UV-Polymerized Zincophilic Ion-Enhanced Interfacial Layer With High Ion Transference Number for Ultrastable Zn Metal Anodes

Ruhan Zhao , Ziyu Feng , Rongqian Kuang , Zhijian Li , Ke Lu , Hong Zhang , Songtao Lu

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (2) : e194

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (2) : e194 DOI: 10.1002/cnl2.194
RESEARCH ARTICLE

UV-Polymerized Zincophilic Ion-Enhanced Interfacial Layer With High Ion Transference Number for Ultrastable Zn Metal Anodes

Author information +
History +
PDF

Abstract

Aqueous zinc-ion batteries (AZIBs) are considered one of the most viable options for large-scale energy storage applications due to their high theoretical capacity and abundant reserves. However, issues such as dendritic growth and water-induced corrosion reaction of the zinc anode have hindered their commercialization. To address these challenges, in situ generated multifunctional poly(caffeic acid) (PCA) interface with confined Cu sites and abundant oxygen-containing groups was constructed on the surface of the zinc metal anode via ultraviolet (UV) treatment. The smooth and compact PCA effectively prevents the zinc anode from corrosion by active water in the electrolyte, while the synergies of zincophilic groups and the confined copper sites constitute 3D ion channels of PCA skeleton accelerates the migration of Zn2+ and enhance deposition kinetics, thus lowering Zn2+ desolvation energy. The symmetric cells using the PCA-modified Zn anode demonstrated stable cycling for over 2500 h and 2200 h at current densities of 1.0 and 5.0 mA cm-2, respectively, much better than controls. Additionally, the assembled PCA@Zn//I2 full cell enabled continuous cycling over 1000 cycles at a current density of 1.0 A g-1 and presented reliable operation over 100 cycles in a pouch cell configuration.

Keywords

anticorrosion / iniform deposition / polymeric interface layer / zinc-ion batteries

Cite this article

Download citation ▾
Ruhan Zhao, Ziyu Feng, Rongqian Kuang, Zhijian Li, Ke Lu, Hong Zhang, Songtao Lu. UV-Polymerized Zincophilic Ion-Enhanced Interfacial Layer With High Ion Transference Number for Ultrastable Zn Metal Anodes. Carbon Neutralization, 2025, 4(2): e194 DOI:10.1002/cnl2.194

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Chao, W. Zhou, F. Xie, et al., “Roadmap for Advanced Aqueous Batteries: From Design of Materials to Applications,” Science Advances 6 (2020): eaba4098.

[2]

X. Li, Y. Yao, C. Liu, et al., “Lithium Ferrocyanide Catholyte for High-Energy and Low-cost Aqueous Redox Flow Batteries,” Angewandte Chemie International Edition 62 (2023): e202304667.

[3]

Z. Han, X. Yang, H. Yao, et al., “Red-Phosphorus-Based Anode Materials for Sodium-Ion Batteries: Challenges and Progress,” Energy Technology 12 (2024):2401320.

[4]

H. Zhang, M. Wang, B. Song, et al., “Quasi-Solid Sulfur Conversion for Energetic All-Solid-State Na–S Battery,” Angewandte Chemie International Edition 63 (2024): e202402274.

[5]

D. Larcher and J. M. Tarascon, “Towards Greener and More Sustainable Batteries for Electrical Energy Storage,” Nature Chemistry 7 (2015):19–29.

[6]

J. M. Tarascon and M. Armand, “Issues and Challenges Facing Rechargeable Lithium Batteries,” Nature 414 (2001):359–367.

[7]

K. Kang, Y. S. Meng, J. Bréger, C. P. Grey, and G. Ceder, “Electrodes With High Power and High Capacity for Rechargeable Lithium Batteries,” Science 311 (2006):977–980.

[8]

N. Alias and A. A. Mohamad, “Advances of Aqueous Rechargeable Lithium-Ion Battery: A Review,” Journal of Power Sources 274 (2015):237–251.

