Research Advances in Interface Engineering of Solid-State Lithium Batteries

Jianfang Yang , Xianyong Zhang , Minchen Hou , Chang Ni , Chao Chen , Siliu Liu , Yan Wang , Xueyi Lu , Xia Lu

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (1) : e188

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (1) : e188 DOI: 10.1002/cnl2.188
REVIEW

Research Advances in Interface Engineering of Solid-State Lithium Batteries

Author information +
History +
PDF

Abstract

Solid-state lithium batteries have attracted increasing attention due to their high ionic conductivity, potential high safety performance, and high energy density. However, their practical application is limited by a series of interface issues. In recent years, many efforts have been dedicated to solving these problems via interface engineering by providing feasible strategies for the optimization of lithiumion solid-state battery interfaces. This paper reviews the recent developments of interface engineering in addressing interfacial issues. The existing interface problems are first systematically summarized, including poor contact, electrochemical instability, lithium dendrites, space-charge layers, and element diffusion. Then, the corresponding interface characteristics and engineering strategies are thoroughly analyzed from the perspective of the cathode/electrolyte interface, the anode/electrolyte interface, and battery structure design. Finally, future research directions for the interface modification of solid-state lithium batteries are discussed.

Keywords

electrochemistry / interface engineering / solid-state batteries / solid-state electrolyte

Cite this article

Download citation ▾
Jianfang Yang, Xianyong Zhang, Minchen Hou, Chang Ni, Chao Chen, Siliu Liu, Yan Wang, Xueyi Lu, Xia Lu. Research Advances in Interface Engineering of Solid-State Lithium Batteries. Carbon Neutralization, 2025, 4(1): e188 DOI:10.1002/cnl2.188

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Lan and W. Yao, “Mixed Pokyanionic Comounds as Positive Electrodes for Low-Cost Electrochemical Energy Storage,” Angewandte Chemie International Edition 59 (2020):9255–9262.

[2]

M. Armand and J. M. Tarascon, “Building Better Batteries,” Nature 451 (2008):652–657.

[3]

J. M. Tarascon and M. Armand, “Issues and Challenges Facing Rechargeable Lithium Batteries,” Nature 414 (2001):359–367.

[4]

S. Sun and B. Liu, “Boosting Energy Storage via Confining Soluble Redox Species Onto Solid–Liquid Interface,” Advanced Energy Materials 11 (2021):2003599.

[5]

M. Li and J. Lu, “30 Years of Lithium-Ion Batteries,” Advanced Materials 30 (2018):1800561.

[6]

Y. Lu and J. Chen, “Prospects of Organic Electrode Materials for Practical Lithium Batteries,” Nature Reviews Chemistry 4 (2020):127–142.

[7]

H. Yin and C. Han, “Recent Advances and Perspectives on the Polymer Electrolytes for Sodium/Potassium-Ion Batteries,” Small 17 (2021):2006627.

[8]

J. B. Goodenough and K.-S. Park, “The Li-Ion Rechargeable Battery: A Perspective,” Journal of the American Chemical Society 135 (2013):1167–1176.

[9]

B. Dunn, H. Kamath, and J.-M. Tarascon, “Electrical Energy Storage for the Grid: A Battery of Choices,” Science 334 (2011):928–935.

[10]

J. Lu, T. Wu, and K. Amine, “State-of-the-Art Characterization Techniques for Advanced Lithium-Ion Batteries,” Nature Energy 2 (2017):17011.

[11]

P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, “Li–O2 and Li–S Batteries With High Energy Storage,” Nature Materials 11 (2012):19–29.

[12]

Y. Lu, Z. Tu, and L. A. Archer, “Stable Lithium Electrodeposition in Liquid and Nanoporous Solid Electrolytes,” Nature Materials 13 (2014):961–969.

[13]

X. Zheng, C. Bommier, W. Luo, L. Jiang, Y. Hao, and Y. Huang, “Sodium Metal Anodes for Room-Temperature Sodium-Ion Batteries: Applications, Challenges and Solutions,” Energy Storage Materials 16 (2019):6–23.

[14]

Q. Li, Y. Qiao, S. Guo, et al., “Both Cationic and Anionic Co-(De)Intercalation Into a Metal-Oxide Material,” Joule 2 (2018):1134–1145.

[15]

X. Shen, H. Liu, X.-B. Cheng, C. Yan, and J.-Q. Huang, “Beyond Lithium Ion Batteries: Higher Energy Density Battery Systems Based on Lithium Metal Anodes,” Energy Storage Materials 12 (2018):161–175.

[16]

F. Wu, Y.-X. Yuan, X.-B. Cheng, et al., “Perspectives for Restraining Harsh Lithium Dendrite Growth: Towards Robust Lithium Metal Anodes,” Energy Storage Materials 15 (2018):148–170.

[17]

K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang, and Y. Tang, “Locally Ordered Graphitized Carbon Cathodes for High-Capacity Dual-Ion Batteries,” Angewandte Chemie International Edition 60 (2021):6326–6332.

[18]

J. Zhu and Y. Li “A Dual Carbon-Based Potassium Dual Ion Battery With Robust Comprehensive Performance,” Small 14 (2018):1801836.

[19]

N.-S. Choi, Z. Chen, and S. A. Freunberger, “Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors,” Angewandte Chemie International Edition 51 (2012):9994–10024.

[20]

Y. Sun, J. Ma, D. Wu, et al., “A Breathable Inorganic–Organic Interface for Fabricating a Crack-Free Nickel-Rich Cathode With Long-Term Stability,” Energy &Environmental Science 17 (2024):5124–5136.

[21]

X. Judez, G. G. Eshetu, C. Li, L. M Rodriguez-Martinez, H. Zhang, and M. Armand, “Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes,” Joule 2 (2018):2208–2224.

[22]

C. Yan, Y. X. Yao, X. Chen, et al., “Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries,” Angewandte Chemie International Edition 57 (2018):14055–14059.

