MnO2 Nanoflower Intercalation on Ti3C2Tx MXene With Expanded Interlayer Spacing for Flexible Asymmetric Supercapacitors

Yi Zhang , Can Tang , Shun Lu , Yi Zeng , Qingsong Hua , Yongxing Zhang

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (3) : e70006

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (3) :e70006 DOI: 10.1002/cnl2.70006
RESEARCH ARTICLE

MnO2 Nanoflower Intercalation on Ti3C2Tx MXene With Expanded Interlayer Spacing for Flexible Asymmetric Supercapacitors

Author information +
History +
PDF

Abstract

Supercapacitors are promising energy storage solutions known for their high-power density, fast charge–discharge rates, and long cycle life. Recently, Ti3C2Tx MXene, a member of the 2D MXene family, has emerged as a potential electrode material for supercapacitors. However, its limited interlayer spacing hinders broader applications. In this study, we introduce a novel δ-MnO2@MXene heterostructure with expanded interlayer spacing, synthesized using a hydrothermal approach. This design enhances charge transfer efficiency and improves the contact between the components, significantly boosting supercapacitor performance. The unique nanoflower-like structure of δ-MnO2 combined with MXene substantially improves capacitance retention and ion diffusion, surpassing the performance of each individual material. The sponge-like architecture of δ-MnO2 increases accessible charge storage sites and widens the interlayer gaps in MXene, facilitating better ion migration. As a result, the δ-MnO2@MXene electrode exhibits a capacitance 54 times greater than MXene alone (2.0 F g-1), an impressive rate capability of 67.3% (after a 20-fold increase in current density), and exceptional cycling stability, maintaining 93% of its capacity after 10,000 cycles. This novel δ-MnO2@MXene heterostructure significantly enhances electrochemical performance, making it a promising candidate for advanced energy storage applications.

Keywords

heterostructure / interlayer spacing / MXene / supercapacitor / δ-MnO2

Cite this article

Download citation ▾
Yi Zhang, Can Tang, Shun Lu, Yi Zeng, Qingsong Hua, Yongxing Zhang. MnO2 Nanoflower Intercalation on Ti3C2Tx MXene With Expanded Interlayer Spacing for Flexible Asymmetric Supercapacitors. Carbon Neutralization, 2025, 4(3): e70006 DOI:10.1002/cnl2.70006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Wang, L. N. Peng, B. W. Deng, et al. “Cellulose Degradation of Cottonseed Meal Derived Porous Carbon for Supercapacitor,” Fuel 357 (2024): 129653.

[2]

S. Khan, M. Usman, M. Abdullah, et al., “Facile Synthesis of CuAl2O4/rGO Nanocomposite via the Hydrothermal Method for Supercapacitor Applications,” Fuel 357 (2024): 129688.

[3]

G. Qin, C. F. Wu, X. Y. Song, et al. “Multifunctional Enhanced Energy Density Integrated Supercapacitor Based on Self-healing Redox-Mediated Gel Polymer Electrolyte,” Fuel 357 (2024): 129653.

[4]

C. Xia, T. Ren, R. Darabi, et al., “Spotlighting the Boosted Energy Storage Capacity of CoFe2O4/Graphene Nanoribbons: A Promising Positive Electrode Material for High-Energy-Density Asymmetric Supercapacitor,” Energy 270 (2023): 126914.

[5]

A. Afir, S. M. H. Rahman, A. T. Azad, J. Zaini, M. A. Islan, and A. Azad. “Advanced Materials and Technologies for Hybrid Supercapacitors for Energy Storage -A Review,” Journal of Energy Storage 25 (2019): 24.

[6]

S. Park, S. H. Choi, J. M. Kim, et al. “Nanoarchitectonics of MXene Derived TiO2/Graphene With Vertical Alignment for Achieving the Enhanced Supercapacitor Performance,” Small 12 (2023): 202305311.

