PDF
Abstract
The development of high-performance energy storage systems requires several key attributes, including high energy and power density, cost-effectiveness, safety, and environmental sustainability. Among the various potential technologies, lithium–sulfur batteries stand out as a promising contender for future energy storage solutions due to their exceptional theoretical specific energy density (2600 Wh kg-1) and relatively high specific capacity (1675 mAh g-1). However, the commercialization of lithium–sulfur batteries faces significant challenges, such as low sulfur loading, rapid capacity degradation, and poor cycling stability. At the heart of these issues lies a limited understanding of the complex conversion chemistry involved in lithium– sulfur batteries. In recent years, significant progress has been made in elucidating these reaction mechanisms, thanks to the use of both ex situ and in situ characterization techniques. Methods such as optical spectroscopy, time-of-flight secondary ion mass spectrometry, synchrotron X-ray, and neural network analysis have demonstrated great potential in uncovering the redox processes of lithium polysulfides and their underlying mechanisms, significantly advancing research in lithium–sulfur battery systems. This review focuses on the major advancements in lithium–sulfur batteries research, particularly in the study of electrocatalytic mechanisms using emerging characterization techniques. We discuss key aspects of accurately revealing the mechanisms of lithium–sulfur batteries through these advanced diagnostic methods, as well as the main challenges these techniques face. Finally, we explore the future prospects of lithium–sulfur battery commercialization.
Keywords
characterization technique
/
electrocatalyst
/
lithium–sulfur batteries
/
reaction mechanism
/
redox kinetics
Cite this article
Download citation ▾
Shilin Chen, Chengwei Ma, Zhongming Li, Jiangqi Zhou.
Advanced Characterization Techniques for Probing Redox Reaction Mechanisms in High-Performance Li–S Batteries.
Carbon Neutralization, 2025, 4(2): e70003 DOI:10.1002/cnl2.70003
| [1] |
S. Chu, Y. Cui, and N. Liu, “The Path Towards Sustainable Energy,” Nature Materials 16 (2017):16–22.
|
| [2] |
Z. Zhu, T. Jiang, M. Ali, et al., “Rechargeable Batteries for Grid Scale Energy Storage,” Chemical Reviews 122 (2022):16610–16751.
|
| [3] |
H. Raza, S. Bai, J. Cheng, et al., “Li–S Batteries: Challenges, Achievements and Opportunities,” Electrochemical Energy Reviews 6 (2023): 29.
|
| [4] |
M. K. Aslam, S. Jamil, S. Hussain, and M. Xu, “Effects of Catalysis and Separator Functionalization on High-Energy Lithium–Sulfur Batteries: A Complete Review,” Energy &Environmental Materials 6 (2023): e12420.
|
| [5] |
L. Wang, M. Zhen, and Z. Hu, “Status And Prospects of Electrocatalysts for Lithium-sulfur Battery Under Lean Electrolyte and High Sulfur Loading Conditions,” Chemical Engineering Journal 452 (2022): 139344.
|
| [6] |
S. Zheng, N. Khan, B. E. Worku, and B. Wang, “Review and Prospect on Low-Temperature Lithium–Sulfur Battery,” Chemical Engineering Journal 484 (2024): 149610.
|
| [7] |
J. Qin, R. Wang, P. Xiao, and D. Wang, “Engineering Cooperative Catalysis in Li–S Batteries,” Advanced Energy Materials 13 (2023): 2300611.
|
| [8] |
X.-X. Feng, S.-J. Tan, and S. Xin, “Critical Material and Device Parameters for Building a Beyond-500-Wh/kg Lithium–Sulfur Battery,” Next Materials 6 (2025): 100395.
|
| [9] |
R. Zhou, S. Gu, M. Guo, S. Xu, and G. Zhou, “Progresses and Prospects of Asymmetrically Coordinated Single Atom Catalysts for Lithium–Sulfur Batteries,” Energy &Environmental Materials 7 (2024): e12703.
|
| [10] |
J. He, L. Chen, D. Song, et al., “From One-Dimensional to Three-Dimensional, the Criss-Crossed Fiber Materials Forge High-Performance Lithium–Sulfur Batteries,” Chemical Engineering Journal 495 (2024): 153126.
|
| [11] |
Q. Pang, D. Kundu, M. Cuisinier, and L. F. Nazar, “Surface-Enhanced Redox Chemistry of Polysulphides on a Metallic and Polar Host for Lithium-Sulphur Batteries,” Nature Communications 5 (2014): 4759.
|
| [12] |
Y. Song, L. Zou, C. Wei, Y. Zhou, and Y. Hu, “Single-Atom Electrocatalysts for Lithium–Sulfur Chemistry: Design Principle, Mechanism, and Outlook,” Carbon Energy 5 (2023): e286.
|
| [13] |
J. Zhou, “Entropy-Stabilized Homologous Catalysts for High Performance Li-S Batteries: Progress and Prospects,” Chemical Engineering Journal 496 (2024): 153762.
|
| [14] |
S. Wang, Z. Wang, F. Chen, et al., “Electrocatalysts in Lithium-Sulfur Batteries,” Nano Research 16 (2023):4438–4467.
|
| [15] |
X. Tao, J. Wang, C. Liu, et al., “Balancing Surface Adsorption and Diffusion of Lithium-Polysulfides on Nonconductive Oxides for Lithium–Sulfur Battery Design,” Nature Communications 7 (2016): 11203.
|
| [16] |
G. Zhou, H. Tian, Y. Jin, et al., “Catalytic Oxidation of Li2S on the Surface of Metal Sulfides for Li–S Batteries,” Proceedings of the National Academy of Sciences 114 (2017):840–845.
|
| [17] |
T. Wang, J. He, X. B. Cheng, J. Zhu, B. Lu, and Y. Wu, “Strategies Toward High-Loading Lithium–Sulfur Batteries,” ACS Energy Letters 8 (2023):116–150.
|
| [18] |
T. Wang, J. He, Z. Zhu, et al., “Heterostructures Regulating Lithium Polysulfides for Advanced Lithium-Sulfur Batteries,” Advanced Materials 35 (2023): 2303520.
|
| [19] |
Q. Lin, J. Liang, R. Fang, et al., “A Lewis Acid–Lewis Base Hybridized Electrocatalyst for Roundtrip Sulfur Conversion In Lithium–Sulfur Batteries,” Advanced Energy Materials 14 (2024): 2400786.
|
| [20] |
X. Zhang, Y. Zhang, X. Wei, C. Wei, and Y. Song, “A Review of Size Engineering-Enabled Electrocatalysts for Li–S Chemistry,” Nanoscale Advances 3 (2021):5777–5784.
|
| [21] |
G. Dai, S. Li, M. Shi, et al., “Rational Design of Janus Metal Atomic-Site Catalysts for Efficient Polysulfide Conversion and Alkali Metal Deposition: Advances and Prospects,” Advanced Functional Materials 34 (2024): 2315563.
|
| [22] |
J. Zhou and A. Sun, “Progress in the Advancement of Atomically Dispersed Catalysts for Enhanced Performance Lithium–Sulfur Batteries,” Chemical Engineering Journal 488 (2024): 150719.
|
| [23] |
S.-J. Tan, X.-X. Feng, Y.-H. Wang, Y.-G. Guo, and S. Xin, “Nonconventional Electrochemical Reactions in Rechargeable Lithium–Sulfur Batteries,” ACS Applied Materials &Interfaces 16 (2024):67002–67009.
|
| [24] |
M. Zhao, H. J. Peng, B. Q. Li, and J. Q. Huang, “Kinetic Promoters for Sulfur Cathodes in Lithium–Sulfur Batteries,” Accounts of Chemical Research 57 (2024): 545.