[23]

J. Hu, C. Zhang, L. Jiang, et al., “Nanohybridization of MoS2 With Layered Double Hydroxides Efficiently Synergizes the Hydrogen Evolution in Alkaline Media,” Joule 1 (2017):383–393.

[24]

N.-W. Li, Y.-X. Yin, C.-P. Yang, and Y.-G. Guo, “An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes,” Advanced Materials 28 (2016):1853–1858.

[25]

L. Zhang, H. Wang, X. Zhang, and Y. Tang, “A Review of Emerging Dual-Ion Batteries: Fundamentals and Recent Advances,” Advanced Functional Materials 31 (2021):2010958.

[26]

Y.-F. Meng, H.-J. Liang, C.-D. Zhao, et al., “Concurrent Recycling Chemistry for Cathode/Anode in Spent graphite/LiFePO4 Batteries: Designing a Unique Cation/Anion-Co-Workable Dual-Ion Battery,” Journal of Energy Chemistry 64 (2022):166–171.

[27]

J. Duan, X. Tang, H. Dai, et al., “Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review,” Electrochemical Energy Reviews 3 (2020):1–42.

[28]

J. B. Goodenough and Y. Kim, “Challenges for Rechargeable Li Batteries,” Chemistry of Materials 22 (2010):587–603.

[29]

R. V. Salvatierra, G. A. López-Silva, A. S. Jalilov, J. Yoon, et al. “Suppressing Li Metal Dendrites Through a Solid Li-ion Backup Layer,” Advanced Materials 30 (2018):1803869.

[30]

T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, and C. Masquelier, “Fundamentals of Inorganic Solid-State Electrolytes for Batteries,” Nature Materials 18 (2019):1278–1291.

[31]

X. Yang, K. R. Adair, X. Gao, and X. Sun, “Recent Advances and Perspectives on Thin Electrolytes for High-Energy-Density Solid-State Lithium Batteries,” Energy &Environmental Science 14 (2021):643–671.

[32]

Q. Zhao, S. Stalin, C.-Z. Zhao, and L. A. Archer, “Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries,” Nature Reviews Materials 5 (2020):229–252.

[33]

Y.-S. Hu, “Batteries: Getting Solid,” Nature Energy 1 (2016):16042.

[34]

J. Li, C. Ma, M. Chi, C. Liang, and N. J. Dudney, “Lithium-Ion Batteries: Solid Electrolyte: The Key for High-Voltage Lithium Batteries,” Advanced Energy Materials 5 (2015):1401408.

[35]

P. Jiang, G. Du, J. Cao, et al. “Solid-State Li Ion Batteries With Oxide Solid Electrolytes: Progress and Perspective,” Energy Technology 11 (2023):2201288.

[36]

P. Jiang, P. Guo, Y. Shi, et al., “Solid-State Li Metal Battery Enabled By Cold Sintering at 120°C,” Materials Today Physics 20 (2021):100476.

[37]

G. Du, D. Muhtar, J. Cao, et al., “Solid-State Composite Electrolytes: Turning the Natural Moat Into a Thoroughfare,” Materials Chemistry Frontiers 8 (2024):1250–1281.

[38]

H. Gong, H. Xue, X. Lu, et al., “All Solid-State Lithium–Oxygen Batteries With MOF-Derived Nickel Cobaltate Nanoflake Arrays As High-Performance Oxygen Cathodes,” Chemical Communications 55 (2019):10689–10692.

[39]

D. Zhou, R. Liu, J. Zhang, et al., “In Situ Synthesis of Hierarchical Poly(Ionic Liquid)-Based Solid Electrolytes for High-Safety Lithium-Ion and Sodium-Ion Batteries,” Nano Energy 33 (2017):45–54.

[40]

S. Zou, Y. Yang, J. Wang, et al., “In Situpolymerization of Solid-State Polymer Electrolytes for Lithium Metal Batteries: A Review,” Energy &Environmental Science 17 (2024):4426–4460.

[41]

X. Wang, R. Kerr, F. Chen, et al. “Toward High-Energy-Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes,” Advanced Materials 32 (2020):1905219.

[42]

S. Gu, C. Sun, D. Xu, Y. Lu, J. Jin, and Z. Wen, “Recent Progress in Liquid Electrolyte-Based Li–S Batteries: Shuttle Problem and Solutions,” Electrochemical Energy Reviews 1 (2018):599–624.

[43]

M. Balaish, J. C Gonzalez-Rosillo, K. J. Kim, Y. Zhu, Z. D. Hood, and J. L. M. Rupp, “Processing Thin but Robust Electrolytes for Solid-State Batteries,” Nature Energy 6 (2021):227–239.

[44]

L. Xu, S. Tang, Y. Cheng, et al., “Interfaces in Solid-State Lithium Batteries,” Joule 2 (2018):1991–2015.

[45]

C. Wang, K. Fu, S. P. Kammampata, et al., “Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries,” Chemical Reviews 120 (2020):4257–4300.

[46]

W. Xiao, J. Wang, L. Fan, J. Zhang, and X. Li, “Recent Advances in Li1+xAlxTi2–x(PO4)3 Solid-State Electrolyte for Safe Lithium Batteries,” Energy Storage Materials 19 (2019):379–400.

[47]

A. Sharafi, E. Kazyak, A. L. Davis, et al., “Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7la3Zr2O12,” Chemistry of Materials 29 (2017):7961–7968.

[48]

J. Zhu, J. Zhao, Y. Xiang, et al., “Chemomechanical Failure Mechanism Study in Nasicon-Type Li1.3Al0.3Ti1.7(PO4)3 Solid-State Lithium Batteries,” Chemistry of Materials 32 (2020):4998–5008.

[49]

T. Krauskopf, R. Dippel, H. Hartmann, et al., “Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes,” Joule 3 (2019):2030–2049.

[50]

Z. Cheng, M. Liu, S. Ganapathy, et al., “Revealing the Impact of Space-Charge Layers on the Li-Ion Transport in All-Solid-State Batteries,” Joule 4 (2020):1311–1323.