[7]

B. Ranjan and D. Kaur. “Pseudocapacitive Storage in Molybdenum Oxynitride Nanostructures Reactively Sputtered on Stainless-Steel Mesh Towards an All-Solid-State Flexible Supercapacitor,” Small 17 (2023): 202307723.

[8]

Y. Wang and Y. Wang, “MXene Ink Printing of High-Performance Micro-Supercapacitors,” Carbon Neutralization 3 (2024): 798–817.

[9]

M. Wang, K. Torbensen, D. Salvatore, et al., “CO2 Electrochemical Catalytic Reduction With a Highly Active Cobalt Phthalocyanine,” Nature Communications 10 (2019): 3602.

[10]

D. Wei, L. Zhang, Y. Wang, et al., “Recent Progress on Construction and Applications of Metal-Organic Frameworks-Based Materials for Lithium-Ion Batteries and Supercapacitors,” Carbon Neutralization 3, no. 3 (2024): 396–414.

[11]

J. L. Sun, B. C. Luo, and H. X. Li. “A Review on the Conventional Capacitors, Supercapacitors, and Emerging Hybrid Ion Capacitors: Past, Present, and Future,” Advance Energy and Sustainability Research 3 (2022): 2100191.

[12]

J. Kundu, T. Kwon, K. Lee, and S.-I. Choi, “Exploration of Metal-Free 2D Electrocatalysts Toward the Oxygen Electroreduction,” Exploration 4 (2024): 20220174.

[13]

Y. Zhang, J. Xu, S. Lu, et al., “Engineering Few-Layer MoS2 and rGO Heterostructure Composites for High-Performance Supercapacitors,” Advanced Composites and Hybrid Materials 8 (2025): 108.

[14]

L. Ma, T. C. Zhao, F. Xu, T. T. You, and X. M. Zhang. “A Dual Utilization Strategy of Lignosulfonate for MXene Asymmetric Supercapacitor With High Area Energy Density,” Chemical Engineering Journal 405 (2021): 126694.

[15]

C. Tang, Y. Zhang, S. Lu, Y. Zeng, Q. Hua, and Y. Zhang, “Vertical β-MnO2@δ-MnO2 Core–Shell Heterostructures With Superior Cycling Stability for All-in-One Flexible Supercapacitors,” ACS Applied Nano Materials 8 (2025): 1568–1576.

[16]

K. Nasrin, V. Sudharshan, K. Subramani, M. Karnan, and M. Sathish, “In-Situ Synergistic 2D/2D MXene/BCN Heterostructure for Superlative Energy Density Supercapacitor With Super-Long Life,” Small 18 (2022): 2106051.

[17]

K. Ghosh, S. Ng, P. Lazar, A. K. K. Padinjareveetil, J. Michalička, and M. Pumera. Advanced Functional Materials 34 (2023): 2308793.

[18]

W. X. Cheng, J. M. Fu, H. B. Hu, and D. Ho. “Interlayer Structure Engineering of MXene-Based Capacitor-Type Electrode for Hybrid Micro-Supercapacitor toward Battery-Level Energy Density,” Advanced Science 8 (2021): 2100775.

[19]

H. Q. Pan, Y. Huang, X. N. Cen, et al. “Hollow Carbon and MXene Dual-Reinforced MoS2 With Enlarged Interlayers for High-Rate and High-Capacity Sodium Storage Systems,” Advanced Science 11 (2024): 2400364.

[20]

A. Mohammadi, N. Arsalani, A. G. Tabrizi, S. E. Moosavifard, Z. Naqshbandi, and L. S. Ghadimi, “Engineering rGO-CNT Wrapped Co3S4 Nanocomposites for High-Performance Asymmetric Supercapacitors,” Chemical Engineering Journal 334 (2018): 66–80.

