Reinforced Li/Garnet Interface by Ceramic Metallization-Assisted Room-Temperature Ultrasound Welding

Xuanyu Wang , Xiaole Yu , Xinxin Wang , Jingjing Chen , Dajian Wang , Chenlong Dong , Zhiyong Mao

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (1) : e185

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (1) : e185 DOI: 10.1002/cnl2.185
RESEARCH ARTICLE

Reinforced Li/Garnet Interface by Ceramic Metallization-Assisted Room-Temperature Ultrasound Welding

Author information +
History +
PDF

Abstract

Solid-state lithium metal batteries (SSLMBs), heralded as a promising next-generation energy storage technology, have garnered considerable attention owing to inherent high safety and potential for achieving high energy density. However, their practical deployment is hindered by the formidable interfacial challenges, primarily stemming from the poor wettability, (electro) chemical instability, and discontinuous charge/mass transport between solid-state electrolytes and Li metal. To overcome these obstacles, taking garnet-based electrolyte (Li6.5La3Zr1.5Ta0.5O12, LLZTO) as a pathfinder, the ceramic metallization-assisted room-temperature ultrasound werlding (UW) has been developed to reinforce the Li/LLZTO interface. This ultrasound welding approach constructs a compact interface that facilitates rapid Li+/e transport, while the formation of Li–M (M = Au, Ag, and Sn) alloy homogenizes the distribution of Li+/e at the interface. By optimization, the atomic-level contact achieved by ultrasound welding, coupled with a nanosized Au modification layer, significantly reduces the Li/LLZTO interfacial resistance to 5.4 Ω cm2, a marked decrease compared to the resistance achieved by static pressing methods (1727 Ω cm2). The symmetric cell exhibits a high critical current density of 1 mA cm−2 and sustains long-term stability for over 1600 h at 0.3 mA cm−2, with a Li plating/stripping overpotential of < 45 mV. By incorporating a robust anode-side interface into solid-state lithium metal batteries, the LiFePO4-based full battery contributes 118.4 mAh g-1 after 600 cycles at 1 C (capacity: ~100%). This study offers a facile and effective approach to bolster the interfacial stability between Li and solid-state electrolytes, paving the way for the development of high-performance solid-state lithium metal batteries.

Keywords

ceramic metallization / garnet electrolyte / solid,state lithium-metal battery / ultrasound welding

Cite this article

Download citation ▾
Xuanyu Wang, Xiaole Yu, Xinxin Wang, Jingjing Chen, Dajian Wang, Chenlong Dong, Zhiyong Mao. Reinforced Li/Garnet Interface by Ceramic Metallization-Assisted Room-Temperature Ultrasound Welding. Carbon Neutralization, 2025, 4(1): e185 DOI:10.1002/cnl2.185

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Lin, Y. Liu, and Y. Cui, “Reviving the Lithium Metal Anode for High-Energy Batteries,” Nature Nanotechnology 12 (2017):194–206.

[2]

C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, “Recent Advances in All-Solid-State Rechargeable Lithium Batteries,” Nano Energy 33 (2017):363–386.

[3]

R. Sun, R. Zhu, J. Li, et al., “The Synergy Mechanism of CsSnI3and LiTFSI Enhancing the Electrochemical Performance of PEO-Based Solid-State Batteries,” Carbon Neutralization 3 (2024):597–605.

[4]

R. Murugan, V. Thangadurai, and W. Weppner, “Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12,” Angewandte Chemie International Edition 46 (2007):7778–7781.

[5]

A. J. Samson, K. Hofstetter, S. Bag, and V. Thangadurai, “A Bird’s-Eye View of Li-Stuffed Garnet-Type Li7La3Zr2O12 Ceramic Electrolytes for Advanced All-Solid-State Li Batteries,” Energy and Environmental Science 12 (2019):2957.

[6]

L. Cheng, E. J. Crumlin, W. Chen, et al., “The Origin of High Electrolyte–Electrode Interfacial Resistances in Lithium Cells Containing Garnet Type Solid Electrolytes,” Physical Chemistry Chemical Physics 16 (2014):18294–18300.

[7]

J. Li and R. Wang, “Recent Advances in the Interfacial Stability, Design and In Situ Characterization of Garnet-Type Li7La3Zr2O12 Solid-State Electrolytes Based Lithium Metal Batteries,” Ceramics International 47 (2021):13280–13290.

[8]

X. Liu, Y. Chen, Z. D. Hood, et al., “Elucidating the Mobility of H+and Li+Ions in (Li6.25−xHxAl0.25)La3Zr2O12 via correlative Neutron and Electron Spectroscopy,” Energy &Environmental Science 12 (2019):945–951.

