covalent Organic Framework Membranes for Rapid and Selective Lithium Extraction From Saline Water,” Nature Water 3 (2025): 191–200.

[98]

C. A. Reyes, A. Karr, C. A. Ramsperger, A. K, H. J. Lee, and E. Picazo, “Compartmentalizing Donor–Acceptor Stenhouse Adducts for Structure–Property Relationship Analysis,” Journal of the American Chemical Society 147 (2024): 10–26.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/