[21]

J. Zhao, Z. Ma, C. Qiao, Y. Fan, X. Qin, and G. Shao, “Spectroscopic Monitoring of the Electrode Process of MnO2@rGO Nanospheres and Its Application in High-Performance Flexible Micro-Supercapacitors,” ACS Applied Materials & Interfaces 14 (2022): 34686–34696.

[22]

F. Alotaibi, T. T. Tung, M. J. Nine, et al., “Scanning Atmospheric Plasma for Ultrafast Reduction of Graphene Oxide and Fabrication of Highly Conductive Graphene Films and Patterns,” Carbon 127 (2018): 113–121.

[23]

D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, “Mechanical Properties of Graphene and Graphene-Based Nanocomposites,” Progress in Materials Science 90 (2017): 75–127.

[24]

S. Rui, Z. Li, L. Meng, et al., “Citric Acid and Plasma Treated MoS2 for High-Performance Supercapacitors,” Journal of Materials Chemistry C 13 (2025): 849–857.

[25]

Y. Zhou, K. Maleski, B. Anasori, et al., “Ti3C2Tx MXene-Reduced Graphene Oxide Composite Electrodes for Stretchable Supercapacitors,” ACS Nano 14 (2020): 3576–3586.

[26]

Y. B. Wang, N. J. Chen, Y. Liu, et al. “MXene/Graphdiyne Nanotube Composite Films for Free-Standing and Flexible Solid-State Supercapacitor,” Chemical Engineering Journal 450 (2022): 138398.

[27]

S. Zhang, H. Liu, B. Cao, et al., “An MXene/CNTs@P Nanohybrid With Stable Ti–O–P Bonds for Enhanced Lithium Ion Storage,” Journal of Materials Chemistry A 7 (2019): 21766–21773.

[28]

C. Wang, H. J. Bongard, C. Weidenthaler, Y. Wu, and F. Schüth, “Design and Application of a High-Surface-Area Mesoporous δ-MnO2 Electrocatalyst for Biomass Oxidative Valorization,” Chemistry of Materials 34 (2022): 3123–3132.

[29]

B. Li, Y. Chu, B. Xie, et al., “Improving the Intrinsic Conductivity of δ-MnO2 by Indium Doping for High-Performance Neutral Aqueous Sodium-Ion Supercapacitors With Commercial-Level Mass-Loading,” Journal of Materials Chemistry A 11 (2023): 2133–2144.

[30]

J. L. Yu, M. L. Zeng, J. Zhou, et al. “A one-pot Synthesis of Nitrogen Doped Porous Mxene/TiO2 Heterogeneous Film for High-Performance Flexible Energy Storage,” Chemical Engineering Journal 426 (2021): 130765.

[31]

Y. M. Wang, X. Wang, X. L. Li, et al. “Intercalating Ultrathin MoO3 Nanobelts Into MXene Film With Ultrahigh Volumetric Capacitance and Excellent Deformation for High-Energy-Density Devices,” Nano-Micro Letters 12 (2020): 115.

[32]

B. Sun, H. Lv, Z. Liu, et al., “Co3O4@PEI/Ti3C2Tx MXene Nanocomposites for a Highly Sensitive NOx Gas Sensor With a Low Detection Limit,” Journal of Materials Chemistry A 9 (2021): 6335–6344.

[33]

Y. J. Luo, Y. Tang, X. Q. Bin, C. J. Xia, and W. X. Que. “3D Porous Compact 1D/2D Fe2O3/MXene Composite Aerogel Film Electrodes for All-Solid-State Supercapacitors,” Small 18 (2022): 2204917.

[34]

M. U. Khalid, K. M. Katubi, S. Zulfiqar, et al., “Boosting the Electrochemical Activities of MnO2 for Next-Generation Supercapacitor Application: Adaptation of Multiple Approaches,” Fuel 343 (2023): 127946.

[35]

Y. L. Huang and S. W. Bian, “Vacuum-Filtration Assisted Layer-by-Layer Strategy to Design MXene/Carbon nanotube@MnO2 all-in-one Supercapacitors,” Journal of Materials Chemistry A 9 (2021): 21347–21356.

