Quasi/All Solid-State Electrolytes for Lithium–Carbon Dioxide Batteries

Zehui Zhao , Xu Xiao , Zhuojun Zhang , Aijing Yan , Yasen Hao , Tenghui Qiu , Peng Tan

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (4) : e70026

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (4) :e70026 DOI: 10.1002/cnl2.70026
PERSPECTIVE

Quasi/All Solid-State Electrolytes for Lithium–Carbon Dioxide Batteries

Author information +
History +
PDF

Abstract

The lithium–carbon dioxide (Li–CO2) battery is an important solution for addressing carbon dioxide emissions and is regarded as a promising power source for Mars exploration. In the semi-open system of Li–CO2 batteries, traditional liquid electrolytes face issues such as leakage and volatilization. Over the past decade, this technology has undergone rapid development in terms of quasi/all solid-state electrolyte technology and cathode design. Here, three basic types of quasi/all solid-state electrolytes are introduced, and an in-depth summary of the latest progress is provided. Future research and development trends for solid-state Li–CO2 batteries are also proposed. This study aims to provide references for the development of solid-state Li–CO2 batteries and other metal-gas batteries.

Keywords

development directions / lithium anode / lithium–carbon dioxide batteries / solid-state electrolytes

Cite this article

Download citation ▾
Zehui Zhao, Xu Xiao, Zhuojun Zhang, Aijing Yan, Yasen Hao, Tenghui Qiu, Peng Tan. Quasi/All Solid-State Electrolytes for Lithium–Carbon Dioxide Batteries. Carbon Neutralization, 2025, 4(4): e70026 DOI:10.1002/cnl2.70026

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Xiao, Z. Zhang, and P. Tan, “Unveiling the Mysteries of Operating Voltages of Lithium-Carbon Dioxide Batteries,” Proceedings of the National Academy of Sciences of the United States of America 120 (2023): e2217454120.

[2]

Y. Qiao, J. Yi, S. Wu, et al., “Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage,” Joule 1 (2017): 359–370.

[3]

Z. Lian, Y. Lu, S. Ma, L. Wang, Z. Li, and Q. Liu, “An Integrated Strategy for Upgrading Li-CO2 Batteries: Redox Mediator and Separator Modification,” Chemical Engineering Journal 450 (2022): 138400.

[4]

L. Wang, Y. Lu, S. Ma, et al., “Optimizing CO2 Reduction and Evolution Reaction Mediated by o-Phenylenediamine Toward High Performance Li-CO2 Battery,” Electrochimica Acta 419 (2022): 140424.

[5]

Y. Jiao, J. Qin, H. M. K. Sari, D. Li, X. Li, and X. Sun, “Recent Progress and Prospects of Li-CO2 Batteries: Mechanisms, Catalysts and Electrolytes,” Energy Storage Materials 34 (2021): 148–170.

[6]

A. K. Chourasia, M. Shavez, K. M. Naik, C. Bongu, and C. S. Sharma, “Candle Soot Nanoparticles Versus Multiwalled Carbon Nanotubes as a High-Performance Cathode Catalyst for Li–CO2 Mars Batteries for Mars Exploration,” ACS Applied Energy Materials 6 (2023): 378–386.

[7]

A. Maurel, A. C. Martinez, D. A. Dornbusch, et al., “What Would Battery Manufacturing Look Like on the Moon and Mars,” ACS Energy Letters 8 (2023): 1042–1049.

[8]

K. Takechi, T. Shiga, and T. Asaoka, “A Li–O2/CO2 Battery,” Chemical Communications 47 (2011): 3463–3465.

[9]

S. Xu, S. K. Das, and L. A. Archer, “The Li–CO2 Battery: A Novel Method for CO2 Capture and Utilization,” RSC Advances 3 (2013): 6656–6660.

[10]

L. Chen, J. Zhou, J. Zhang, G. Qi, B. Wang, and J. Cheng, “Copper Indium Sulfide Enables Li-CO2 Batteries With Boosted Reaction Kinetics and Cycling Stability,” Energy & Environmental Materials 6 (2023): e12415.