|
| [25] |
F. Han, L. Fan, X. Ma, et al., “Conversion of LiPSs Accelerated by Pt-Doped Biomass-Derived Hyphae Carbon Nanobelts as Self-Supporting Hosts for Long-Lifespan Li–S Batteries,” Energy &Environmental Materials 7 (2024): e12623.
|
| [26] |
L. Zhou, D. L. Danilov, F. Qiao, et al., “Sulfur Reduction Reaction in Lithium–Sulfur Batteries: Mechanisms, Catalysts, and Characterization,” Advanced Energy Materials 12 (2022): 2202094.
|
| [27] |
Z. Ye, Y. Jiang, T. Feng, et al., “Curbing Polysulfide Shuttling by Synergistic Engineering Layer Composed of Supported Sn4P3 Nanodots Electrocatalyst in Lithium–Sulfur Batteries,” Nano Energy 70 (2020): 104532.
|
| [28] |
Z. Ye, Y. Jiang, J. Qian, et al., “Exceptional Adsorption and Catalysis Effects of Hollow Polyhedra/Carbon Nanotube Confined CoP Nanoparticles Superstructures for Enhanced Lithium–Sulfur Batteries,” Nano Energy 64 (2019): 103965.
|
| [29] |
W. G. Lim, C. Y. Park, H. Jung, et al., “Cooperative Electronic Structure Modulator of Fe Single-Atom Electrocatalyst for High Energy and Long Cycle Li–S Pouch Cell,” Advanced Materials 35 (2023): 2208999.
|
| [30] |
S. Nanda, A. Bhargav, and A. Manthiram, “Anode-Free, Lean-Electrolyte Lithium–Sulfur Batteries Enabled by Tellurium-Stabilized Lithium Deposition,” Joule 4 (2020):1121–1135.
|
| [31] |
J. Zhu, S. Jin, X. Kong, and H. Ji, “Finding the Ideal Electrocatalyst Match for Sulfur Redox Reactions in Li-S Batteries,” Accounts of Materials Research 5 (2024):35–47.
|
| [32] |
J. Guo, Q. Yang, Y. Dou, X. Ba, W. Wei, and J. Liu, “Shelf Life of Lithium–Sulfur Batteries Under Lean Electrolytes: Status and Challenges,” Energy &Environmental Science 17 (2024):1695–1724.
|
| [33] |
J. Wu, T. Ye, Y. Wang, et al., “Understanding the Catalytic Kinetics of Polysulfide Redox Reactions on Transition Metal Compounds in Li–S Batteries,” ACS Nano 16 (2022):15734–15759.
|
| [34] |
L. Fang, R. E. Winans, and T. Li, “Synchrotron Small-Angle X-Ray Scattering Technique for Battery Electrode Study,” Nano Energy 121 (2024): 109255.
|
| [35] |
R. Liu, Z. Wei, L. Peng, et al., “Establishing Reaction Networks in the 16-Electron Sulfur Reduction Reaction,” Nature 626 (2024):98–104.
|
| [36] |
J. Zhou and A. Sun, “Redox Mediators for High Performance Lithium–Sulfur Batteries: Progress and Outlook,” Chemical Engineering Journal 495 (2024): 153648.
|
| [37] |
J. Feng, C. Shi, X. Zhao, et al., “Physical Field Effects to Suppress Polysulfide Shuttling in Lithium–Sulfur Battery,” Advanced Materials 36 (2024): 2414047.
|
| [38] |
X.-T. Li, Y.-H. Zhu, S.-J. Tan, and S. Xin, “Isotope Effects in a Li–S Battery: A New Concept,” Batteries &Supercaps 7 (2024): e202300572.
|
| [39] |
Y. Y. Dai, C. M. Xu, X. H. Liu, et al., “Manipulating Metal–Sulfur Interactions for Achieving High-Performance S Cathodes for Room Temperature Li/Na–Sulfur Batteries,” Carbon Energy 3 (2021):253–270.
|
| [40] |
J. L. Wang, J. Yang, J. Y. Xie, N. X. Xu, and Y. Li, “Sulfur–Carbon Nano-Composite as Cathode for Rechargeable Lithium Battery Based on Gel Electrolyte,” Electrochemistry Communications 4 (2002):499–502.
|
| [41] |
X. Ji, K. T. Lee, and L. F. Nazar, “A Highly Ordered Nanostructured Carbon–Sulphur Cathode for Lithium–Sulphur Batteries,” Nature Materials 8 (2009):500–506.
|
| [42] |
S. Tu, Z. Chen, B. Zhang, et al., “Realizing High Utilization of High-Mass-Loading Sulfur Cathode via Electrode Nanopore Regulation,” Nano Letters 22 (2022):5982–5989.
|
| [43] |
Y. Xiang, L. Lu, A. G. P. Kottapalli, and Y. Pei, “Status and Perspectives of Hierarchical Porous Carbon Materials in Terms of High-Performance Lithium–Sulfur Batteries,” Carbon Energy 4 (2022):346–398.
|
| [44] |
Y. Zhong, Xinhui Xia, S. Deng, et al., “Popcorn Inspired Porous Macrocellular Carbon: Rapid Puffing Fabrication From Rice and its Applications in Lithium-Sulfur Batteries,” Advanced Energy Materials 8 (2018): 1701110.
|
| [45] |
S. P. Jand, Y. Chen, and P. Kaghazchi, “Comparative Theoretical Study of Adsorption of Lithium Polysulfides (Li2Sx) on Pristine and Defective Graphene,” Journal of Power Sources 308 (2016):166–171.
|
| [46] |
S. Evers, T. Yim, and L. F. Nazar, “Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery,” Journal of Physical Chemistry C 116 (2012):19653–19658.
|
| [47] |
Z. Shi, Y. Ding, Q. Zhang, and J. Sun, “Electrocatalyst Modulation toward Bidirectional Sulfur Redox in Li–S Batteries: From Strategic Probing to Mechanistic Understanding,” Advanced Energy Materials 12 (2022): 2201056.
|
| [48] |
S. Yu, W. Cai, L. Chen, L. Song, and Y. Song, “Recent Advances of Metal Phosphides for Li–S Chemistry,” Journal of Energy Chemistry 55 (2021):533–548.
|
| [49] |
W. Jin, X. Zhang, M. Liu, Y. Zhao, and P. Zhang, “High-Performance Li-S Batteries Boosted by Redox Mediators: A Review and Prospects,” Energy Storage Materials 67 (2024): 103223.
|
| [50] |
H. Al Salem, G. Babu, C. V. Rao, and L. M. R. Arava, “Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li–S Batteries,” Journal of the American Chemical Society 137 (2015):11542–11545.
|
| [51] |
W. Xia, Y. Chen, W. Wang, et al., “Enhanced Catalytic Activity of Co-CoO via VC0.75 Heterostructure Enables Fast Redox Kinetics of Polysulfides in Lithium–Sulfur Batteries,” Chemical Engineering Journal 458 (2023): 141477.
|
| [52] |
D. Zhang, T. Duan, Y. Luo, et al., “Oxygen Defect-Rich WO3–x-W3N4 Mott–Schottky Heterojunctions Enabling Bidirectional Catalysis for Sulfur Cathode,” Advanced Functional Materials 33 (2023): 2306578.
|
| [53] |
R. B. LingHu, J. X. Chen, J. H. Zhang, et al., “Concurrent Hetero-/Homo-Geneous Electrocatalysts to Bi-Phasically Mediate Sulfur Species for Lithium–Sulfur Batteries,” Journal of Energy Chemistry 93 (2024):663–668.
|
| [54] |
Z. X. Chen, Q. Cheng, X. Y. Li, et al., “Cathode Kinetics Evaluation in Lean-Electrolyte Lithium–Sulfur Batteries,” Journal of the American Chemical Society 145 (2023):16449–16457.
|
| [55] |
Z. Du, X. Chen, W. Hu, et al., “Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium–Sulfur Batteries,” Journal of the American Chemical Society 141 (2019):3977–3985.