[36]

K. Z. Huang and H. Zhang, “Direct Electron-Transfer-Based Peroxymonosulfate Activation by Iron-Doped Manganese Oxide (δ-MnO2) and the Development of Galvanic Oxidation Processes (GOPs),” Environmental Science & Technology 53 (2019): 12610–12620.

[37]

J. L. Liu, J. Wang, C. H. Xu, et al. “Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design,” Advanced Science 5 (2018): 1700322.

[38]

H. S. Kim, J. B. Cook, H. Lin, et al., “Oxygen Vacancies Enhance Pseudocapacitive Charge Storage Properties of MoO3−x,” Nature Materials 16 (2017): 454–460.

[39]

M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, and M. W. Barsoum, “Conductive Two-Dimensional Titanium Carbide ‘Clay’ With High Volumetric Capacitance,” Nature 516 (2014): 78-U171.

[40]

T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, “Ordered Mesoporous α-MoO3 With Iso-Oriented Nanocrystalline Walls for Thin-Film Pseudocapacitors,” Nature Materials 9 (2010): 146–151.

[41]

J. L. Yu, W. B. Lu, J. P. Smith, et al. “A High Performance Stretchable Asymmetric Fiber-shaped Supercapacitor With a Core-Sheath Helical Structure,” Advanced Energy Materials 7 (2017): 1600976.

[42]

H. H. Zhang, J. Wei, Y. Yan, et al. “Facile and Scalable Fabrication of MnO2 Nanocrystallines and Enhanced Electrochemical Performance of MnO2/MoS2 Inner Heterojunction Structure for Supercapacitor Application,” Journal of Power Sources 450 (2020): 227616.

[43]

Y. Wang, L. Sun, D. Xiao, et al., “Silicon-Based 3D All-Solid-State Micro-Supercapacitor With Superior Performance,” ACS Applied Materials & Interfaces 12 (2020): 43864–43875.

[44]

G. Huang, Y. Zhang, L. Wang, P. Sheng, and H. Peng, “Fiber-Based MnO2/carbon Nanotube/Polyimide Asymmetric Supercapacitor,” Carbon 125 (2017): 595–604.

[45]

H. Li, J. Liang, H. Li, et al., “Activated Carbon Fibers With Manganese Dioxide Coating for Flexible Fiber Supercapacitors With High Capacitive Performance,” Journal of Energy Chemistry 31 (2019): 95–100.

[46]

Z. Ding, Z. Cheng, N. E. Shi, et al. “Dual-Electroactive Metal–Organic Framework Nanosheets as Negative Electrode Materials for Supercapacitors,” Chemical Engineering Journal 450 (2022): 137193.

[47]

X. Liu, J. Wang, and G. Yang, “Amorphous Nickel Oxide and Crystalline Manganese Oxide Nanocomposite Electrode for Transparent and Flexible Supercapacitor,” Chemical Engineering Journal 347 (2018): 101–110.

[48]

C. Wan, Y. Jiao, D. Liang, Y. Wu, and J. Li, “A High-Performance, All-Textile and Spirally Wound Asymmetric Supercapacitors Based on Core–Sheath Structured MnO2 Nanoribbons and Cotton-Derived Carbon Cloth,” Electrochimica Acta 285 (2018): 262–271.

[49]

J. Zhang, Y. Li, Y. Zhang, et al., “The Enhanced Adhesion Between Overlong TiNxOy/MnO2 Nanoarrays and Ti Substrate: Towards Flexible Supercapacitors with High Energy Density and Long Service Life,” Nano Energy 43 (2018): 91–102.

[50]

X. Zhu, Y. Zeng, X. Zhao, et al. “Biomass-Derived Carbon and Their Composites for Supercapacitor Applications: Sources, Functions, and Mechanisms,” EcoEnergy (2025): e70000.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/