From Fundamentals to Practice: Electrolyte Strategies for Zinc-Ion Batteries in Extreme Temperature

Tao Xue , Yongbiao Mu , Xiyan Wei , Ziyan Zhou , Yuke Zhou , Zhengchu Zhang , Chao Yang , Jianhui Qiu , Limin Zang , Lin Zeng

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (1) : e183

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (1) : e183 DOI: 10.1002/cnl2.183
REVIEW

From Fundamentals to Practice: Electrolyte Strategies for Zinc-Ion Batteries in Extreme Temperature

Author information +
History +
PDF

Abstract

In the pursuit of advanced energy storage technologies that promote sustainable energy solutions, zinc-ion batteries (ZIBs) have emerged as a promising alternative to lithium-ion batteries due to their abundance, safety, and environmental advantages. However, the failure mechanisms of ZIBs under extreme temperatures are still not fully understood, presenting significant challenges to their development and commercialization. Therefore, innovative strategies are essential to enhance their adaptability to temperature extremes. In this review, we first explore the thermodynamic and kinetic aspects of performance degradation under extreme temperatures, focusing on key factors such as ion diffusion and redox processes at electrode interfaces. We then comprehensively summarize and discuss the existing approaches for various electrolyte types, including aqueous, nonaqueous, and solid state. Finally, we highlight the key challenges and future prospects for ZIBs operating under extreme temperature conditions. The insights presented in this review are expected to accelerate the advancement of ZIBs and facilitate their practical implementation in large-scale energy storage systems.

Keywords

electrolytes / extreme temperature / thermodynamics / zinc-ion batteries

Cite this article

Download citation ▾
Tao Xue, Yongbiao Mu, Xiyan Wei, Ziyan Zhou, Yuke Zhou, Zhengchu Zhang, Chao Yang, Jianhui Qiu, Limin Zang, Lin Zeng. From Fundamentals to Practice: Electrolyte Strategies for Zinc-Ion Batteries in Extreme Temperature. Carbon Neutralization, 2025, 4(1): e183 DOI:10.1002/cnl2.183

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah, and L. F. Nazar, “A High-Capacity and Long-Life Aqueous Rechargeable Zinc Battery Using a Metal Oxide Intercalation Cathode,” Nature Energy 1 (2016):16119.

[2]

Y. Sun, Q. Wu, and G. Shi, “Graphene Based New Energy Materials,” Energy &Environmental Science 4 (2011):1113.

[3]

Z. Zhao, X. Liu, M. Zhang, et al., “Development of Flow Battery Technologies Using the Principles of Sustainable Chemistry,” Chemical Society Reviews 52 (2023):6031–6074.

[4]

J. Zheng, Q. Zhao, T. Tang, et al., “Reversible Epitaxial Electrodeposition of Metals in Battery Anodes,” Science 366 (2019):645–648.

[5]

T. Kowalchik, F. Khan, D. Horlacher, S. Roundy, and R. Warren, “Direct Conversion of Thermal Energy to Stored Electrochemical Energyviaa Self-Charging Pyroelectrochemical Cell,” Energy & Environmental Science 17 (2024):2117–2128.

[6]

K. Zhao, Y. Yang, X. Liu, and Z. L. Wang, “Triboelectrification-Enabled Self-Charging Lithium-Ion Batteries,” Advanced Energy Materials 7 (2017):1700103.

[7]

Y. Wang, X. Zhang, K. Li, G. Zhao, and Z. Chen, “Perspectives and Challenges for Future Lithium-Ion Battery Control and Management,” eTransportation 18 (2023):100260.

[8]

K. R. Crompton and B. J. Landi, “Opportunities for Near Zero Volt Storage of Lithium Ion Batteries,” Energy & Environmental Science 9 (2016):2219–2239.

[9]

S. Kalluri, M. Yoon, M. Jo, et al., “Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-Ion and Beyond-Lithium-Ion Batteries,” Advanced Materials 29 (2017):1605807.