[51]

W. Zhang, F. H. Richter, S. P. Culver, et al., “Degradation Mechanisms at the Li10GeP2S12/LiCoO2 Cathode Interface in an All-Solid-State Lithium-Ion Battery,” ACS Applied Materials &Interfaces 10 (2018):22226–22236.

[52]

H. Huo, J. Luo, V. Thangadurai, X. Guo, C.-W. Nan, and X. Sun, “Li2CO3: A Critical Issue for Developing Solid Garnet Batteries,” ACS Energy Letters 5 (2020):252–262.

[53]

J. Dai, C. Yang, C. Wang, G. Pastel, and L. Hu, “Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization,” Advanced Materials 30 (2018):1802068.

[54]

B. Qi, X. Hong, Y. Jiang, et al., “A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries,” Nano-Micro Letters 16 (2024):71.

[55]

J. Kasemchainan, S. Zekoll, D. Spencer Jolly, et al., “Critical Stripping Current Leads to Dendrite Formation on Plating in Lithium Anode Solid Electrolyte Cells,” Nature Materials 18 (2019):1105–1111.

[56]

H. Huo, Y. Chen, N. Zhao, et al., “In-Situ Formed Li2CO3-Free Garnet/Li Interface Bby Rapid Acid Treatment for Dendrite-Free Solid-State Batteries,” Nano Energy 61 (2019):119–125.

[57]

A. Banerjee, X. Wang, C. Fang, E. A. Wu, and Y. S. Meng, “Interfaces and Interphases in All-Solid-State Batteries With Inorganic Solid Electrolytes,” Chemical Reviews 120 (2020):6878–6933.

[58]

Y. Mo, S. P. Ong, and G. Ceder, “First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material,” Chemistry of Materials 24 (2012):15–17.

[59]

L. Zhu, Y. Wang, Y. Wu, et al. “Boron Nitride-Based Release Agent Coating Stabilizes Li1.3Al0.3Ti1.7(PO4)3/Li Interface With Superior Lean-Lithium Electrochemical Performance and Thermal Stability,” Advanced Functional Materials 32 (2022):2201136.

[60]

K. Yang, L. Chen, J. Ma, Y.-B. He, and F. Kang, “Progress and Perspective of Li1+xAlxTi2-x(PO4)3 ceramic Electrolyte in Lithium Batteries,” InfoMat 3 (2021):1195–1217.

[61]

J.-H. Yin, H. Zhu, S.-J. Yu, et al., “Recent Advances of LATP and Their NASICON Structure as a Solid-State Electrolyte for Lithium-Ion Batteries,” Advanced Engineering Materials 25 (2023):2300566.

[62]

S. Wenzel, S. Randau, T. Leichtweiß, et al., “Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode,” Chemistry of Materials 28 (2016):2400–2407.

[63]

S.-K. Jiang, S.-C. Yang, W.-H. Huang, et al., “Enhancing the Interfacial Stability Between Argyrodite Sulfide-Based Solid Electrolytes and Lithium Electrodes Through CO2 Adsorption,” Journal of Materials Chemistry A 11 (2023):2910–2919.

[64]

J. Zhao, C. Zhao, J. Zhu, et al., “Size-Dependent Chemomechanical Failure of Sulfide Solid Electrolyte Particles During Electrochemical Reaction With Lithium,” Nano Letters 22 (2022):411–418.

[65]

Z. Ning, G. Li, D. L. R. Melvin, et al., “Dendrite Initiation and Propagation in Lithium Metal Solid-State Batteries,” Nature 618 (2023):287–293.

[66]

Z. Gu, D. Song, S. Luo, et al. “Insights Into the Anode-Initiated and Grain Boundary-Initiated Mechanisms for Dendrite Formation in All-Solid-State Lithium Metal Batteries,” Advanced Energy Materials 13 (2023):2302945.

[67]

H. Wang, H. Gao, X. Chen, et al. “Linking the Defects to the Formation and Growth of Li Dendrite in All-Solid-State Batteries,” Advanced Energy Materials 11 (2021):2102148.

[68]

C. Wang, D. Han, J. Wang, et al., “Dimension Control of in Situ Fabricated CsPbClBr2 Nanocrystal Films Toward Efficient Blue Light-Emitting Diodes,” Nature Communications 11 (2020):6428.

[69]

K. H. Kim, Y. Iriyama, K. Yamamoto, et al., “Characterization of the Interface Between LiCoO2 and Li7La3Zr2O12 in an All-Solid-State Rechargeable Lithium Battery,” Journal of Power Sources 196 (2011):764–767.

[70]

K. Park, B.-C. Yu, J.-W. Jung, et al., “Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface Between LiCoO2 and Garnet-Li7la3Zr2O12,” Chemistry of Materials 28 (2016):8051–8059.

[71]

L. Wang, X. Zhang, T. Wang, et al. “Ameliorating the Interfacial Problems of Cathode and Solid-State Electrolytes by Interface Modification of Functional Polymers,” Advanced Energy Materials 8 (2018):1801528.

[72]

T. Krauskopf, H. Hartmann, W. G. Zeier, and J. Janek, “Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries—An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3zr2O12,” ACS Applied Materials &Interfaces 11 (2019):14463–14477.

[73]

L. Zhai, K. Yang, F. Jiang, W. Liu, Z. Yan, and J. Sun, “High-Performance Solid-State Lithium Metal Batteries Achieved By Interface Modification,” Journal of Energy Chemistry 79 (2023):357–364.

[74]

C. Yang, H. Xie, W. Ping, et al. “An Electron/Ion Dual-Conductive Alloy Framework for High-Rate and High-Capacity Solid-State Lithium-Metal Batteries,” Advanced Materials 31 (2019):1804815.

[75]

C. Wang, H. Xie, W. Ping, et al., “A General, Highly Efficient, High Temperature Thermal Pulse Toward High Performance Solid State Electrolyte,” Energy Storage Materials 17 (2019):234–241.

[76]

J.-F. Wu, B.-W. Pu, D. Wang, et al., “In Situ Formed Shields Enabling Li2CO3-Free Solid Electrolytes: A New Route to Uncover the Intrinsic Lithiophilicity of Garnet Electrolytes for Dendrite-Free Li-Metal Batteries,” ACS Applied Materials &Interfaces 11 (2019):898–905.