|
| [56] |
W. Hua, H. Li, C. Pei, et al., “Selective Catalysis Remedies Polysulfide Shuttling in Lithium–Sulfur Batteries,” Advanced Materials 33 (2021): 2101006.
|
| [57] |
L. Peng, Z. Wei, C. Wan, et al., “A Fundamental Look at Electrocatalytic Sulfur Reduction Reaction,” Nature Catalysis 3 (2020):762–770.
|
| [58] |
Z. Shen, X. Jin, J. Tian, et al., “Cation-Doped ZnS Catalysts for Polysulfide Conversion in Lithium–Sulfur Batteries,” Nature Catalysis 5 (2022):555–563.
|
| [59] |
J. C. Ye, J. J. Chen, R. M. Yuan, et al., “Strategies to Explore and Develop Reversible Redox Reactions of Li–S in Electrode Architectures Using Silver-Polyoxometalate Clusters,” Journal of the American Chemical Society 140 (2018):3134–3138.
|
| [60] |
Q. Wang, H. Zhao, B. Li, et al., “MOF-Derived Co9S8 Nano-Flower Cluster Array Modified Separator Towards Superior Lithium Sulfur Battery,” Chinese Chemical Letters 32 (2021):1157–1160.
|
| [61] |
P. Wang, B. Xi, M. Huang, W. Chen, J. Feng, and S. Xiong, “Emerging Catalysts to Promote Kinetics of Lithium–Sulfur Batteries,” Advanced Energy Materials 11 (2021): 2002893.
|
| [62] |
M. Zhang, W. Chen, L. Xue, et al., “Adsorption-Catalysis Design in the Lithium–Sulfur Battery,” Advanced Energy Materials 10 (2019): 1903008.
|
| [63] |
Z. Yuan, H. J. Peng, T. Z. Hou, et al., “Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts,” Nano Letters 16 (2016):519–527.
|
| [64] |
Y. Song, W. Zhao, L. Kong, et al., “Synchronous Immobilization and Conversion of Polysulfides on a VO2–VN Binary Host Targeting High Sulfur Load Li–S Batteries,” Energy &Environmental Science 11 (2018):2620–2630.
|
| [65] |
S. Rehman, M. Pope, S. Tao, and E. McCalla, “Evaluating the Effectiveness Of In Situ Characterization Techniques in Overcoming Mechanistic Limitations in Lithium–Sulfur Batteries,” Energy &Environmental Science 15 (2022):1423–1460.
|
| [66] |
X. Ding, S. Yang, S. Zhou, et al., “Biomimetic Molecule Catalysts to Promote the Conversion of Polysulfides for Advanced Lithium–Sulfur Batteries,” Advanced Functional Materials 30 (2020): 2003354.
|
| [67] |
H. Pan, Z. Cheng, Z. Zhou, et al., “Boosting Lean Electrolyte Lithium–Sulfur Battery Performance With Transition Metals: A Comprehensive Review,” Nano-Micro Letters 15 (2023): 165.
|
| [68] |
S. Huang, Y. Wang, J. Hu, et al., “Mechanism Investigation of High-Performance Li–Polysulfide Batteries Enabled by Tungsten Disulfide Nanopetals,” ACS Nano 12 (2018):9504–9512.
|
| [69] |
J. Tan, D. Liu, X. Xu, and L. Mai, “In Situ/Operando Characterization Techniques for Rechargeable Lithium–Sulfur Batteries: A Review,” Nanoscale 9 (2017):19001–19016.
|
| [70] |
X. Cao, M. Wang, Y. Li, et al., “Nitrogen Balance on Ni–N–C Promotor for High-Energy Lithium-Sulfur Pouch Cells,” Advanced Science 9 (2022): 2204027.
|
| [71] |
M. Zhao, B. Q. Li, X. Chen, J. Xie, H. Yuan, and J. Q. Huang, “Redox Comediation With Organopolysulfides in Working Lithium–Sulfur Batteries,” Chemistry 6 (2020):3297–3311.
|
| [72] |
J. Xie, H. J. Peng, Y. W. Song, et al., “Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semi-Immobilized Redox Mediators in Working Batteries,” Angewandte Chemie International Edition 59 (2020):17670–17675.
|
| [73] |
G. Zhou, S. Zhao, T. Wang, et al., “Theoretical Calculation Guided Design of Single-Atom Catalysts Toward Fast Kinetic and Long-Life Li–S Batteries,” Nano Letters 20 (2020):1252–1261.
|
| [74] |
Z. Ye, Y. Jiang, L. Li, F. Wu, and R. Chen, “A High-Efficiency CoSe Electrocatalyst With Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li–S Batteries,” Advanced Materials 32 (2020): 2002168.
|
| [75] |
Y. Liu, M. Zhao, L. P. Hou, et al., “An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium–Sulfur Batteries With Encapsulating Lithium Polysulfide Electrolyte,” Angewandte Chemie International Edition 62 (2023): 202303363.
|
| [76] |
Q. Chang, Y. X. Angel Ng, D. Yang, et al., “Quantifying the Morphology Evolution of Lithium Battery Materials Using Operando Electron Microscopy,” ACS Materials Letters 5 (2023):1506–1526.
|
| [77] |
Y. Qiu, G. Rong, J. Yang, et al., “Highly Nitridated Graphene–Li2S Cathodes With Stable Modulated Cycles,” Advanced Energy Materials 5 (2015): 1501369.
|
| [78] |
H. Marceau, C. S. Kim, A. Paolella, et al., “In Operando Scanning Electron Microscopy and Ultraviolet–Visible Spectroscopy Studies of Lithium/Sulfur Cells Using All Solid-State Polymer Electrolyte,” Journal of Power Sources 319 (2016):247–254.
|
| [79] |
Y. Zhang, Y. Luo, C. Fincher, et al., “In-Situ Measurements of Stress Evolution in Composite Sulfur Cathodes,” Energy Storage Materials 16 (2019):491–497.
|
| [80] |
X. H. Liu, Y. Liu, A. Kushima, et al., “In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures,” Advanced Energy Materials 2 (2012):722–741.
|
| [81] |
G. F. Hawes, C. Punckt, and M. A. Pope, “Probing Sulfur Deposition Onto Carbon Nanomaterials From Aqueous, Elemental Sulfur Sols for Lithium–Sulfur Batteries,” ACS Applied Materials &Interfaces 13 (2021):31569–31582.
|
| [82] |
H. Kim, J. T. Lee, A. Magasinski, K. Zhao, Y. Liu, and G. Yushin, “In Situ TEM Observation of Electrochemical Lithiation of Sulfur Confined Within Inner Cylindrical Pores of Carbon Nanotubes,” Advanced Energy Materials 5 (2015): 1501306.
|
| [83] |
W. Tang, Z. Chen, B. Tian, et al., “In Situ Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles By MoS2 Flakes,” Journal of the American Chemical Society 139 (2017):10133–10141.
|
| [84] |
Y. Yuan, G. Tan, J. Wen, et al., “Encapsulating Various Sulfur Allotropes Within Graphene Nanocages for Long-Lasting Lithium Storage,” Advanced Functional Materials 28 (2018): 1706443.
|
| [85] |
Z. Yang, Z. Zhu, J. Ma, et al., “Phase Separation of Li2S/S at Nanoscale During Electrochemical Lithiation of the Solid-State Lithium–Sulfur Battery Using In Situ TEM,” Advanced Energy Materials 6 (2016): 1600806.
|
| [86] |
G. Tan, R. Xu, Z. Xing, et al., “Burning Lithium in CS2 for High-Performing Compact Li2S-graphene Nanocapsules for Li–S Batteries,” Nature Energy 2 (2017): 17090.
|
| [87] |
Z. L. Xu, J. Q. Huang, W. G. Chong, et al., “In Situ TEM Study of Volume Expansion in Porous Carbon Nanofiber/Sulfur Cathodes With Exceptional High-Rate Performance,” Advanced Energy Materials 7 (2017): 1602078.