[9]

C. Ma, E. Rangasamy, C. Liang, J. Sakamoto, K. L. More, and M. Chi, “Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte Upon Reversible Li+/H+Exchange in Aqueous Solutions,” Angewandte Chemie International Edition 54 (2015):129–133.

[10]

P. Ghorbanzade, G. Accardo, K. Gomez, et al., “Influence of the LLZO–PEO Interface on the Micro-and Macro-scale Properties of Composite Polymer Electrolytes for Solid-state Batteries,” Matererials Today Energy 38 (2023):101448.

[11]

H. Huo, Y. Chen, N. Zhao, et al., “In-Situ Formed Li2CO3-free Garnet/Li Interface by Rapid Acid Treatment for Dendrite-Free Solid-State Batteries,” Nano Energy 61 (2019):119–125.

[12]

Y. Ruan, Y. Lu, X. Huang, et al., “Acid Induced Conversion Towards a Robust and Lithiophilic Interface for Li–Li7La3Zr2O12 solid-state Batteries,” Journal of Materials Chemistry A 7 (2019):14565–14574.

[13]

A. Sharafi, E. Kazyak, A. L. Davis, et al., “Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12,” Chemistry of Materials 29 (2017):7961–7968.

[14]

J. F. Wu, B. W. Pu, D. Wang, et al., “In Situ Formed Shields Enabling Li2CO3-Free Solid Electrolytes: A New Route to Uncover the Intrinsic Lithiophilicity of Garnet Electrolytes for Dendrite-Free Li-Metal Batteries,” ACS Applied Materials &Interfaces 11 (2019):898–905.

[15]

W. Feng, X. Dong, P. Li, Y. Wang, and Y. Xia, “Interfacial Modification of Li/Garnet Electrolyte by a Lithiophilic and Breathing Interlayer,” Journal of Power Sources 419 (2019):91–98.

[16]

A. Kato, A. Hayashi, and M. Tatsumisago, “Enhancing Utilization of Lithium Metal Electrodes in All-Solid-State Batteries by Interface Modification With Gold Thin Films,” Journal of Power Sources 309 (2016):27–32.

[17]

Y. K. Liao, Z. Tong, C. C. Fang, et al., “Extensively Reducing Interfacial Resistance by the Ultrathin Pt Layer Between the Garnet-Type Solid-State Electrolyte and Li–Metal Anode,” ACS Applied Materials &Interfaces 13 (2021):56181–56190.

[18]

R. Dubey, J. Sastre, C. Cancellieri, et al., “Building a Better Li-Garnet Solid Electrolyte/Metallic Li Interface With Antimony,” Advanced Energy Materials 11 (2021):2102086.

[19]

C. W. Wang, H. Xie, L. Zhang, et al., “Universal Soldering of Lithium and Sodium Alloys on Various Substrates for Batteries,” Advanced Energy Materials 8 (2018):1701963.

[20]

M. He, Z. Cui, C. Chen, Y. Li, and X. Guo, “Formation of Self-Limited, Stable and Conductive Interfaces Between Garnet Electrolytes and Lithium Anodes for Reversible Lithium Cycling in Solid-State Batteries,” Journal of Materials Chemistry A 6 (2018):11463–11470.

[21]

T. Krauskopf, B. Mogwitz, C. Rosenbach, W. C. Zeier, and J. Janek, “Diffusion Limitation of Lithium Metal and Li–Mg Alloy Anodes on LLZO Type Solid Electrolytes as a Function of Temperature and Pressure,” Advanced Energy Materials 9 (2019):1902568.

[22]

Y. Zhang, J. Meng, K. Chen, H. Wu, J. Hu, and C. Li, “Garnet-Based Solid-State Lithium Fluoride Conversion Batteries Benefiting from Eutectic Interlayer of Superior Wettability,” ACS Energy Letters 5 (2020):1167–1176.

[23]

G. V. Alexander, O. V. Sreejith, M. S. Indu, and R. Murugan, “Interface-Compatible and High-Cyclability Lithiophilic Lithium–Zinc Alloy Anodes for Garnet-Structured Solid Electrolytes,” ACS Applied Energy Materials 3 (2020):9010–9017.

[24]

F. Han, A. S. Westover, J. Yue, et al., “High Electronic Conductivity as the Origin of Lithium Dendrite Formation Within Solid Electrolytes,” Nature Energy 4 (2019):187–196.

[25]

H. Huo, J. Gao, N. Zhao, et al., “A Flexible Electron-Blocking Interfacial Shield for Dendrite-Free Solid Lithium Metal Batteries,” Nature Communications 12 (2021):176.

[26]

X. Xiang, Z. Fang, C. Du, et al., “Constructing Electron-Blocking Grain Boundaries in Garnet to Suppress Lithium Dendrite Growth,” Journal of Advanced Ceramics 13 (2024):166–175.