[77]

R. P. Rao, W. Gu, N. Sharma, V. K. Peterson, M. Avdeev, and S. Adams, “In Situ Neutron Diffraction Monitoring of Li7La3Zr2O12 Formation: Toward a Rational Synthesis of Garnet Solid Electrolytes,” Chemistry of Materials 27 (2015):2903–2910.

[78]

M. Nyman, T. M. Alam, S. K. McIntyre, G. C. Bleier, and D. Ingersoll, “Alternative Approach to Increasing Li Mobility in Li-La-Nb/Ta Garnet Electrolytes,” Chemistry of Materials 22 (2010):5401–5410.

[79]

Y. Ruan, Y. Lu, X. Huang, et al., “Acid Induced Conversion Towards a Robust and Lithiophilic Interface for Li–Li7La3Zr2O12 Solid-state Batteries,” Journal of Materials Chemistry A 7 (2019):14565–14574.

[80]

Y. Ruan, Y. Lu, Y. Li, et al., “Acid Induced Conversion Towards a Robust and Lithiophilic Interface for Li–Li7La3Zr2O12 Solid-State Batteries,” Advanced Functional Materials 31 (2021):2007815.

[81]

M. Cai, J. Jin, T. Xiu, Z. Song, M. E. Badding, and Z. Wen, “In-Situ Constructed Lithium-Salt Lithiophilic Layer Inducing Bi-Functional Interphase for Stable Llzo/Li Interface,” Energy Storage Materials 47 (2022):61–69.

[82]

L. Huang, H. Fu, J. Duan, et al., “Negating Li+ Transfer Barrier at Solid-Liquid Electrolyte Interface in Hybrid Batteries,” Chem 8 (2022):1928–1943.

[83]

D. Shin, J. Jung, Y. Roh, et al., “Preferential Lithium Plating in the Interfacial Void Region in All-Solid-State Batteries via Pressure Gradient-Driven Lithium-Ion Flux,” ACS Energy Letters 9 (2024):1035–1042.

[84]

Y. Nikodimos, W.-N. Su, B. W. Taklu, et al., “Resolving Anodic and Cathodic Interface-Incompatibility in Solid-State Lithium Metal Battery via Interface Infiltration of Designed Liquid Electrolytes,” Journal of Power Sources 535 (2022):231425.

[85]

H. Wan, S. Liu, T. Deng, et al., “Bifunctional Interphase-Enabled Li10GeP2S12 Electrolytes for Lithium–Sulfur Battery,” ACS Energy Letters 6 (2021):862–868.

[86]

G. Yang, X. Bai, Y. Zhang, et al., “A Bridge Between Ceramics Electrolyte and Interface Layer to Fast Li+ Transfer for Low Interface Impedance Solid-State Batteries,” Advanced Functional Materials 33 (2023):2211387.

[87]

J. Liu, X. Gao, G. O. Hartley, et al., “The Interface Between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte,” Joule 4 (2020):101–108.

[88]

X. Zhou, F. Huang, X. Zhang, et al., “Interface-Targeting Carrier-Catalytic Integrated Design Contributing to Lithium Dihalide-Rich SEI toward High Interface Stability for Long-Life Solid-State Lithium-Metal Batteries,” Angewandte Chemie International Edition 63 (2024):e202401576.

[89]

S. A. Pervez, B. P. Vinayan, M. A. Cambaz, et al., “Electrochemical and Compositional Characterization of Solid Interphase Layers in an Interface-Modified Solid-State Li–Sulfur Battery,” Journal of Materials Chemistry A 8 (2020):16451–16462.

[90]

X. Zhao, C. Wang, Z. Li, X. Hu, A. Abdul Razzaq, and Z. Deng, “Sulfurized Polyacrylonitrile for High-Performance Lithium Sulfur Batteries: Advances and Prospects,” Journal of Materials Chemistry A 9 (2021):19282–19297.

[91]

Z. Lu, Z. Yang, C. Li, et al., “Modulating Nanoinhomogeneity at Electrode–Solid Electrolyte Interfaces for Dendrite-Proof Solid-State Batteries and Long-Life Memristors,” Advanced Energy Materials 11 (2021):2003811.

[92]

K. He, S. H.-S. Cheng, J. Hu, et al., “In-Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasi-Solid-State Lithium Metal Batteries,” Angewandte Chemie International Edition 60 (2021):12116–12123.

[93]

H. Bao, D. Chen, J. Cao, et al., “Boosting the Cycling Stability of All-Solid-State Lithium Metal Batteries Through MOF-Based Polymeric Protective Layers,” Journal of Energy Chemistry 95 (2024):511–518.

[94]

H. Huo, J. Gao, N. Zhao, et al., “A Flexible Electron-Blocking Interfacial Shield for Dendrite-Free Solid Lithium Metal Batteries,” Nature Communications 12 (2021):176.

[95]

W. Luo, Y. Gong, Y. Zhu, et al., “Reducing Interfacial Resistance Between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer,” Advanced Materials 29 (2017):1606042.

[96]

G. V. Alexander, S. Patra, S. V. Sobhan Raj, M. K. Sugumar, M. M. Ud Din, and R. Murugan, “Electrodes-Electrolyte Interfacial Engineering for Realizing Room Temperature Lithium Metal Battery Based on Garnet Structured Solid Fast Li+Conductors,” Journal of Power Sources 396 (2018):764–773.

[97]

Y.-K. Liao, Z. Tong, C.-C. Fang, et al., “Extensively Reducing Interfacial Resistance by the Ultrathin Pt Layer Between the Garnet-Type Solid-State Electrolyte and Li–Metal Anode,” ACS Applied Materials &Interfaces 13 (2021):56181–56190.

[98]

R. Dubey, J. Sastre, C. Cancellieri, et al., “Building a Better Li-Garnet Solid Electrolyte/Metallic Li Interface With Antimony,” Advanced Energy Materials 11 (2021):2102086.