|
| [88] |
R. Xu, I. Belharouak, X. Zhang, et al., “Insight Into Sulfur Reactions in Li–S Batteries,” ACS Applied Materials &Interfaces 6 (2014):21938–21945.
|
| [89] |
S. Zhou, J. Shi, S. Liu, et al., “Visualizing Interfacial Collective Reaction Behaviour of Li–S Batteries,” Nature 621 (2023):75–81.
|
| [90] |
Z. Wang, Y. Tang, L. Zhang, M. Li, Z. Shan, and J. Huang. “In Situ TEM Observations of Discharging/Charging of Solid-State Lithium-Sulfur Batteries at High Temperatures,” Small 16 (2020): 2001899.
|
| [91] |
Z. Wang, Y. Tang, X. Fu, et al., “In Situ Imaging Polysulfides Electrochemistry of Li-S Batteries in a Hollow Carbon Nanotubule Wet Electrochemical Cell,” ACS Applied Materials &Interfaces 12 (2020):55971–55981.
|
| [92] |
W. Zhou, C. Wang, Q. Zhang, et al., “Ailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for Confining Sulfur in Lithium-Sulfur Batteries,” Advanced Energy Materials 5 (2015): 1401752.
|
| [93] |
W. Zhou, X. Xiao, M. Cai, and L. Yang, “Polydopamine-Coated, Nitrogen-Doped, Hollow Carbon–Sulfur Double-Layered Core–Shell Structure for Improving Lithium–Sulfur Batteries,” Nano Letters 14 (2014):5250–5256.
|
| [94] |
W. Yao, K. Liao, T. Lai, H. Sul, and A. Manthiram, “Rechargeable Metal-Sulfur Batteries: Key Materials to Mechanisms,” Chemical Reviews 124 (2024):4935–5118.
|
| [95] |
C. Ma, S. Weng, Y. Zhang, et al., “Chemically Induced Activity Recovery of Isolated Lithium in Anode-Free Lithium Metal Batteries,” Nano Lett 22 (2022): 9268.
|
| [96] |
X. C. Liu, Y. Yang, J. Wu, et al., “Dynamic Hosts for High-Performance Li–S Batteries Studied by Cryogenic Transmission Electron Microscopy and In Situ X-Ray Diffraction,” ACS Energy Letters 3 (2018):1325–1330.
|
| [97] |
Y. Yang, B. Levin, N. Zhang, H. Abruña, and D. Muller, “Cryo-STEM-EDX for Reliable Characterization of Sulfur Distribution and the Rational Design of Sulfur Hosts for Li-S Batteries,” Microscopy and Microanalysis 26 (2020):1654–1658.
|
| [98] |
Z. Ju, H. Yuan, O. Sheng, et al., “Cryo-Electron Microscopy for Unveiling the Sensitive Battery Materials,” Small Science 1 (2021): 2100055.
|
| [99] |
X. C. Ren, X. Q. Zhang, R. Xu, J. Q. Huang, and Q. Zhang, “Analyzing Energy Materials by Cryogenic Electron Microscopy,” Advanced Materials 32 (2020): 1908293.
|
| [100] |
P. Nandi, E. Hoglund, X. Sang, R. R. Unocic, and J. M. Howe, “Determining the Electron Density and Volume Expansion at Grain Boundaries Using Electron Energy-Loss Spectroscopy,” Microscopy and Microanalysis 23 (2017):414–415.
|
| [101] |
M. Ge, Y. Lu, P. Ercius, et al., “Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon,” Nano Letters 14 (2014):261–268.
|
| [102] |
W. Zhang, D. H. Seo, and T. Chen, “Kinetic Pathways of Ionic Transport in Fast-Charging Lithium Titanate,” Science 367 (2020):1030–1034.
|
| [103] |
M. J. Zachman, Z. Tu, S. Choudhury, L. A. Archer, and L. F. Kourkoutis, “Cryo-STEM Mapping of Solid–Liquid Interfaces and Dendrites in Lithium-Metal Batteries,” Nature 560 (2018):345–349.
|
| [104] |
J. Y. Huang, L. Zhong, C. M. Wang, et al., “In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode,” Science 330 (2010):1515–1520.
|
| [105] |
Y. X. Song, Y. Shi, J. Wan, B. Liu, L. J. Wan, and R. Wen, “Dynamic Visualization of Cathode/Electrolyte Evolution in Quasi-Solid-State Lithium Batteries,” Advanced Energy Materials 10 (2020): 2000465.
|
| [106] |
J. Wang, R. Z. Liu, Z. Z. Shen, J. X. Tian, and R. Wen, “Recent Progress in the Application of In Situ Atomic Force Microscopy for Metal Anode Processes in Energy Storage Batteries,” Chemical Physics Reviews 4 (2023): 031308.
|
| [107] |
R. Zhang, Y. Wu, Z. Chen, Y. Wang, J. Zhu, and X. Zhuang, “The Value Of In Situ/Operando Raman Spectroscopy in All-Solid-State Li Batteries,” Journal of Materials Chemistry A 11 (2023):19195–19209.
|
| [108] |
S.-J. Tan, J. Yue, X.-C. Hu, et al., “Nitriding-Interface-Regulated Lithium Plating Enables Flame-Retardant Electrolytes for High-Voltage Lithium Metal Batteries,” Angewandte Chemie International Edition 58 (2019):7802–7807.
|
| [109] |
S. Y. Lang, Y. Shi, Y. G. Guo, D. Wang, R. Wen, and L. J. Wan, “Insight Into the Interfacial Process and Mechanism in Lithium–Sulfur Batteries: An In Situ AFM Study,” Angewandte Chemie International Edition 55 (2016):15835–15839.
|
| [110] |
K. Mahankali, N. K. Thangavel, and L. M. Reddy Arava, “In Situ Electrochemical Mapping of Lithium–Sulfur Battery Interfaces Using AFM–SECM,” Nano Letters 19 (2019):5229–5236.
|
| [111] |
F. S. Gittleson, K. P. C. Yao, D. G. Kwabi, et al., “Raman Spectroscopy in Lithium–Oxygen Battery Systems,” ChemElectroChem 2 (2015):1446–1457.
|
| [112] |
L. Xue, Y. Li, A. Hu, et al., “In Situ/Operando Raman Techniques in Lithium–Sulfur Batteries,” Small Structures 3 (2022): 2100170.
|
| [113] |
H. Li, Y. Wang, H. Chen, B. Niu, W. Zhang, and D. Wu, “Synergistic Mediation of Polysulfide Immobilization and Conversion by a Catalytic and Dual-Adsorptive System for High Performance Lithium–Sulfur Batteries,” Chemical Engineering Journal 406 (2021): 126802.
|
| [114] |
J. Hannauer, J. Scheers, J. Fullenwarth, B. Fraisse, L. Stievano, and P. Johansson, “The Quest for Polysulfides in Lithium–Sulfur Battery Electrolytes: An Operando Confocal Raman Spectroscopy Study,” Chemphyschem 16 (2015):2755–2759.
|
| [115] |
J. J. Chen, R. M. Yuan, J. M. Feng, et al., “Conductive Lewis Base Matrix to Recover the Missing Link of Li2S8 During the Sulfur Redox Cycle in Li–S Battery,” Chemistry of Materials 27 (2015):2048–2055.
|
| [116] |
B. Yu, A. Huang, D. Chen, et al., “In Situ Construction of Mo2C Quantum Dots-Decorated CNT Networks as a Multifunctional Electrocatalyst for Advanced Lithium–Sulfur Batteries,” Small 17 (2021): 2100460.
|
| [117] |
J. Xia, W. Hua, L. Wang, et al., “Boosting Catalytic Activity by Seeding Nanocatalysts Onto Interlayers to Inhibit Polysulfide Shuttling in Li–S Batteries,” Advanced Functional Materials 31 (2021): 2101980.