[10]

X. Feng, D. Ren, X. He, and M. Ouyang, “Mitigating Thermal Runaway of Lithium-Ion Batteries,” Joule 4 (2020):743–770.

[11]

Q. Y. Zhao, G. Y. Yin, Y. F. Liu, R. R. Tang, X. W. Wu, and X. X. Zeng, “Recent Advances in Material Chemistry for Zinc Enabled Redox Flow Batteries,” Carbon Neutralization 2 (2023):90–114.

[12]

S. N. Lauro, J. N. Burrow, and C. B. Mullins, “Restructuring the Lithium-Ion Battery: A Perspective on Electrode Architectures,” eScience 3 (2023):100152.

[13]

Y. Zhao, X. Chen, W. Guo, and C. Zha. “Emerging Strategies for the Improvement of Modifications in Aqueous Rechargeable Zinc-Iodine Batteries: Cathode, Anode, Separator, and Electrolyte,” Carbon Neutralization 3 (2024):918–949.

[14]

M. Chen, Y. Gong, Y. Zhao, et al., “Spontaneous Grain Refinement Effect of Rare Earth Zinc Alloy Anodes Enables Stable Zinc Batteries,” National Science Review 11 (2024):nwae205.

[15]

W. Sun, F. Wang, B. Zhang, et al., “A Rechargeable Zinc–Air Battery Based on Zinc Peroxide Chemistry,” Science 371 (2021):46–51.

[16]

G. Fang, J. Zhou, A. Pan, and S. Liang, “Recent Advances in Aqueous Zinc-Ion Batteries,” ACS Energy Letters 3 (2018):2480–2501.

[17]

X. Fan, L. Chen, Y. Wang, et al., “Selection of Negative Charged Acidic Polar Additives to Regulate Electric Double Layer for Stable Zinc Ion Battery,” Nano-Micro Letters 16 (2024):270.

[18]

K. Wang, H. Li, Z. Xu, et al., “Emerging Photo-Integrated Rechargeable Aqueous Zinc-Ion Batteries and Capacitors Toward Direct Solar Energy Conversion and Storage,” Carbon Neutralization 2 (2023):37–53.

[19]

S. Guo, L. Qin, T. Zhang, et al., “Fundamentals and Perspectives of Electrolyte Additives for Aqueous Zinc-Ion Batteries,” Energy Storage Materials 34 (2021):545–562.

[20]

L. Wu and Y. Dong, “Recent Progress of Carbon Nanomaterials for High-Performance Cathodes and Anodes in Aqueous Zinc Ion Batteries,” Energy Storage Materials 41 (2021):715–737.

[21]

S. Xie, X. Li, Y. Li, Q. Liang, and L. Dong. “Material Design and Energy Storage Mechanism of Mn-Based Cathodes for Aqueous Zinc-Ion Batteries,” Chemical Record 22 (2022):e202200201.

[22]

X. Shi, X. Liu, E. Wang, et al., “Boosting the Zn Ion Storage Ability of Amorphous MnO2 via Surface Engineering and Valence Modulation,” Carbon Neutralization 2 (2023):28–36.

[23]

X. Hu, Z. Zhao, Y. Yang, et al., “Bifunctional Self-Segregated Electrolyte Realizing High-Performance Zinc-Iodine Batteries,” InfoMat 6 (2024):e12620.

[24]

Y. Li, X. Zhao, Y. Gao, et al., “Design Strategies for Rechargeable Aqueous Metal-Ion Batteries,” Science China Chemistry 67 (2024):165–190.

[25]

T. Sun, X. Yuan, K. Wang, et al., “An Ultralow-Temperature Aqueous Zinc-Ion Battery,” Journal of Materials Chemistry A 9 (2021):7042–7047.

[26]

Q. Ma, R. Gao, Y. Liu, et al., “Regulation of Outer Solvation Shell Toward Superior Low-Temperature Aqueous Zinc-Ion Batteries,” Advanced Materials 34 (2022):2207344.

[27]

Z. Hou, Z. Lu, Q. Chen, and B. Zhang, “Realizing Wide-Temperature Zn Metal Anodes Through Concurrent Interface Stability Regulation and Solvation Structure Modulation,” Energy Storage Materials 42 (2021):517–525.