[99]

J. Meng, Y. Zhang, X. Zhou, M. Lei, and C. Li, “Li2CO3-affiliative Mechanism for Air-Accessible Interface Engineering of Garnet Electrolyte via Facile Liquid Metal Painting,” Nature Communications 11 (2020):3716.

[100]

W. Feng, X. Dong, Z. Lai, et al., “Building an Interfacial Framework: Li/Garnet Interface Stabilization Through a Cu6sn5layer,” ACS Energy Letters 4 (2019):1725–1731.

[101]

L. Zhang, Q. Meng, Y. Dai, et al., “Ion/Electron Conductive Layer With Double-Layer-Like Structure for Dendrite-Free Solid-State Lithium Metal Batteries,” Nano Energy 113 (2023):108573.

[102]

X. Han, Y. Gong, K. Fu, et al., “Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries,” Nature Materials 16 (2017):572–579.

[103]

L. Wang, L. Wang, Q. Shi, et al., “In-Situ Constructed SnO2 Gradient Buffer Layer as a Tight and Robust Interphase Toward Li Metal Anodes in Latp Solid State Batteries,” Journal of Energy Chemistry 80 (2023):89–98.

[104]

P. Pirayesh, K. Tantratian, M. Amirmaleki, et al., “From Nanoalloy to Nano-Laminated Interfaces for Highly Stable Alkali-Metal Anodes,” Advanced Materials 35 (2023):2301414.

[105]

F. Zhu, W. Deng, B. Zhang, et al., “In-Situ Construction of Multifunctional Interlayer Enabled Dendrite-Free Garnet-Based Solid-State Batteries,” Nano Energy 111 (2023):108416.

[106]

P. Jiang, J. Cao, B. Wei, et al., “Lif Involved Interphase Layer Enabling Thousand Cycles of LAGP-Based Solid-State Li Metal Batteries With 80%Capacity Retention,” Energy Storage Materials 48 (2022):145–154.

[107]

B. Hu, W. Yu, B. Xu, et al., “An In Situ-Formed Mosaic Li7Sn3/LiF Interface Layer for High-Rate and Long-Life Garnet-Based Lithium Metal Batteries,” ACS Applied Materials &Interfaces 11 (2019):34939–34947.

[108]

G. Lu, W. Liu, Z. Yang, et al., “Superlithiophilic, Ultrastable, and Ionic-Conductive Interface Enabled Long Lifespan All-Solid-State Lithium-Metal Batteries Under High Mass Loading,” Advanced Functional Materials 33 (2023):2304407.

[109]

Y.-L. Liao, J.-K. Hu, Z.-H. Fu, et al., “Integrated Interface Configuration by In-Situ Interface Chemistry Enabling Uniform Lithium Deposition in All-Solid-State Lithium Metal Batteries,” Journal of Energy Chemistry 80 (2023):458–465.

[110]

Y. Chen, J. Qian, X. Hu, et al., “Constructing a Uniform and Stable Mixed Conductive Layer to Stabilize the Solid-State Electrolyte/Li Interface by Cold Bonding at Mild Conditions,” Advanced Materials 35 (2023):2212096.

[111]

K. Shi, Z. Wan, L. Yang, et al., “In Situ Construction of an Ultra-Stable Conductive Composite Interface for High-Voltage All-Solid-State Lithium Metal Batteries,” Angewandte Chemie International Edition 59 (2020):11784–11788.

[112]

H. Huo, Y. Chen, R. Li, et al., “Design of a Mixed Conductive Garnet/Li Interface for Dendrite-Free Solid Lithium Metal Batteries,” Energy &Environmental Science 13 (2020):127–134.

[113]

Z. Wang, J. Xia, X. Ji, et al., “Lithium Anode Interlayer Design for All-Solid-State Lithium-Metal Batteries,” Nature Energy 9 (2024):251–262.

[114]

Q. Zhang, M. Hu, J. He, X. Liu, G. He, and Y. Ding, “A Thermodynamically Stable Quasi-Liquid Interface for Dendrite-Free Sodium Metal Anodes,” Journal of Materials Chemistry A 8 (2020):6822–6827.

[115]

S. Liu, Y. Ma, Z. Zhou, et al., “Inducing Uniform Lithium Nucleation by Integrated Lithium-Rich Li-In Anode With Lithiophilic 3D Framework,” Energy Storage Materials 33 (2020):423–431.

[116]

S.-S. Chi, Q. Wang, B. Han, et al., “Lithiophilic Zn Sites in Porous CuZn Alloy Induced Uniform Li Nucleation and Dendrite-Free Li Metal Deposition,” Nano Letters 20 (2020):2724–2732.

[117]

T. Zhang, M. Hong, J. Yang, et al., “A High Performance Lithium-Ion–Sulfur Battery With a Free-Standing Carbon Matrix Supported Li-Rich Alloy Anode,” Chemical Science 9 (2018):8829–8835.

[118]

X. Liang, Q. Pang, I. R. Kochetkov, et al., “A Facile Surface Chemistry Route to a Stabilized Lithium Metal Anode,” Nature Energy 2 (2017):17119.

[119]

L. Fan, H. L. Zhuang, W. Zhang, Y. Fu, Z. Liao, and Y. Lu, “Stable Lithium Electrodeposition at Ultra-High Current Densities Enabled by 3D PMF/Li Composite Anode,” Advanced Energy Materials 8 (2018):1703360.

[120]

J. Duan, W. Wu, A. M. Nolan, et al., “Lithium–Graphite Paste: An Interface Compatible Anode for Solid-State Batteries,” Advanced Materials 31 (2019):1807243.

[121]

B. Chen, J. Zhang, T. Zhang, et al., “Directly Using Li2CO3as a Lithiophobic Interlayer to Inhibit Li Dendrites for High-Performance Solid-State Batteries,” ACS Energy Letters 8 (2023):2221–2231.

[122]

B. Liu, M. Du, B. Chen, et al., “A Simple Strategy That May Effectively Tackle the Anode-Electrolyte Interface Issues in Solid-State Lithium Metal Batteries,” Chemical Engineering Journal 427 (2022):131001.