|
| [118] |
Y. He, Y. Qiao, Z. Chang, et al., “Developing A ‘Polysulfide-Phobic’ Strategy to Restrain Shuttle Effect in Lithium–Sulfur Batteries,” Angewandte Chemie International Edition 58 (2019):11774–11778.
|
| [119] |
Q. Zhou, G. Meng, P. Zheng, et al., “A Surface-Enhanced Raman Scattering Sensor Integrated With Battery-Controlled Fluidic Device for Capture and Detection of Trace Small Molecules,” Scientific Reports 5 (2015): 12865.
|
| [120] |
J. F. Li, Y. F. Huang, Y. Ding, et al., “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464 (2010):392–395.
|
| [121] |
L. Zhang, T. Qian, X. Zhu, et al., “In Situ Optical Spectroscopy Characterization for Optimal Design of Lithium–Sulfur Batteries,” Chemical Society Reviews 48 (2019):5432–5453.
|
| [122] |
E. K. Grasse, M. H. Torcasio, and A. W. Smith, “Teaching UV–Vis Spectroscopy With a 3D-Printable Smartphone Spectrophotometer,” Journal of Chemical Education 93 (2015):146–151.
|
| [123] |
Q. Zou and Y. C. Lu, “Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV–Vis Spectroscopic Study,” Journal of Physical Chemistry Letters 7 (2016):1518–1525.
|
| [124] |
K. Zhang, W. Cai, Y. Liu, et al., “Nitrogen-Doped Carbon Embedded With Ag Nanoparticles for Bidirectionally-Promoted Polysulfide Redox Electrochemistry,” Chemical Engineering Journal 427 (2022): 130897.
|
| [125] |
C. Barchasz, F. Molton, C. Duboc, J. C. Leprêtre, S. Patoux, and F. Alloin, “Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification,” Analytical Chemistry 84 (2012):3973–3980.
|
| [126] |
L. F. Zhou, J. Y. Li, J. Peng, et al., “Cover Image,” Carbon Energy 6 (2024): e460.
|
| [127] |
H. Lin, S. Zhang, T. Zhang, et al., “A Cathode-Integrated Sulfur-Deficient Co9S8 Catalytic Interlayer for the Reutilization of “Lost”Polysulfides in Lithium–Sulfur Batteries,” ACS Nano 13 (2019):7073–7082.
|
| [128] |
M. U. M Patel, R. Demir-Cakan, M. Morcrette, J. M. Tarascon, M. Gaberscek, and R. Dominko, “Li-S Battery Analyzed by UV/Vis in Operando Mode,” Chemsuschem 6 (2013):1177–1181.
|
| [129] |
N. A. Cañas, D. N. Fronczek, N. Wagner, A. Latz, and K. A. Friedrich, “Experimental and Theoretical Analysis of Products and Reaction Intermediates of Lithium–Sulfur Batteries,” Journal of Physical Chemistry C 118 (2014):12106–12114.
|
| [130] |
P. Geng, M. Du, X. Guo, et al., “Bimetallic Metal-Organic Framework With High-Adsorption Capacity Toward Lithium Polysulfides for Lithium–Sulfur Batteries,” Energy &Environmental Materials 5 (2022):599–607.
|
| [131] |
C. Luo, X. Liang, Y. Sun, et al., “An Organic Nickel Salt-Based Electrolyte Additive Boosts Homogeneous Catalysis for Lithium–Sulfur Batteries,” Energy Storage Materials 33 (2020):290–297.
|
| [132] |
F. Zaera, “New Advances in the Use of Infrared Absorption Spectroscopy for the Characterization of Heterogeneous Catalytic Reactions,” Chemical Society Reviews 43 (2014):7624–7663.
|
| [133] |
F. Gao, X. D. Tian, J. S. Lin, J. C. Dong, X. M. Lin, and J. F. Li, “In Situ Raman, FTIR, and XRD Spectroscopic Studies in Fuel Cells and Rechargeable Batteries,” Nano Research 16 (2023):4855–4866.
|
| [134] |
L. Wu, J. Hu, S. Chen, et al., “Lithium Nitrate Mediated Dynamic Formation of Solid Electrolyte Interphase Revealed by In Situ Fourier Transform Infrared Spectroscopy,” Electrochimica Acta 466 (2023): 142973.
|
| [135] |
G. Li, W. Cai, B. Liu, and Z. Li, “A Multi Functional Binder With Lithium Ion Conductive Polymer and Polysulfide Absorbents to Improve Cycleability of Lithium–Sulfur Batteries,” Journal of Power Sources 294 (2015):187–192.
|
| [136] |
X. Jiao, P. Ji, B. Shang, et al., “VPO4 As Effective Adsorbent for Polysulfides Applied in Lithium Sulfur Batteries,” Solid State Ionics 344 (2020): 115150.
|
| [137] |
N. Biliškov, “Infrared Spectroscopic Monitoring of Solid-State Processes,” Physical Chemistry Chemical Physics 24 (2022):19073–19120.
|
| [138] |
N. Saqib, C. J. Silva, C. M. Maupin, and J. M. Porter, “A Novel Optical Diagnostic for In Situ Measurements of Lithium Polysulfides in Battery Electrolytes,” Applied Spectroscopy 71 (2017):1593–1599.
|
| [139] |
C. Dillard, A. Singh, and V. Kalra, “Polysulfide Speciation and Electrolyte Interactions in Lithium–Sulfur Batteries Within Situinfrared Spectroelectrochemistry,” Journal of Physical Chemistry C 122 (2018):18195–18203.
|
| [140] |
S. Zhou, S. Yang, X. Ding, et al., “Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries,” ACS Nano 14 (2020):7538–7551.
|
| [141] |
C. Geng, W. Qu, Z. Han, L. Wang, W. Lv, and Q. H. Yang, “Superhigh Coulombic Efficiency Lithium–Sulfur Batteries Enabled by In Situ Coating Lithium Sulfide With Polymerizable Electrolyte Additive,” Advanced Energy Materials 13 (2023): 2204246.
|
| [142] |
S.-J. Tan, Y.-F. Tian, Y. Zhao, et al., “Noncoordinating Flame-Retardant Functional Electrolyte Solvents for Rechargeable Lithium-Ion Batteries,” Journal of the American Chemical Society 144 (2022):18240–18245.
|
| [143] |
S.-J. Tan, W.-P. Wang, Y.-F. Tian, S. Xin, and Y.-G. Guo, “Advanced Electrolytes Enabling Safe and Stable Rechargeable Li-Metal Batteries: Progress and Prospects,” Advanced Functional Materials 31 (2021): 2105253.
|
| [144] |
D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, and J. Affinito, “On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries,” Journal of the Electrochemical Society 156 (2009): A694.
|
| [145] |
S. Xiong, K. Xie, Y. Diao, and X. Hong, “Properties of Surface Film on Lithium Anode With LiNO3 as Lithium Salt in Electrolyte Solution for Lithium–Sulfur Batteries,” Electrochimica Acta 83 (2012):78–86.
|
| [146] |
S. Xiong, K. Xie, Y. Diao, and X. Hong, “On the Role of Polysulfides for a Stable Solid Electrolyte Interphase on the Lithium Anode Cycled in Lithium–Sulfur Batteries,” Journal of Power Sources 236 (2013):181–187.
|
| [147] |
S. Xiong, K. Xie, Y. Diao, and X. Hong, “Characterization of the Solid Electrolyte Interphase on Lithium Anode for Preventing the Shuttle Mechanism in Lithium–Sulfur Batteries,” Journal of Power Sources 246 (2014):840–845.
|
| [148] |
W. Cai, G. Li, K. Zhang, et al., “Conductive Nanocrystalline Niobium Carbide as High-Efficiency Polysulfides Tamer for Lithium–Sulfur Batteries,” Advanced Functional Materials 28 (2018): 1704865.