[11]

S. Yang, Y. Qiao, P. He, et al., “A Reversible lithium–CO2 battery With Ru Nanoparticles as a Cathode Catalyst,” Energy & Environmental Science 10 (2017): 972–978.

[12]

K. Németh and G. Srajer, “CO2/oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal–Air Type Rechargeable Batteries,” RSC Advances 4 (2014): 1879–1885.

[13]

J. Xie, Q. Liu, Y. Huang, M. Wu, and Y. Wang, “A Porous Zn Cathode for Li–CO2 Batteries Generating Fuel-Gas CO,” Journal of Materials Chemistry A 6 (2018): 13952–13958.

[14]

Y. Qiao, J. Yi, S. Wu, et al., “Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage,” Joule 1 (2017): 359–370.

[15]

R. Wang, X. Zhang, Y. Cai, Q. Nian, Z. Tao, and J. Chen, “Safety-Reinforced Rechargeable Li-CO2 Battery Based on a Composite Solid State Electrolyte,” Nano Research 12 (2019): 2543–2548.

[16]

X. Li, J. Zhang, G. Qi, J. Cheng, and B. Wang, “Vertically Aligned N-Doped Carbon Nanotubes Arrays as Efficient Binder-Free Catalysts for Flexible Li-CO2 Batteries,” Energy Storage Materials 35 (2021): 148–156.

[17]

Y. F. Wang, L. N. Song, L. J. Zheng, Y. Wang, J. Y. Wu, and J. J. Xu, “Reversible Carbon Dioxide/Lithium Oxalate Regulation toward Advanced Aprotic Lithium Carbon Dioxide Battery,” Angewandte Chemie International Edition 63 (2024): e202400132.

[18]

J. Wu, L. Yuan, Z. Li, X. Xie, and Y. Huang, “Air-Stable Means More: Designing Air-Defendable Lithium Metals for Safe and Stable Batteries,” Materials Horizons 7 (2020): 2619–2634.

[19]

Y. Du, Y. Liu, S. Yang, et al., “A Rechargeable All-Solid-State Li–CO2 battery Using a Li1.5Al0.5Ge1.5(PO4)3 ceramic Electrolyte and Nanoscale RuO2 catalyst,” Journal of Materials Chemistry A 9 (2021): 9581–9585.

[20]

K. V. Savunthari, C. H. Chen, Y. R. Chen, et al., “Effective Ru/CNT Cathode for Rechargeable Solid-State Li–CO2 Batteries,” ACS Applied Materials & Interfaces 13 (2021): 44266–44273.

[21]

D. Na, H. Jeong, J. Baek, et al., “Highly Safe and Stable Li–CO2 Batteries Using Conducting Ceramic Solid Electrolyte and MWCNT Composite Cathode,” Electrochimica Acta 419 (2022): 140408.

[22]

D. H. Guan, X. X. Wang, F. Li, et al., “All-Solid-State Photo-Assisted Li-CO2 Battery Working at an Ultra-Wide Operation Temperature,” ACS Nano 16 (2022): 12364–12376.

[23]

S. Wang, K. Xu, H. Song, et al., “A High-Energy Long-Cycling Solid-State Lithium-Metal Battery Operating at High Temperatures,” Advanced Energy Materials 12 (2022): 2201866.

[24]

D. Na, R. K. Kampara, D. Yu, B. Yoon, S. W. Martin, and I. Seo, “Li1.4Al0.4Ti1.6(PO4)3 Inorganic Solid Electrolyte for All-Solid-State Li–CO2 Batteries With MWCNT and Ru Nanoparticle Catalysts,” Materials Today Energy 38 (2023): 101418.

[25]

Q. C. Zhu, J. Ma, J. H. Huang, D. Y. Mao, and K. X. Wang, “Realizing Long-Cycling Solid-State Li–CO2 Batteries Using Zn-Doped LATP Ceramic Electrolytes,” Chemical Engineering Journal 482 (2024): 148977.