[123]

S. S. Peng, X. B. Shao, M. X. Gu, et al., “Inside Back Cover: Catalytically Stable Potassium Single-Atom Solid Superbases (Angew. Chem. Int. Ed. 52/2022),” Angewandte Chemie International Edition 61 (2022):e202206770.

[124]

J. A. Lewis, K. A. Cavallaro, Y. Liu, and M. T. McDowell, “The Promise of Alloy Anodes for Solid-State Batteries,” Joule 6 (2022):1418–1430.

[125]

P. Jiang, G. Du, Y. Shi, et al., “Ultrafast Sintering of Na3Zr2Si2PO12 Solid Electrolyte for Long Lifespan Solid-State Sodium Ion Batteries,” Chemical Engineering Journal 451 (2023):138771.

[126]

Y. Zhu, X. He, and Y. Mo, “Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights From Thermodynamic Analyses Based on First-Principles Calculations,” ACS Applied Materials &Interfaces 7 (2015):23685–23693.

[127]

Y. Xiao, L. J. Miara, Y. Wang, and G. Ceder, “Computational Screening of Cathode Coatings for Solid-State Batteries,” Joule 3 (2019):1252–1275.

[128]

F. Ren, Z. Liang, W. Zhao, et al., “The Nature and Suppression Strategies of Interfacial Reactions in All-Solid-State Batteries,” Energy &Environmental Science 16 (2023):2579–2590.

[129]

X.-D. Zhang, J.-L. Shi, J.-Y. Liang, et al., “An Effective LiBO2 Coating to Ameliorate the Cathode/Electrolyte Interfacial Issues of LiNi0.6Co0.2Mn0.2O2 in Solid-State Li Batteries,” Journal of Power Sources 426 (2019):242–249.

[130]

X. He, Q. Bai, Y. Liu, A. M. Nolan, C. Ling, and Y. Mo, Advanced Energy Materials 9 (2019):1902078.

[131]

Y. Xiao, K. Jun, Y. Wang, L. J. Miara, Q. Tu, and G. Ceder, “Crystal Structural Framework of Lithium Super-Ionic Conductors,” Advanced Energy Materials 11 (2021):2101437.

[132]

A. M. Nolan, E. D. Wachsman, and Y. Mo, “Computation-Guided Discovery of Coating Materials to Stabilize the Interface Between Lithium Garnet Solid Electrolyte and High-Energy Cathodes for All-Solid-State Lithium Batteries,” Energy Storage Materials 41 (2021):571–580.

[133]

T. Kato, T. Hamanaka, K. Yamamoto, et al., “In-Situ Li7La3Zr2O12/LiCoO2 Interface Modification for Advanced All-Solid-State Battery,” Journal of Power Sources 260 (2014):292–298.

[134]

H. Dong, J. Jin, M. Wu, Y. Lu, and Z. Wen, “In-Situ Formed Decrystallized Interphase Enabled High Performance All-In-One All-Solid-State Batteries,” Chemical Engineering Journal 488 (2024):150438.

[135]

Y. Jiang, J. Ma, A. Lai, et al., “Asymmetrical Interface Modification Between Electrodes and Garnet-Type Electrolyte Enabling All-Solid-State Lithium Batteries,” Journal of Power Sources 554 (2023):232335.

[136]

M. Yang, L. Zhou, J. Zhu, W. Yang, and L. Fu, “In Situ Dual-Interface Layer Enabling Lower Resistance of Ta-Doped Li7La3Zr2O12-Based Thermal Battery,” Chemical Engineering Journal 481 (2024):148515.

[137]

F. Han, J. Yue, C. Chen, et al., “Interphase Engineering Enabled All-Ceramic Lithium Battery,” Joule 2 (2018):497–508.

[138]

J. Sastre, X. Chen, A. Aribia, A. N. Tiwari, and Y. E. Romanyuk, “Fast Charge Transfer Across the Li7La3Zr2O12 Solid Electrolyte/LiCoO2Cathode Interface Enabled by an Interphase-Engineered All-Thin-Film Architecture,” ACS Applied Materials &Interfaces 12 (2020):36196–36207.

[139]

D. P. Singh, Y. A. Birkhölzer, D. M. Cunha, et al., “Enhanced Cycling and Rate Capability by Epitaxially Matched Conductive Cubic TiO Coating on LiCoO2Cathode Films,” ACS Applied Energy Materials 4 (2021):5024–5033.

[140]

G. V. Alexander, N. C Rosero-Navarro, A. Miura, K. Tadanaga, and R. Murugan, “Electrochemical Performance of a Garnet Solid Electrolyte Based Lithium Metal Battery With Interface Modification,” Journal of Materials Chemistry A 6 (2018):21018–21028.

[141]

Z. Bi, W. Huang, S. Mu, W. Sun, N. Zhao, and X. Guo, “Dual-Interface Reinforced Flexible Solid Garnet Batteries Enabled by In-Situ Solidified Gel Polymer Electrolytes,” Nano Energy 90 (2021):106498.

[142]

J. Zheng, C. Sun, Z. Wang, et al., “Double Ionic–Electronic Transfer Interface Layers for All-Solid-State Lithium Batteries,” Angewandte Chemie International Edition 60 (2021):18448–18453.

[143]

Q. Luo, C. Yu, C. Wei, et al., “Enabling Superior Electrochemical Performances of Li10SnP2S12-Based All-Solid-State Batteries Using Lithium Halide Electrolytes,” Ceramics International 49 (2023):11485–11493.

[144]

S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, and T. Asaoka, “All-Solid-State Lithium Ion Battery Using Garnet-Type Oxide and Li3BO3 Solid Electrolytes Fabricated by Screen-Printing,” Journal of Power Sources 238 (2013):53–56.

[145]

J. Chen, W. Chen, B. Deng, B. Li, C. Kittrell, and J. M. Tour, “Cathode Interface Construction by Rapid Sintering in Solid-State Batteries,” Small 20 (2024):2307342.