[9]

L. Yuan, J. Hao, C. C. Kao, et al., “Regulation Methods for the Zn/Electrolyte Interphase and the Effectiveness Evaluation in Aqueous Zn-Ion Batteries,” Energy &Environmental Science 14 (2021):5669–5689.

[10]

Y. Zuo, K. Wang, P. Pei, et al., “Zinc Dendrite Growth and Inhibition Strategies,” Materials Today &Energy 20 (2021):100692.

[11]

H. Pan, Y. Shao, P. Yan, et al., “Reversible Aqueous Zinc/Manganese Oxide Energy Storage From Conversion Reactions,” Nature Energy 1 (2016): 16039.

[12]

Z. Huang, W. Zhang, H. Zhang, et al., “Uniform Zinc Electrodeposition Directed by Interfacial Cation Reservoir for Stable Zn–I2 Battery,” Journal of Power Sources 523 (2022): 231036.

[13]

G. Li, Z. Zhao, S. Zhang, et al., “A Biocompatible Electrolyte Enables Highly Reversible Zn Anode for Zinc Ion Battery,” Nature Communications 14 (2023): 6526.

[14]

L. E. Blanc, D. Kundu, and L. F. Nazar, “Scientific Challenges for the Implementation of Zn-Ion Batteries,” Joule 4 (2020):771–799.

[15]

L. Ma, M. A. Schroeder, O. Borodin, et al., “Realizing High Zinc Reversibility in Rechargeable Batteries,” Nature Energy 5 (2020):743–749.

[16]

C. Li, X. Xie, S. Liang, and J. Zhou, “Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-Ion Batteries,” Energy &Environmental Materials 3 (2020):146–159.

[17]

K. Wippermann, J. W. Schultze, R. Kessel, and J. Penninger, “The Inhibition of Zinc Corrosion By Bisaminotriazole and Other Triazole Derivatives,” Corrosion Science 32 (1991):205–230.

[18]

Z. Tie, L. Liu, S. Deng, D. Zhao, and Z. Niu, “Proton Insertion Chemistry of a Zinc–Organic Battery,” Angewandte Chemie International Edition 59 (2020):4920–4924.

[19]

M. Zhang, J. H. Li, Y. Tang, et al., “Selective Zn-Ion Channels Enabled By a Double-Network Protective Layer for Stable Zinc Anode,” Energy Storage Materials 65 (2024): 103113.

[20]

Y. Tang, J. H. Li, C. L. Xu, M. Liu, B. Xiao, and P. F. Wang, “Electrode/Electrolyte Interfacial Engineering for Aqueous Zn-Ion Batteries,” Carbon Neutralization 2 (2023):186–212.

[21]

J. Yi, P. Liang, X. Liu, et al., “Challenges, Mitigation Strategies and Perspectives in Development of Zinc-Electrode Materials and Fabrication for Rechargeable Zinc–Air Batteries,” Energy &Environmental Science 11 (2018):3075–3095.

[22]

Z. Cai, Y. Ou, J. Wang, et al., “Chemically Resistant Cu–Zn/Zn Composite Anode for Long Cycling Aqueous Batteries,” Energy Storage Materials 27 (2020):205–211.

[23]

D. Han, S. Wu, S. Zhang, et al., “A Corrosion-Resistant and Dendrite-Free Zinc Metal Anode in Aqueous Systems,” Small 16 (2020): 2001736.

[24]

H. Tian, G. Feng, Q. Wang, et al., “Three-Dimensional Zn-Based Alloys for Dendrite-Free Aqueous Zn Battery in Dual-Cation Electrolytes,” Nature Communications 13 (2022): 7922.

[25]

X. Zhang, J. Li, K. Qi, et al., “An Ion-Sieving Janus Separator Toward Planar Electrodeposition for Deeply Rechargeable Zn-Metal Anodes,” Advanced Materials 34 (2022): 2205175.