|
| [149] |
X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, and L. F. Nazar, “A Highly Efficient Polysulfide Mediator for Lithium–Sulfur Batteries,” Nature Communications 6 (2015): 5682.
|
| [150] |
M. I. Nandasiri, L. E. Camacho Forero, A. M. Schwarz, et al., “In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries,” Chemistry of Materials 29 (2017):4728–4737.
|
| [151] |
M. Zhao, X. Chen, X. Y. Li, B. Q. Li, and J. Q. Huang, “An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium–Sulfur Batteries,” Advanced Materials 33 (2021): 2007298.
|
| [152] |
K. A. See, M. Leskes, J. M. Griffin, et al., “Ab Initio Structure Search and in Situ 7Li NMR Studies of Discharge Products in the Li–S Battery System,” Journal of the American Chemical Society 136 (2014):16368–16377.
|
| [153] |
M. U. M Patel, I. Arčon, G. Aquilanti, L. Stievano, G. Mali, and R. Dominko, “X-Ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium–Sulfur Battery and Its Components,” Chemphyschem 15 (2014):894–904.
|
| [154] |
H. Chen, S. Cartmell, Q. Wang, et al., “Micro-Battery Development for Juvenile Salmon Acoustic Telemetry System Applications,” Scientific Reports 4 (2014): 3790.
|
| [155] |
H. Wang, N. Sa, M. He, et al., “In Situ NMR Observation of the Temporal Speciation of Lithium Sulfur Batteries during Electrochemical Cycling,” Journal of Physical Chemistry C 121 (2017):6011–6017.
|
| [156] |
Y. W. Song, L. Shen, N. Yao, et al., “Anion-Involved Solvation Structure of Lithium Polysulfides in Lithium–Sulfur Batteries,” Angewandte Chemie International Edition 63 (2024): e202400343.
|
| [157] |
C. Ma, F. Xu, and T. Song, “Dual-Layered Interfacial Evolution of Lithium Metal Anode: SEI Analysis via TOF-SIMS Technology,” ACS Applied Materials &Interfaces 14 (2022):20197–20207.
|
| [158] |
M. Wang, H. Su, Y. Zhong, et al., “Localized S-Li2s Conversion With Accelerated Kinetics Mediated by Mixed Conductive Shell for High-Performance Solid-State Lithium-Sulfur Battery,” Advanced Energy Materials 14 (2024): 2302255.
|
| [159] |
C. Zhao, G. L. Xu, Z. Yu, et al., “A High-Energy and Long-Cycling Lithium–Sulfur Pouch Cell via a Macroporous Catalytic Cathode With Double-End Binding Sites,” Nature Nanotechnology 16 (2021):166–173.
|
| [160] |
J. C. Li, J. Tang, J. Tian, et al., “From Oxygen Redox to Sulfur Redox: A Paradigm for Li-Rich Layered Cathodes,” Journal of the American Chemical Society 146 (2024):7274–7287.
|
| [161] |
J. Zhou, M. Wang, and X. Li, “Facile Preparation of Nitrogen-Doped High-Surface-Area Porous Carbon Derived From Sucrose for High Performance Supercapacitors,” Applied Surface Science 462 (2018):444–452.
|
| [162] |
Y. J. Choi, Y. D. Chung, C. Y. Baek, K. W. Kim, H. J. Ahn, and J. H. Ahn, “Effects of Carbon Coating on the Electrochemical Properties of Sulfur Cathode for Lithium/Sulfur Cell,” Journal of Power Sources 184 (2008):548–552.
|
| [163] |
S. Walus, C. Barchasz, R. Bouchet, et al., “Lithium/Sulfur Batteries Upon Cycling: Structural Modifications and Species Quantification by In Situ and Operando X-ray Diffraction Spectroscopy,” Advanced Energy Materials 5 (2015): 1500165.
|
| [164] |
J. Conder, R. Bouchet, S. Trabesinger, C. Marino, L. Gubler, and C. Villevieille, “Direct Observation of Lithium Polysulfides in Lithium–Sulfur Batteries Using Operando X-Ray Diffraction,” Nature Energy 2 (2017): 17069.
|
| [165] |
L. Luo, J. Li, H. Yaghoobnejad Asl, and A. Manthiram, “In-Situ assembled VS4 as a Polysulfide Mediator for High-Loading Lithium–Sulfur Batteries,” ACS Energy Letters 5 (2020):1177–1185.
|
| [166] |
J. He, A. Bhargav, and A. Manthiram, “High-Energy-Density, Long-Life Lithium–Sulfur Batteries With Practically Necessary Parameters Enabled by Low-Cost Fe–Ni Nanoalloy Catalysts,” ACS Nano 15 (2021):8583–8591.
|
| [167] |
Y. Luo, Z. Fang, S. Duan, et al., “Direct Monitoring of Li2S2 Evolution and its Influence on the Reversible Capacities of Lithium–Sulfur Batteries,” Angewandte Chemie International Edition 62 (2023): e202215802.
|
| [168] |
B. B. Gicha, L. T. Tufa, N. Nwaji, X. Hu, and J. Lee, “Advances in All-Solid-State Lithium–Sulfur Batteries for Commercialization,” Nano-Micro Letters 16 (2024): 172.
|
| [169] |
W. Zhao, Y. Zhang, Q. Liu, et al., “Entropy-Modulated Short-Chain Cathode for Low-Temperature All-Solid-State Li–S Batteries,” Angewandte Chemie International Edition 64 (2025): e202413670.
|
| [170] |
X. Meng, Y. Liu, Y. Ma, et al., “Diagnosing and Correcting the Failure of the Solid-State Polymer Electrolyte for Enhancing Solid-State Lithium–Sulfur Batteries,” Advanced Materials 35 (2023): 2212039.
|
| [171] |
P. Zeng, C. Liu, C. Cheng, et al., “Propelling Polysulfide Redox Conversion by D-Band Modulation for High Sulfur Loading and Low Temperature Lithium–Sulfur Batteries,” Journal of Materials Chemistry A 9 (2021):18526–18536.
|
| [172] |
M. Li, W. Liu, D. Luo, Z. Chen, K. Amine, and J. Lu, “Evidence of Morphological Change in Sulfur Cathodes Upon Irradiation by Synchrotron X-Rays,” ACS Energy Letters 7 (2022):577–582.
|
| [173] |
S. Wang, H. Chen, J. Liao, et al., “Efficient Trapping and Catalytic Conversion of Polysulfides by VS4 Nanosites for Li–S Batteries,” ACS Energy Letters 4 (2019):755–762.
|
| [174] |
H. Li, C. Chen, Y. Yan, et al., “Utilizing the Built-in Electric Field of p-n Junctions to Spatially Propel the Stepwise Polysulfide Conversion in Lithium–Sulfur Batteries,” Advanced Materials 33 (2021): 2105067.
|
| [175] |
F. Y. Fan, W. C. Carter, and Y. M. Chiang, “Mechanism and Kinetics of Li2S Precipitation in Lithium–Sulfur Batteries,” Advanced Materials 27 (2015):5203–5209.
|
| [176] |
S. H. Yu, X. Huang, K. Schwarz, et al., “Direct Visualization of Sulfur Cathodes: New Insights Into Li–S Batteriesvia Operandox-Ray Based Methods,” Energy &Environmental Science 11 (2018):202–210.
|
| [177] |
J. Zhou, X. Liu, X. Zhu, et al., “Deciphering the Modulation Essence of p Bands in Co-Based Compounds on Li-S Chemistry Qian,” Joule 2 (2018):2681–2693.
|
| [178] |
L. Chen, S. Yu, Y. Zhang, Y. Song, and L. Song, “Manipulating Electrocatalytic Activity of Carbon Architecture by Supercritical Carbon Dioxide Foaming and Defect Engineering for Li–S Chemistry,” Journal of Power Sources 514 (2021): 230607.