[28]

Q. Bao, B. Sui, P. Wang, et al., “High-Pressure Deformation Exposes Zinc (002) Crystal Planes Adapted for High-Performance Zinc Anodes,” Electrochimica Acta 478 (2024):143824.

[29]

C. Yang, J. Xia, C. Cui, et al., “All-Temperature Zinc Batteries With High-Entropy Aqueous Electrolyte,” Nature Sustainability 6 (2023):325–335.

[30]

Z. Zheng, S. Guo, M. Yan, Y. Luo, and F. Cao, “A Functional Janus Ag Nanowires/Bacterial Cellulose Separator for High-Performance Dendrite-Free Zinc Anode Under Harsh Conditions,” Advanced Materials 35 (2023):2304667.

[31]

T. Xu, K. Liu, N. Sheng, et al., “Biopolymer-Based Hydrogel Electrolytes for Advanced Energy Storage/Conversion Devices: Properties, Applications, and Perspectives,” Energy Storage Materials 48 (2022):244–262.

[32]

Y. Li, X. Sun, Z. Zeng, C. Wu, and H. Chen. “Entropy Engineering toward Positive Temperature Coefficient and Large Voltage in High-Temperature Zinc-Ion Batteries,” ACS Applied Energy Materials 7 (2024):6447–6453.

[33]

L. Su, Q. Zhang, Y. Wang, et al., “Achieving a 2.7 V Aqueous Hybrid Supercapacitor by the pH-Regulation of Electrolyte,” Journal of Materials Chemistry A 8 (2020):8648–8660.

[34]

Y. Wang, T. Wang, D. Dong, et al., “Enabling High-Energy-Density Aqueous Batteries With Hydrogen Bond-Anchored Electrolytes,” Matter 5 (2022):162–179.

[35]

I. S. Buyuker, B. Pei, H. Zhou, et al., “Voltage and Temperature Limits of Advanced Electrolytes for Lithium-Metal Batteries,” ACS Energy Letters 8 (2023):1735–1743.

[36]

Y. Pang, J. Pan, J. Yang, S. Zheng, and C. Wang, “Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review,” Electrochemical Energy Reviews 4 (2021):169–193.

[37]

Z. Su, H. Guo, and C. Zhao, “Rational Design of Electrode–Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries,” Nano-Micro Letters 15 (2023):96.

[38]

Y. Tang, J. H. Li, C. L. Xu, M. Liu, B. Xiao, and P. F. Wang, “Electrode/Electrolyte Interfacial Engineering for Aqueous Zn-Ion Batteries,” Carbon Neutralization 2 (2023):186–212.

[39]

J. Zeng, H. Chen, L. Dong, L. Wei, and X. Guo, “Designing of Zwitterionic Proline Hydrogel Electrolytes for Anti-Freezing Supercapacitors,” Journal of Colloid and Interface Science 652 (2023):856–865.

[40]

H. Wang, W. Wei, X. Liu, S. Xu, Y. Dong, and R. He, “Ultrahigh-Capacity Epitaxial Deposition of Planar Zn Flakes Enabled by Amino-Rich Adhesive Hydrogel Electrolytes for Durable Low-Temperature Zinc Batteries,” Energy Storage Materials 55 (2023):597–605.

[41]

N. Zhang, Y. Dong, M. Jia, et al., “Rechargeable Aqueous Zn–V2O5 Battery With High Energy Density and Long Cycle Life,” ACS Energy Letters 3 (2018):1366–1372.

[42]

F. Mo, G. Liang, D. Wang, Z. Tang, H. Li, and C. Zhi, “Biomimetic Organohydrogel Electrolytes for High-Environmental Adaptive Energy Storage Devices,” EcoMat 1 (2019):e12008.

[43]

X. Li, F. Ning, L. Luo, et al., “Initiating a High-Temperature Zinc Ion Battery Through a Triazolium-Based Ionic Liquid,” RSC Advances 12 (2022):8394–8403.

[44]

B. Wu, Y. Mu, J. He, et al., “In Situ Characterizations for Aqueous Rechargeable Zinc Batteries,” Carbon Neutralization 2 (2023):310–338.