[26]

C. Yang, P. Woottapanit, Y. Yue, et al., “ndustrial Waste Derived Separators for Zn-Ion Batteries Achieve Homogeneous Zn(002) Deposition Through Low Chemical Affinity Effects,” Small 20 (2024): e2311203.

[27]

Y. Qin and X. Wang, “Preventing Dissolution of Cathode Active Materials by Ion-anchoring Zeolite-Based Separators for Durable Aqueous Zinc Batteries,” Angewandte Chemie International Edition 63 (2024): e202315464.

[28]

X. Song, L. Bai, C. Wang, et al., “Synergistic Cooperation of Zn(002) Texture and Amorphous Zinc Phosphate for Dendrite-Free Zn Anodes,” ACS Nano 17 (2023):15113–15124.

[29]

S. D. Pu, C. Gong, Y. T. Tang, et al., “Achieving Ultrahigh-Rate Planar and Dendrite-Free Zinc Electroplating for Aqueous Zinc Battery Anodes,” Advanced Materials 34 (2022): 2202552.

[30]

J. Zheng, Q. Zhao, T. Tang, et al., “Reversible Epitaxial Electrodeposition of Metals in Battery Anodes,” Science 366 (2019):645–648.

[31]

M. Liu, W. Yuan, G. Ma, et al., “In-Situ Integration of a Hydrophobic and Fast-Zn2+-Conductive Inorganic Interphase to Stabilize Zn Metal Anodes,” Angewandte Chemie International Edition 62 (2023): e202304444.

[32]

Y. Zeng, H. Wang, M. Rauf, et al., “Synergistic Enhanced Zinc-Ion Battery Performance Achieving by Atomic Layer Deposition of TiO2 on Three-Dimensional Carbon Nanotube Network Decorated Zn Anode,” Electrochimica Acta 447 (2023): 142085.

[33]

Q. Yang, L. Li, T. Hussain, et al., “Stabilizing Interface pH by N-Modified Graphdiyne for Dendrite-Free and High-Rate Aqueous Zn-Ion Batteries,” Angewandte Chemie International Edition 61 (2022): e202112304.

[34]

F. Zhao, J. Feng, H. Dong, et al., “Ultrathin Protection Layer via Rapid Sputtering Strategy for Stable Aqueous Zinc Ion Batteries,” Advanced Functional Materials 34 (2024): 2409400.

[35]

K. Zhang, C. Li, J. Liu, S. Zhang, M. Wang, and L. Wang, “Defect-Rich Functional HfO2-x for Highly Reversible Zn Metal Anode,” Small 20 (2024): 2306406.

[36]

X. Pu, B. Jiang, X. Wang, et al., “High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials,” Nano-Micro Letters 12 (2020): 152.

[37]

X. Zeng, K. Xie, S. Liu, et al., “Bio-Inspired Design of An In Situ Multifunctional Polymeric Solid–Electrolyte Interphase for Zn Metal Anode Cycling at 30 mA cm-2 and 30 mAH cm-2,” Energy &Environmental Science 14 (2021):5947–5957.

[38]

J. Cui, Z. Li, A. Xu, J. Li, and M. Shao, “Confinement of Zinc Salt in Ultrathin Heterogeneous Film to Stabilize Zinc Metal Anode,” Small 17 (2021): 2100722.

[39]

X. Chen, W. Li, S. Hu, et al., “Polyvinyl Alcohol Coating Induced Preferred Crystallographic Orientation in Aqueous Zinc Battery Anodes,” Nano Energy 98 (2022): 107269.

[40]

Y. He, Q. Chen, Y. Zhang, Y. Zhao, and L. Chen, “H2O2-Triggered Rapid Deposition of Poly(Caffeic Acid) Coatings: A Mechanism-Based Entry to Versatile and High-Efficient Molecular Separation,” ACS Applied Materials &Interfaces 12 (2020):52104–52115.