[146]

X. Liu, X. Kong, W. Xiang, et al., “LiCoO2 Sintering Aid Towards Cathode-Interface-Enhanced Garnet Electrolytes,” Journal of Energy Chemistry 84 (2023):181–188.

[147]

N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, and T. Sasaki, “Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification,” Advanced Materials 18 (2006):2226–2229.

[148]

N. Ohta, K. Takada, I. Sakaguchi, et al., “LiNbO3-coated LiCoO2 as Cathode Material for All Solid-State Lithium Secondary Batteries,” Electrochemistry Communications 9 (2007):1486–1490.

[149]

K. Takada, N. Ohta, L. Zhang, et al., “Interfacial Modification for High-Power Solid-State Lithium Batteries,” Solid State Ionics 179 (2008):1333–1337.

[150]

A. Sakuda, A. Hayashi, and M. Tatsumisago, “Interfacial Observation Between LiCoO2 Electrode and Li2S–P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy,” Chemistry of Materials 22 (2010):949–956.

[151]

F. Han, T. Gao, Y. Zhu, K. J. Gaskell, and C. Wang, “A Battery Made From a Single Material,” Advanced Materials 27 (2015):3473–3483.

[152]

K. Yoon, J.-J. Kim, W. M. Seong, M. H. Lee, and K. Kang, “Investigation on the Interface Between Li10GeP2S12 Electrolyte and Carbon Conductive Agents in All-Solid-State Lithium Battery,” Scientific Reports 8 (2018):8066.

[153]

T. Ates, M. Keller, J. Kulisch, T. Adermann, and S. Passerini, “Development of an All-Solid-State Lithium Battery by Slurry-Coating Procedures Using a Sulfidic Electrolyte,” Energy Storage Materials 17 (2019):204–210.

[154]

R. Koerver, I. Aygün, T. Leichtweiß, et al., “Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes,” Chemistry of Materials 29 (2017):5574–5582.

[155]

C. Zou, L. Yang, Z. Zang, et al., “LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 and Chlorine-Rich Argyrodite Enabling High-Performance All-Solid-State Lithium Batteries at Suitable Stack Pressure,” Ceramics International 49 (2023):443–449.

[156]

J. Haruyama, K. Sodeyama, L. Han, K. Takada, and Y. Tateyama, “Space–Charge Layer Effect at Interface Between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery,” Chemistry of Materials 26 (2014):4248–4255.

[157]

Y. Wang, Z. Wang, D. Wu, et al., “Stable Ni-Rich Layered Oxide Cathode for Sulfide-Based All-Solid-State Lithium Battery,” eScience 2 (2022):537–545.

[158]

X. Zhou, B. Zhang, P. Lyu, et al., “Chemo-Mechanical Stable Cathode Interphaseviainterfacein Situcatalytic-Conversion Integrated Design for All Solid-State Batteries,” Energy &Environmental Science 17 (2024):8174–8188.

[159]

J. Hu, S. Yang, Y. Pei, et al., “Perspective on Powder Technology for All-Solid-State Batteries: How to Pair Sulfide Electrolyte With High-Voltage Cathode,” Particuology 86 (2024):55–66.

[160]

S. H. Jung, K. Oh, Y. J. Nam, et al., “Li3BO3–Li2CO3: Rationally Designed Buffering Phase for Sulfide All-Solid-State Li-Ion Batteries,” Chemistry of Materials 30 (2018):8190–8200.

[161]

X. Li, M. Liang, J. Sheng, et al., “Constructing Double Buffer Layers to Boost Electrochemical Performances of NCA Cathode for Asslb,” Energy Storage Materials 18 (2019):100–106.

[162]

A. Y. Kim, F. Strauss, T. Bartsch, et al., “Stabilizing Effect of a Hybrid Surface Coating on a Ni-Rich NCM Cathode Material in All-Solid-State Batteries,” Chemistry of Materials 31 (2019):9664–9672.

[163]

X. Li, Z. Jiang, D. Cai, et al., “Single-Crystal-Layered Ni-Rich Oxide Modified by Phosphate Coating Boosting Interfacial Stability of Li10SnP2S12-Based All-Solid-State Li Batteries,” Small 17 (2021):2103830.

[164]

J. Shi, P. Li, K. Han, et al., “High-Rate and Durable Sulfide-Based All-Solid-State Lithium Battery With In Situ Li2O Buffering,” Energy Storage Materials 51 (2022):306–316.

[165]

Z. Fan, J. Xiang, Q. Yu, et al., “High Performance Single-Crystal Ni-Rich Cathode Modification via Crystalline LLTO Nanocoating for All-Solid-State Lithium Batteries,” ACS Applied Materials &Interfaces 14 (2022):726–735.

[166]

J. Kim, M. J. Kim, J. Kim, et al., “High-Performance All-Solid-State Batteries Enabled by Intimate Interfacial Contact Between the Cathode and Sulfide-Based Solid Electrolytes,” Advanced Functional Materials 33 (2023):2211355.

[167]

Y. Wang, D. Wu, P. Chen, et al., “Dual-Function Modifications for High-Stability Li-Rich Cathode Toward Sulfide All-Solid-State Batteries,” Advanced Functional Materials 34 (2024):2309822.

[168]

B.-X. Shi, Y. Yusim, S. Sen, et al., “Mitigating Contact Loss in Li6PS5Cl-Based Solid-State Batteries Using a Thin Cationic Polymer Coating on NCM,” Advanced Energy Materials 13 (2023):2300310.

[169]

C. Zou, Z. Zang, X. Tao, et al., “Stabilized Cathode/Sulfide Electrolyte Interface Through Conformally Interfacial Nanocoating for All-Solid-State Batteries,” ACS Applied Energy Materials 6 (2023):3599–3607.

[170]

Y. Huang, L. Zhou, C. Li, Z. Yu, and L. F. Nazar, “Waxing Bare High-Voltage Cathode Surfaces to Enable Sulfide Solid-State Batteries,” ACS Energy Letters 8 (2023):4949–4956.