[45]

W. Deng, Z. Zhou, Y. Li, et al., “High-Capacity Layered Magnesium Vanadate With Concentrated Gel Electrolyte Toward High-Performance and Wide-Temperature Zinc-Ion Battery,” ACS Nano 14 (2020):15776–15785.

[46]

J. Wan, R. Wang, Z. Liu, et al., “Hydrated Eutectic Electrolyte Induced Bilayer Interphase for High-Performance Aqueous Zn-Ion Batteries With 100 C Wide-Temperature Range,” Advanced Materials 36 (2024):2310623.

[47]

Y. Meng, L. Zhang, M. Peng, et al., “Developing Thermoregulatory Hydrogel Electrolyte to Overcome Thermal Runaway in Zinc-Ion Batteries,” Advanced Functional Materials 32 (2022):2206653.

[48]

Z. Zhang, B. Xi, X. Ma, W. Chen, J. Feng, and S. Xiong, “Recent Progress, Mechanisms, and Perspectives for Crystal and Interface Chemistry Applying to the Zn Metal Anodes in Aqueous Zinc-Ion Batteries,” SusMat 2 (2022):114–141.

[49]

S. Xu, M. Sun, Q. Wang, and C. Wang, “Recent Progress in Organic Electrodes for Zinc-Ion Batteries,” Journal of Semiconductors 41 (2020):091704.

[50]

L. Li, S. Jia, S. Yue, et al., “Hydrogel-Stabilized Zinc Ion Batteries: Progress and Outlook,” Green Chemistry 26 (2024):6404–6422.

[51]

W. Wang, C. Li, S. Liu, et al., “Flexible Quasi-Solid-State Aqueous Zinc-Ion Batteries: Design Principles, Functionalization Strategies, and Applications,” Advanced Energy Materials 13 (2023):2300250.

[52]

H. Cui, T. Wang, Z. Huang, et al., “High-Voltage Organic Cathodes for Zinc-Ion Batteries through Electron Cloud and Solvation Structure Regulation,” Angewandte Chemie International Edition 61 (2022):e202203453.

[53]

H. Ji, C. Xie, T. Wu, et al., “High-Entropy Solvent Design Enabling a Universal Electrolyte With a Low Freezing Point for Low-Temperature Aqueous Batteries,” Chemical Communications 59 (2023):8715–8718.

[54]

X. Ge and X. Wang, “Estimation of Freezing Point Depression, Boiling Point Elevation, and Vaporization Enthalpies of Electrolyte Solutions,” Industrial & Engineering Chemistry Research 2009 (2229):48.

[55]

H. Moon, G. Y. Jung, J. E. Lee, I. Kristanto, S. K. Kwak, and S. Lee, “Starving Free Solvents: Toward Immiscible Binary Liquid Electrolytes for Li-Metal Full Cells,” Advanced Functional Materials 33 (2023):2302543.

[56]

Y. Marcus and G. Hefter, “Ion Pairing,” Chemical Reviews 106 (2006):4585–4621.

[57]

J. Lin, Y. Wang, M. Chen, et al., “Regulating the Gibbs Free Energy to Design Aqueous Battery-Compatible Robust Host,” Advanced Energy Materials (2024):2401275.

[58]

P. Coffey, “Chemical Free Energies and the Third Law of Thermodynamics,” Historical Studies in the Physical and Biological Sciences 36 (2006):365–396.

[59]

F. D. Yu, Z. J. Yi, R. Y. Li, et al., “Temperature Inversion Enables Superior Stability for Low-Temperature Zn-Ion Batteries,” Journal of Energy Chemistry 91 (2024):245–253.

[60]

J. Wang, Z. Zhao, G. Lu, et al., “Room-Temperature Fast Zinc-Ion Conduction in Molecule-Flexible Solids,” Materials Today Energy 20 (2021):100630.

[61]

X. Zhang, Y. Liu, S. Wang, et al., “Fundamentals and Design Strategies of Electrolytes for High-Temperature Zinc-Ion Batteries,” Energy Storage Materials 70 (2024):103471.

[62]

Y. Wang, X. Zhang, and Z. Chen, “Low Temperature Preheating Techniques for Lithium-Ion Batteries: Recent Advances and Future Challenges,” Applied Energy 313 (2022):118832.