[41]

L. Q. Xu, K. G. Neoh, and E. T. Kang, “Natural Polyphenols as Versatile Platforms for Material Engineering and Surface Functionalization,” Progress in Polymer Science 87 (2018):165–196.

[42]

Q. Ye, F. Zhou, and W. Liu, “Bioinspired Catecholic Chemistry for Surface Modification,” Chemical Society Reviews 40 (2011): 4244.

[43]

V. Ball, J. Gracio, M. Vila, et al, “Comparison of Synthetic Dopamine–Eumelanin Formed in the Presence of Oxygen and Cu2+ Cations as Oxidants,” Langmuir 29 (2013):12754–12761.

[44]

C. Zhang, Y. Ou, W. X. Lei, L. S. Wan, J. Ji, and Z. K. Xu, “CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings With High Uniformity and Enhanced Stability,” Angewandte Chemie International Edition 55 (2016):3054–3057.

[45]

D. Luo, L. Zheng, Z. Zhang, et al., “Constructing Multifunctional Solid Electrolyte Interface via In-Situ Polymerization for Dendrite-Free and Low N/P Ratio Lithium Metal Batteries,” Nature Communications 12 (2021): 186.

[46]

S. Liu, Y. Liang, W. Chen, et al., “Ultrathin Surface Coating of Cu Enabling Long-Life Zn Metal Anodes,” Rare Metals 43 (2024): 2125.

[47]

M. M. Zieger, O. Pop-Georgievski, A. los Santos Pereira, de, et al., “Ultrathin Monomolecular Films and Robust Assemblies Based on Cyclic Catechols,” Langmuir 33 (2017):670–679.

[48]

X. Wang, Y. Xue, S. Dong, et al., “Poly(caffeic acid) as Interlayer to Enhance Nanofiltration Performance of Polyamide Composite Membrane,” Desalination 545 (2023): 116168.

[49]

A. Chahardoli, F. Qalekhani, Y. Shokoohinia, and A. Fattahi, “Caffeic Acid Based Titanium Dioxide Nanoparticles: Blood Compatibility, Anti-Inflammatory, and Cytotoxicity,” Journal of Molecular Liquids 361 (2022): 119674.

[50]

A. Hou, G. Feng, J. Zhuo, and G. Sun, “UV Light-Induced Generation of Reactive Oxygen Species and Antimicrobial Properties of Cellulose Fabric Modified by 3, 3′ 4, 4′-Benzophenone Tetracarboxylic Acid,” ACS Applied Materials & Interfaces 7 (2015):27918–27924.

[51]

L. Zhou, F. Yang, S. Zeng, et al., “Zincophilic Cu Sites Induce Dendrite-Free Zn Anodes for Robust Alkaline/Neutral Aqueous Batteries,” Advanced Functional Materials 32 (2022): 2110829.

[52]

Q. Zhang, J. Luan, Y. Tang, X. Ji, and H. Wang, “Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries,” Angewandte Chemie International Edition 59 (2020):13180–13191.

[53]

J. Hu, Y. Qu, F. Shi, et al., “nhancing the Kinetics of Zinc Ion Deposition by Catalytic Ion in Polymer Electrolytes for Advanced Zn–MnO2 Batteries,” Advanced Functional Materials 32 (2022): 2209463.

[54]

J. Evans, C. A. Vincent, and P. G. Bruce, “Electrochemical Measurement of Transference Numbers in Polymer Electrolytes,” Polymer 28 (1987):2324–2328.

[55]

M. Cheng, D. Li, J. Cao, et al., “Anions-in-Colloid”Hydrated Deep Eutectic Electrolyte for High Reversible Zinc Metal Anodes,” Angewandte Chemie International Edition 63 (2024): e202410210.

[56]

X. Xie, S. Liang, J. Gao, et al, “Manipulating the Ion-Transfer Kinetics and Interface Stability for High-Performance Zinc Metal Anodes,” Energy &Environmental Science 13 (2020):503–510.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

353

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/