[171]

K. Yang, Y. Sun, Q. Su, et al., “Dual Modified NCMA Cathode With Enhanced Interface Stability Enabled High-Performance Sulfide-Based All-Solid-State Lithium Battery,” Chemical Engineering Journal 471 (2023):144405.

[172]

J. Wang, S. Zhao, A. Zhang, et al., “High Lithium-Ion Conductivity, Halide-Coated, Ni-Rich NCM Improves Cycling Stability in Sulfide All-Solid-State Batteries,” ACS Applied Energy Materials 6 (2023):3671–3681.

[173]

U.-H. Kim, T.-Y. Yu, J. W. Lee, et al., “Microstructure-and Interface-Modified Ni-Rich Cathode for High-Energy-Density All-Solid-State Lithium Batteries,” ACS Energy Letters 8 (2023):809–817.

[174]

D. Cao, Y. Zhang, A. M. Nolan, et al., “Stable Thiophosphate-Based All-Solid-State Lithium Batteries Through Conformally Interfacial Nanocoating,” Nano Letters 20 (2020):1483–1490.

[175]

G. T. Hitz, D. W. McOwen, L. Zhang, et al., “High-Rate Lithium Cycling in a Scalable Trilayer Li-Garnet-Electrolyte Architecture,” Materials Today 22 (2019):50–57.

[176]

C. Shi, T. Hamann, S. Takeuchi, et al., “3D Asymmetric Bilayer Garnet-Hybridized High-Energy-Density Lithium–Sulfur Batteries,” ACS Applied Materials &Interfaces 15 (2023):751–760.

[177]

S. Xu, D. W. McOwen, L. Zhang, et al., “All-In-One Lithium-Sulfur Battery Enabled by a Porous-Dense-Porous Garnet Architecture,” Energy Storage Materials 15 (2018):458–464.

[178]

E. Yi, H. Shen, S. Heywood, et al., “All-Solid-State Batteries Using Rationally Designed Garnet Electrolyte Frameworks,” ACS Applied Energy Materials 3 (2020):170–175.

[179]

H. Zhang, F. Okur, C. Cancellieri, et al., “Bilayer Dense-Porous Li7La3Zr2O12 Membranes for High-Performance Li-Garnet Solid-State Batteries,” Advancement 2022 of Science 10 (2023):2205821.

[180]

C. Shi, G. V. Alexander, J. O’Neill, K. Duncan, G. Godbey, and E. D. Wachsman, “All-Solid-State Garnet Type Sulfurized Polyacrylonitrile/Lithium-Metal Battery Enabled by an Inorganic Lithium Conductive Salt and a Bilayer Electrolyte Architecture,” ACS Energy Letters 8 (2023):1803–1810.

[181]

G. V. Alexander, C. Shi, J. O’Neill, and E. D. Wachsman, “Extreme Lithium-Metal Cycling Enabled by a Mixed Ion-and Electron-Conducting Garnet Three-Dimensional Architecture,” Nature Materials 22 (2023):1136–1143.

[182]

R. Wang, Q. Dong, C. Wang, et al., “High-Temperature Ultrafast Sintering: Exploiting a New Kinetic Region to Fabricate Porous Solid-State Electrolyte Scaffolds,” Advanced Materials 33 (2021):2100726.

[183]

Y. Liu, C. Li, B. Li, et al., “Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries,” Advanced Energy Materials 8 (2018):1702374.

[184]

J. Pan, Y. Zhang, J. Wang, et al., “A Quasi-Double-Layer Solid Electrolyte With Adjustable Interphases Enabling High-Voltage Solid-State Batteries,” Advanced Materials 34 (2022):2107183.

[185]

Y. Wang, G. Wang, P. He, J. Hu, J. Jiang, and L.-Z. Fan, “Sandwich Structured Nasicon-Type Electrolyte Matched With Sulfurized Polyacrylonitrile Cathode for High Performance Solid-State Lithium-Sulfur Batteries,” Chemical Engineering Journal 393 (2020):124705.

[186]

Q. Yu, D. Han, Q. Lu, et al., “Constructing Effective Interfaces for Li1.5Al0.5Ge1.5(PO4)3 Pellets to Achieve Room-Temperature Hybrid Solid-State Lithium Metal Batteries,” ACS Applied Materials &Interfaces 11 (2019):9911–9918.

[187]

M. Ihrig, E. Dashjav, P. Odenwald, et al., “Enabling High-Performance Hybrid Solid-State Batteries By Improving the Microstructure of Free-Standing LATP/LFP Composite Cathodes,” ACS Applied Materials &Interfaces 16 (2024):17461–17473.

[188]

H.-L. Guo, H. Sun, Z.-L. Jiang, et al., “Asymmetric Structure Design of Electrolytes With Flexibility and Lithium Dendrite-Suppression Ability for Solid-State Lithium Batteries,” ACS Applied Materials &Interfaces 11 (2019):46783–46791.

[189]

J. Sun, C. He, X. Yao, et al., “Hierarchical Composite-Solid-Electrolyte With High Electrochemical Stability and Interfacial Regulation for Boosting Ultra-Stable Lithium Batteries,” Advanced Functional Materials 31 (2021):2006381.

[190]

W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, and J. B. Goodenough, “Plating a Dendrite-Free Lithium Anode With a Polymer/Ceramic/Polymer Sandwich Electrolyte,” Journal of the American Chemical Society 138 (2016):9385–9388.

[191]

J. Liu, J. Zhou, M. Wang, C. Niu, T. Qian, and C. Yan, “A Functional-Gradient-Structured Ultrahigh Modulus Solid Polymer Electrolyte for All-Solid-State Lithium Metal Batteries,” Journal of Materials Chemistry A 7 (2019):24477–24485.

[192]

H. Duan, M. Fan, W.-P. Chen, et al., Advanced Materials 31 (2019):1807789.

[193]

C. Deng, N. Chen, C. Hou, H. Liu, Z. Zhou, and R. Chen, “Enhancing Interfacial Contact in Solid-State Batteries With a Gradient Composite Solid Electrolyte,” Small 17 (2021):2006578.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

334

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/