[26]

B. Yoon, J. Baek, D. Na, et al., “Li1.4Al0.4Ge0.1Ti1.5(PO4)3: A Stable Solid Electrolyte for Li-CO2 Batteries,” Materials Chemistry and Physics 322 (2024): 129583.

[27]

D. Na, D. Yu, H. Kim, B. Yoon, D. D. Lee, and I. Seo, “Enhancing the Performance and Stability of Li-CO2 Batteries Through LAGTP Solid Electrolyte and MWCNT/Ru Cathode Integration,” Nanomaterials 14 (2024): 1894.

[28]

C. Li, Z. Guo, B. Yang, Y. Liu, Y. Wang, and Y. Xia, “A Rechargeable Li-CO2 Battery With a Gel Polymer Electrolyte,” Angewandte Chemie International Edition 56 (2017): 9126–9130.

[29]

J. Zhou, X. Li, C. Yang, et al., “A Quasi-Solid-State Flexible Fiber-Shaped Li–CO2 Battery With Low Overpotential and High Energy Efficiency,” Advanced Materials 31 (2019): 1804439.

[30]

L. Song, C. Hu, Y. Xiao, et al., “An Ultra-Long Life, High-Performance, Flexible Li–CO2 Battery Based on Multifunctional Carbon Electrocatalysts,” Nano Energy 71 (2020): 104595.

[31]

S. Zhang, X. Liu, Y. Feng, et al., “Protecting Li-Metal Anode With Ethylenediamine-Based Layer and In-situ Formed Gel Polymer Electrolyte to Construct the High-Performance Li–CO2 Battery,” Journal of Power Sources 506 (2021): 230226.

[32]

L. Chen, J. Zhou, Y. Wang, et al., “Flexible, Stretchable, Water-/Fire-Proof Fiber-Shaped Li-CO2 Batteries With High Energy Density,” Advanced Energy Materials 13 (2023): 2202933.

[33]

L. Liu, Y. Qin, H. Zhao, et al., “Suppression of CO2 Induced Lithium Anode Corrosion by Fluorinated Functional Group in Quasi-Solid Polymer Electrolyte Enabling Long-Cycle and High-Safety Li-CO2 Batteries,” Energy Storage Materials 57 (2023): 260–268.

[34]

X. Hu, Z. Li, and J. Chen, “Flexible Li-CO2 Batteries With Liquid-Free Electrolyte,” Angewandte Chemie 129 (2017): 5879–5883.

[35]

M. Mushtaq, X. W. Guo, J. P. Bi, Z. X. Wang, and H. J. Yu, “Polymer Electrolyte With Composite Cathode for Solid-State Li–CO2 Battery,” Rare Metals 37 (2018): 520–526.

[36]

J. Zhao, Y. Wang, H. Zhao, et al., “Enabling All-Solid-State Lithium–Carbon Dioxide Battery Operation in a Wide Temperature Range,” ACS Nano 18 (2024): 5132–5140.

[37]

D. H. Guan, X. X. Wang, C. L. Miao, et al., “Host–Guest Interactions of Metal–Organic Framework Enable Highly Conductive Quasi-Solid-State Electrolytes for Li–CO2 Batteries,” ACS Nano 18 (2024): 34299–34311.

[38]

J. Lai, Y. Xing, N. Chen, L. Li, F. Wu, and R. Chen, “Electrolytes for Rechargeable Lithium–Air Batteries,” Angewandte Chemie International Edition 59 (2020): 2974–2997.

[39]

D. Yu, D. Na, H. Kim, D. I. Son, D. D. Lee, and I. Seo, “Si-Doped Nasicon-Type Li1.4Al0.4Ti1.6(PO4)3 Solid Electrolytes for Enhanced Stability and Performance of Li-CO2 Batteries,” Journal of Alloys and Compounds 1010 (2025): 177722.