[27]

Y. Zhu, E. R. Kennedy, B. Yasar, et al., “Uncovering the Network Modifier for Highly Disordered Amorphous Li-Garnet Glass-Ceramics,” Advanced Materials 36 (2024):e2302438.

[28]

M. Cai, L. Yao, J. Jin, and Z. Wen, “In situ Lithiophilic ZnO Layer Constructed Using Aqueous Strategy for a Stable Li-Garnet Interface,” Acta Physico Chimica Sinica 37 (2020):2009006.

[29]

Y. Wei, H. Xu, H. Cheng, et al., “An Oxygen Vacancy-Rich ZnO Layer on Garnet Electrolyte Enables Dendrite-Free Solid State Lithium Metal Batteries,” Chemical Engineering Journal 433 (2022):133665.

[30]

L. Zhang, J. Yang, K. Jing, et al., “Thickness-Dependent Beneficial Effect of the ZnO Layer on Tailoring the Li/Li7La3Zr2O12 interface,” ACS Applied Materials & Interfaces 12 (2020):13836–13841.

[31]

X. Han, Y. Gong, K. Fu, et al., “Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries,” Nature Materials 16 (2017):572–579.

[32]

Y. Zou, H. Zheng, S. Wu, H. Liu, and H. Duan, “Improving Li/Garnet Interface by Amorphous SnO2 Interlayerdeposited via Sol–Gel Method,” Materials Letters 297 (2021):129959.

[33]

D. Zhou, G.-X. Ren, N. Zhang, et al., “Garnet Electrolytes with Ultralow Interfacial Resistance by SnS2Coating for Dendrite-Free All-Solid-State Batteries,” ACS Applied Energy Materials 4 (2021):2873–2880.

[34]

W. Jiang, L. Dong, S. Liu, et al., “Improvement of the Interface Between the Lithium Anode and a Garnet-Type Solid Electrolyte of Lithium Batteries Using an Aluminum-Nitride Layer,” Nanomaterials 12 (2022):2023.

[35]

K. Lee, S. Han, J. Lee, et al., “Multifunctional Interface for High-Rate and Long-Durable Garnet-Type Solid Electrolyte in Lithium Metal Batteries,” ACS Energy Letters 7 (2021):381–389.

[36]

A. Wang, J. Li, M. Yi, et al., “Stable All-Solid-State Lithium Metal Batteries Enabled by Ultrathin LiF/Li3Sb Hybrid Interface Layer,” Energy Storage Materials 49 (2022):246–254.

[37]

R. Xu, F. Liu, Y. Ye, et al., “A Morphologically Stable Li/Electrolyte Interface for All-solid-state Batteries Enabled by 3D-Micropatterned Garnet,” Advanced Materials 33 (2021):2104009.

[38]

C. Yang, L. Zhang, B. Liu, et al., “Continuous Plating/Stripping Behavior of Solid-State Lithium Metal Anode in a 3D Ion-Conductive Framework,” Proceedings of the National Academy of Sciences of the United States of America 115 (2018):3770–3775.

[39]

H. Zhang, F. Okur, B. Pant, et al., “Garnet-Based Solid-State Li Batteries With High-Surface-Area Porous LLZO Membranes,” ACS Applied Materials & Interfaces 16 (2024):12353–12362.

[40]

H. Kitaura, E. Hosono, and H. Zhou, “An Ultrafast Process for the Fabrication of a Li Metal–Inorganic Solid Electrolyte Interface,” Energy & Environmental Science 14 (2021):4474–4480.

[41]

X. Wang, J. Chen, D. Wang, and Z. Mao, “Improving the Alkali Metal Electrode/Inorganic Solid Electrolyte Contact via Room-Temperature Ultrasound Solid Welding,” Nature Communications 12 (2021):7109.

[42]

C.-L. Tsai, V. Roddatis, C. V. Chandran, et al., “Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention,” ACS Applied Materials & Interfaces 8 (2016):10617–10626.

[43]

Z. Gong, Y. Liu, Y. Li, et al., “Rational Design of Lamellar Mixed Ion/Electron Conductive Layer for Dendrite-Free Garnet-Based Solid State Batteries,” ACS Materials and Letter 6 (2024):2085.

[44]

C. Ma, Y. Cheng, K. Yin, et al., “Interfacial Stability of Li Metal–Solid Electrolyte Elucidated via In Situ Electron Microscopy,” Nano Letters 16 (2016):7030–7036.

[45]

J. Wang, H. Wang, J. Xie, et al., “Fundamental Study on the Wetting Property of Liquid Lithium,” Energy Storage Materials 14 (2018):345–350.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

215

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/