|
| [179] |
Y. Song, H. Gao, M. Wang, et al., “Deciphering the Defect Micro-Environment of Graphene for Highly Efficient Li–S Redox Reactions,” EcoMat 4 (2022): e12182.
|
| [180] |
S. Yu, Y. Sun, L. Song, et al., “Vanadium Atom Modulated Electrocatalyst for Accelerated Li-S Chemistry,” Nano Energy 89 (2021): 106414.
|
| [181] |
Q. Yang, J. Cai, G. Li, et al., “Chlorine Bridge Bond-Enabled Binuclear Copper Complex for Electrocatalyzing Lithium–Sulfur Reactions,” Nature Communications 15 (2024): 3231.
|
| [182] |
L. Chen, Y. Sun, X. Wei, et al., “Dual-Functional V2C MXene Assembly in Facilitating Sulfur Evolution Kinetics and Li-ion Sieving Toward Practical Lithium–Sulfur Batteries,” Advanced Materials 35 (2023): 2300771.
|
| [183] |
S. Risse, E. Härk, B. Kent, and M. Ballauff, “Operandoanalysis of a Lithium/Sulfur Battery by Small-Angle Neutron Scattering,” ACS Nano 13 (2019):10233–10241.
|
| [184] |
Y. C. Chien, M. J. Lacey, N. J. Steinke, D. Brandell, and A. R. Rennie, “Correlations Between Precipitation Reactions and Electrochemical Performance of Lithium–Sulfur Batteries Probed by Operando Scattering Techniques,” Chem 8 (2022):1476–1492.
|
| [185] |
C. Wang, R. Wang, Z. Huang, et al., “Unveiling the Migration Behavior of Lithium Ions in NCM/Graphite Full Cell via in Operando Neutron Diffraction,” Energy Storage Materials 44 (2022):1–9.
|
| [186] |
F. Han, A. S. Westover, J. Yue, et al., “High Electronic Conductivity as the Origin of Lithium Dendrite Formation Within Solid Electrolytes,” Nature Energy 4 (2019):187–196.
|
| [187] |
F. Shen, Z. Sun, L. Zhao, et al., “Triggering the Phase Transition and Capacity Enhancement of Nb2O5 for Fast-Charging Lithium-Ion Storage,” Journal of Materials Chemistry A 9 (2021):14534–14544.
|
| [188] |
S. Lv, T. Verhallen, A. Vasileiadis, et al., “Operando Monitoring the Lithium Spatial Distribution of Lithium Metal Anodes,” Nature Communications 9 (2018): 2152.
|
| [189] |
J. Nelson Weker and M. F. Toney, “Emerging In Situ and Operando Nanoscale X-Ray Imaging Techniques for Energy Storage Materials,” Advanced Functional Materials 25 (2015):1622–1637.
|
| [190] |
X. He, J. Ren, L. Wang, W. Pu, C. Jiang, and C. Wan, “Expansion and Shrinkage of the Sulfur Composite Electrode in Rechargeable Lithium Batteries,” Journal of Power Sources 190 (2009):154–156.
|
| [191] |
C. N. Lin, W. C. Chen, Y. F. Song, C. C. Wang, L. D. Tsai, and N. L. Wu, “Understanding Dynamics of Polysulfide Dissolution and Re-Deposition in Working Lithium–Sulfur Battery by In-Operando Transmission X-Ray Microscopy,” Journal of Power Sources 263 (2014):98–103.
|
| [192] |
Y. J. Li, J. M. Fan, M. S. Zheng, and Q. F. Dong, “A Novel Synergistic Composite Wth Multi-Functional Effects for High-Performance Li–S Batteries,” Energy &Environmental Science 9 (2016):1998–2004.
|
| [193] |
J. Nelson, S. Misra, Y. Yang, et al., “In Operando X-Ray Diffraction and Transmission X-Ray Microscopy of Lithium Sulfur Batteries,” Journal of the American Chemical Society 134 (2012):6337–6343.
|
| [194] |
M. Sadd, S. De Angelis, S. Colding Jørgensen, et al., “Visualization of Dissolution-Precipitation Processes in Lithium–Sulfur Batteries,” Advanced Energy Materials 13 (2022): 2103126.
|
| [195] |
S. Drvarič Talian, G. Kapun, J. Moškon, et al., “Which Process Limits the Operation of a Li–S System,” Chemistry of Materials 31 (2019):9012–9023.
|
| [196] |
T. Shi, Y. Liao, J. Kong, et al., “Quasi-Solid-State Sulfur Cathode With Ultralean Electrolyte via in Situ Polymerization,” Energy Storage Materials 72 (2024): 103744.
|
| [197] |
Z. Miao, Y. Li, X. Xiao, et al., “Direct Optical Fiber Monitor on Stress Evolution of the Sulfur-Based Cathodes for Lithium–Sulfur Batteries,” Energy &Environmental Science 15 (2022):2029–2038.
|
| [198] |
D. Tian, X. Song, Y. Qiu, et al., “Basal-Plane-Activated Molybdenum Sulfide Nanosheets With Suitable Orbital Orientation as Efficient Electrocatalysts for Lithium–Sulfur Batteries,” ACS Nano 15 (2021):16515–16524.
|
| [199] |
J. Zhou, W. Tang, C. Shu, et al., “Well-Defined Metal-N4 Sites Coordinated Defective Carbon as Efficient Electrocatalysts for High Performance Lithium–Sulfur Batteries,” Materials Today Energy 30 (2022): 101151.
|
| [200] |
Z. Li, I. Sami, J. Yang, J. Li, R. V. Kumar, and M. Chhowalla, “Lithiated Metallic Molybdenum Disulfide Nanosheets for High-Performance Lithium–Sulfur Batteries,” Nature Energy 8 (2023):84–93.
|
| [201] |
X. Luo, H. Zheng, W. Lai, et al., “Defect Engineering of Carbons for Energy Conversion and Storage Applications,” Energy &Environmental Materials 6 (2023): e12402.
|
| [202] |
L. Zhou, D. L. Danilov, F. Qiao, R. A. Eichel, and P. H. L. Notten, “ZnFe2O4 Hollow Rods Enabling Accelerated Polysulfide Conversion for Advanced Lithium-Sulfur Batteries,” Electrochimica Acta 414 (2022): 140231.
|
| [203] |
Y. Q. Peng, M. Zhao, Z. X. Chen, et al., “Boosting Sulfur Redox Kinetics by a Pentacenetetrone Redox Mediator for High-Energy-Density Lithium–Sulfur Batteries,” Nano Research 16 (2023):8253–8259.
|
| [204] |
J. Lei, X. X. Fan, T. Liu, et al., “Single-Dispersed Polyoxometalate Clusters Embedded on Multilayer Graphene as a Bifunctional Electrocatalyst for Efficient Li-S Batteries,” Nature Communications 13 (2021): 202.
|
| [205] |
S. Yang, X. Liu, S. Li, et al., “The Mechanism of Water Oxidation Using Transition Metal-Based Heterogeneous Electrocatalysts,” Chemical Society Reviews 53 (2024):5593–5625.
|
| [206] |
C. Zhao, Y. Huang, B. Jiang, et al., “The Origin of Strain Effects on Sulfur Redox Electrocatalyst for Lithium Sulfur Batteries,” Advanced Materials 14 (2024): 2302586.
|
| [207] |
C. Zhao, B. Jiang, Y. Huang, et al., “Highly Active and Stable Oxygen Vacancies via Sulfur Modification for Efficient Catalysis in Lithium–Sulfur Batteries,” Energy &Environmental Science 16 (2023):5490–5499.