[40]

J. Wang, T. He, X. Yang, et al., “Design Principles for NASICON Super-Ionic Conductors,” Nature Communications 14 (2023): 5210.

[41]

M. Giarola, A. Sanson, F. Tietz, et al., “Structure and Vibrational Dynamics of NASICON-Type LiTi2(PO4)3,” Journal of Physical Chemistry C 121 (2017): 3697–3706.

[42]

Z. Zhang, Y. Shao, B. Lotsch, et al., “New Horizons for Inorganic Solid State Ion Conductors,” Energy & Environmental Science 11 (2018): 1945–1976.

[43]

X. Zhang, T. Liu, S. Zhang, et al., “Synergistic Coupling Between Li6.75La3Zr1.75Ta0.25O12 and Poly(Vinylidene Fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes,” Journal of the American Chemical Society 139 (2017): 13779–13785.

[44]

N. Meng, F. Lian, and G. Cui, “Macromolecular Design of Lithium Conductive Polymer as Electrolyte for Solid-State Lithium Batteries,” Small 17 (2021): 2005762.

[45]

K. M. Abraham and Z. Jiang, “A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery,” Journal of the Electrochemical Society 143 (1996): 1–5.

[46]

A. Arya and A. L. Sharma, “Insights Into the Use of Polyethylene Oxide In Energy Storage/Conversion Devices: A Critical Review,” Journal of Physics D: Applied Physics 50 (2017): 443002.

[47]

W. Zhang, H. Enriquez, Y. Tong, et al., “Blue Phosphorene: Epitaxial Synthesis of Blue Phosphorene,” Small 14 (2018): 1800821.

[48]

P. Hu, J. Chai, Y. Duan, Z. Liu, G. Cui, and L. Chen, “Progress in Nitrile-Based Polymer Electrolytes for High Performance Lithium Batteries,” Journal of Materials Chemistry A 4 (2016): 10070–10083.

[49]

T. Liu, Z. Chang, Y. Yin, K. Chen, Y. Zhang, and X. Zhang, “The PVDF-HFP Gel Polymer Electrolyte for Li-O2 Battery,” Solid State Ionics 318 (2018): 88–94.

[50]

H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal, and Y. Yang, “A Flexible Solid Composite Electrolyte With Vertically Aligned and Connected Ion-Conducting Nanoparticles for Lithium Batteries,” Nano Letters 17 (2017): 3182–3187.

[51]

Z. Lin, Q. Yao, S. Yang, et al., “Highly Safe All-Solid-State Lithium Metal Battery Enabled by Interface Thermal Runaway Regulation Between Lithium Metal and Solid-State Electrolyte,” Advanced Functional Materials 1 (2025): e2424110.

[52]

Y. Cheng, Y. Wang, B. Chen, et al., “Routes to Bidirectional Cathodes for Reversible Aprotic Alkali Metal-CO2 Batteries,” Advanced Materials 36 (2024): e2410704.

[53]

W. Ma, M. Gao, J. Ma, et al., “Transition Metal-Based Cathode Catalysts for Li-CO2 Batteries,” Journal of Energy Chemistry 104 (2025): 225–253.

[54]

Y. Xu, Z. Xu, S. Y. Lee, and Z. S. Wu, “Recent Progress and Perspectives on Highly-Safe and Energy-Dense Solid-State Li-CO2 Batteries,” Science Bulletin 70 (2025): 135–139.

[55]

L. Luo, B. Liu, S. Song, W. Xu, J. G. Zhang, and C. Wang, “Revealing the Reaction Mechanisms of Li–O2 Batteries Using Environmental Transmission Electron Microscopy,” Nature Nanotechnology 12 (2017): 535–539.

[56]

M. Olivares-Marín, A. Sorrentino, R. C. Lee, E. Pereiro, N. L. Wu, and D. Tonti, “Spatial Distributions of Discharged Products of Lithium–Oxygen Batteries Revealed by Synchrotron X-Ray Transmission Microscopy,” Nano Letters 15 (2015): 6932–6938.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/