|
| [208] |
T. Wang, Q. Dong, C. Li, and Z. Wei, “Sulfur Cathode Electrocatalysis in Lithium–Sulfur Batteries: A Comprehensive Understanding,” Acta Physico-Chimica Sinica 40 (2024): 2303061.
|
| [209] |
R. Xu, H. Tang, Y. Zhou, et al., “Enhanced Catalysis of Radical-to-Polysulfide Interconversion via increased Sulfur Vacancies in Lithium–Sulfur Batteries,” Chemical Science 13 (2022):6224–6232.
|
| [210] |
B. Q. Li, L. Kong, C. X. Zhao, et al., “Expediting Redox Kinetics of Sulfur Species by Atomic-Scale Electrocatalysts in Lithium–Sulfur Batteries,” InfoMat 1 (2019):533–541.
|
| [211] |
J. Zhou, T. Wu, Y. Pan, et al., “Packing Sulfur Species by Phosphorene-Derived Catalytic Interface for Electrolyte-Lean Lithium–Sulfur Batteries,” Advanced Functional Materials 32 (2022): 2106966.
|
| [212] |
B. Wang, L. Wang, B. Zhang, et al., “Niobium Diboride Nanoparticles Accelerating Polysulfide Conversion and Directing Li2S Nucleation Enabled High Areal Capacity Lithium–Sulfur Batteries,” ACS Nano 16 (2022):4947–4960.
|
| [213] |
M. J. Lacey, “Influence of the Electrolyte on the Internal Resistance of Lithium–Sulfur Batteries Studied With an Intermittent Current Interruption Method,” ChemElectroChem 4 (2017):1997–2004.
|
| [214] |
S. Waluš, C. Barchasz, R. Bouchet, and F. Alloin, “Electrochemical Impedance Spectroscopy Study of Lithium–Sulfur Batteries: Useful Technique to Reveal the Li/S Electrochemical Mechanism,” Electrochimica Acta 359 (2020): 136944.
|
| [215] |
C. Tong, H. Chen, S. Jiang, et al., “Suppress Loss of Polysulfides in Lithium–Sulfur Battery by Regulating the Rate-Determining Step via 1T MoS2–MnO2 Covering Layer,” ACS Applied Materials &Interfaces 15 (2023):1175–1183.
|
| [216] |
Y. Zhao, J. Zhang, and J. Guo, “Cathode–Electrolyte Interfacial Processes in Lithium∥Sulfur Batteries Under Lean Electrolyte Conditions,” ACS Applied Materials &Interfaces 13 (2021):31749–31755.
|
| [217] |
H. Zhang, M. Zhang, R. Liu, et al., “Fe3O4-Doped Mesoporous Carbon Cathode With a Plumber’s Nightmare Structure for High-Performance Li-S Batteries,” Nature Communications 15 (2024): 5451.
|
| [218] |
S. Feng, Z. H. Fu, X. Chen, and Q. Zhang, “A Review on Theoretical Models for Lithium–Sulfur Battery Cathodes,” InfoMat 4 (2022): e12304.
|
| [219] |
S. Grimme and P. R. Schreiner, “Computational Chemistry: The Fate of Current Methods and Future Challenges,” Angewandte Chemie International Edition 57 (2018):4170–4176.
|
| [220] |
R. O. Jones, “Density Functional Theory: Its Origins, Rise to Prominence, and Future,” Reviews of Modern Physics 87 (2015):897–923.
|
| [221] |
Y. V. Mikhaylik and J. R. Akridge, “Polysulfide Shuttle Study in the Li/S Battery System,” Journal of the Electrochemical Society 151 (2004): A1969.
|
| [222] |
A. F. Hofmann, D. N. Fronczek, and W. G. Bessler, “Mechanistic Modeling of Polysulfide Shuttle and Capacity Loss in Lithium–Sulfur Batteries,” Journal of Power Sources 259 (2014):300–310.
|
| [223] |
K. Kumaresan, Y. Mikhaylik, and R. E. White, “A Mathematical Model for a Lithium–Sulfur Cell,” Journal of the Electrochemical Society 155 (2008): A576.
|
| [224] |
M. Ghaznavi and P. Chen, “Analysis of a Mathematical Model of Lithium–Sulfur Cells Part III: Electrochemical Reaction Kinetics, Transport Properties and Charging,” Electrochimica Acta 137 (2014):575–585.
|
| [225] |
M. Ghaznavi and P. Chen, “Sensitivity Analysis of a Mathematical Model of Lithium–Sulfur Cells: Part II: Precipitation Reaction Kinetics and Sulfur Content,” Journal of Power Sources 257 (2014):402–411.
|
| [226] |
K. Yoo, M. K. Song, E. J. Cairns, and P. Dutta, “Numerical and Experimental Investigation of Performance Characteristics of Lithium/Sulfur Cells,” Electrochimica Acta 213 (2016):174–185.
|
| [227] |
L. Wang, T. Zhang, S. Yang, F. Cheng, J. Liang, and J. Chen, “A Quantum-Chemical Study on the Discharge Reaction Mechanism of Lithium–Sulfur Batteries,” Journal of Energy Chemistry 1 (2013): 72.
|
| [228] |
R. S. Assary, L. A. Curtiss, and J. S. Moore, “Toward a Molecular Understanding of Energetics in Li–S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study,” Journal of Physical Chemistry C 118 (2014):11545–11558.
|
| [229] |
Q. Zhang, Y. Xiao, Y. Fu, et al., “Theoretical Prediction of B/Al-Doped Black Phosphorus as Potential Cathode Material in Lithium–Sulfur Batteries,” Applied Surface Science 512 (2020): 145639.
|
| [230] |
J. Liu, S. H. Xiao, Z. Zhang, et al., “Naturally Derived Honeycomb-Like N, S-Codoped Hierarchical Porous Carbon With MS2 (M =Co, Ni) Decoration for High-Performance Li–S Battery,” Nanoscale 12 (2020):5114–5124.
|
| [231] |
X. Chen, H. J. Peng, R. Zhang, et al., “An Analogous Periodic Law for Strong Anchoring of Polysulfides on Polar Hosts in Lithium Sulfur Batteries: S-or Li-Binding on First-Row Transition-Metal Sulfides,” ACS Energy Letters 2 (2017):795–801.
|
| [232] |
Q. Pang, X. Liang, C. Y. Kwok, and L. F. Nazar, “Review—The Importance of Chemical Interactions Between Sulfur Host Materials and Lithium Polysulfides for Advanced Lithium–Sulfur Batteries,” Journal of the Electrochemical Society 162 (2015): A2567–A2576.
|
| [233] |
L. Ma, K. E. Hendrickson, S. Wei, and L. A. Archer, “Nanomaterials: Science and Applications in the Lithium–Sulfur Battery,” Nano Today 10 (2015):315–338.
|
| [234] |
X. Liu, J. Q. Huang, Q. Zhang, and L. Mai, “Nanostructured Metal Oxides and Sulfides for Lithium–Sulfur Batteries,” Advanced Materials 29 (2017): 1601759.
|
| [235] |
D. N. Fronczek and W. G. Bessler, “Insight Into Lithium–Sulfur Batteries: Elementary Kinetic Modeling and Impedance Simulation,” Journal of Power Sources 244 (2013):183–188.
|
| [236] |
X. Chen, T. Hou, K. A. Persson, and Q. Zhang, “Combining Theory and Experiment in Lithium–Sulfur Batteries: Current Progress and Future Perspectives,” Materials Today 22 (2019):142–158.
|
| [237] |
Y. W. Song, L. Shen, X. Y. Li, et al., “Phase Equilibrium Thermodynamics of Lithium–Sulfur Batteries,” Nature Chemical Engineering 1 (2024):588–596.
|
| [238] |
Y. Liu, H. Liu, Y. Lin, et al., “Mechanistic Investigation of Polymer-Based All-Solid-State Lithium/Sulfur Battery,” Advanced Functional Materials 31 (2021): 2104863.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.