[63]

R. Qin, Y. Wang, M. Zhang, et al., “Tuning Zn2+ Coordination Environment to Suppress Dendrite Formation for High-Performance Zn-Ion Batteries,” Nano Energy 80 (2021):105478.

[64]

J. H. Jo, Y. K. Sun, and S. T. Myung, “Hollandite-Type Al-Doped VO1.52(OH)0.77 as a Zinc Ion Insertion Host Material,” Journal of Materials Chemistry A 5 (2017):8367–8375.

[65]

B. Tang, L. Shan, S. Liang, and J. Zhou, “Issues and Opportunities Facing Aqueous Zinc-Ion Batteries,” Energy &Environmental Science 12 (2019):3288–3304.

[66]

Z. Chen, J. Jiang, M. Jing, et al., “Covalent Organic Framework-Derived Fe, Co-Nitrogen Codoped Carbon as a Bifunctional Electrocatalyst for Rechargeable Efficient Zn–Air Batteries,” Carbon Neutralization 3 (2024):689–699.

[67]

X. Liu, H. Wang, X. Fan, et al., “Stabilizing Zinc Anodes for Long-Lifespan Zinc–Nickel Battery Through the In-Situ Construction of Zincophilic Interface Layer,” Energy Storage Materials 58 (2023):311–321.

[68]

H. Yu, D. Chen, X. Ni, et al., “Reversible Adsorption With Oriented Arrangement of a Zwitterionic Additive Stabilizes Electrodes for Ultralong-Life Zn-Ion Batteries,” Energy & Environmental Science 16 (2023):2684–2695.

[69]

Y. Li and Y. Qi, “Energy Landscape of the Charge Transfer Reaction at the Complex Li/SEI/Electrolyte Interface,” Energy & Environmental Science 12 (2019):1286–1295.

[70]

R. Xu, “Towards a New Discipline of Condensed Matter Chemistry,” National Science Review 5 (2018):1.

[71]

H. Chen, J. Huang, S. Tian, et al., “Interlayer Modification of Pseudocapacitive Vanadium Oxide and Zn(H2O)n2+ Migration Regulation for Ultrahigh Rate and Durable Aqueous Zinc-Ion Batteries,” Advanced Science 8 (2021):2004924.

[72]

B. Batiot, T. Rogaume, F. Richard, et al., “Origin and Justification of the Use of the Arrhenius Relation to Represent the Reaction Rate of the Thermal Decomposition of a Solid,” Applied Sciences 11 (2021):4075.

[73]

Y. Fu, X. Cui, Y. Zhang, et al., “Measurement and Correlation of the Electrical Conductivity of the Ionic Liquid [BMIM][TFSI] in Binary Organic Solvents,” Journal of Chemical & Engineering Data 63 (2018):1180–1189.

[74]

B. S. Lalia, N. Yoshimoto, M. Egashira, and M. Morita, “A Mixture of Triethylphosphate and Ethylene Carbonate as a Safe Additive for Ionic Liquid-Based Electrolytes of Lithium Ion Batteries,” Journal of Power Sources 195 (2010):7426–7431.

[75]

J. C. M Kistemaker, A. S. Lubbe, E. A. Bloemsma, and B. L. Feringa, “On the Role of Viscosity in the Eyring Equation,” ChemPhysChem 17 (2016):1819–1822.

[76]

T. Wang, P. Wang, L. Pan, et al., “Stabling Zinc Metal Anode with Polydopamine Regulation through Dual Effects of Fast Desolvation and Ion Confinement,” Advanced Energy Materials 13 (2023):2203523.

[77]

P. Li, “Bridging the 12-6-4 Model and the Fluctuating Charge Model,” Frontiers in Chemistry 9 (2021):721960.

[78]

Y. Cai, R. Chua, S. Huang, H. Ren, and M. Srinivasan, “Amorphous Manganese Dioxide With the Enhanced Pseudocapacitive Performance for Aqueous Rechargeable Zinc-Ion Battery,” Chemical Engineering Journal 396 (2020):125221.

[79]

Y. Tan, F. An, Y. Liu, et al., “Reaction Kinetics in Rechargeable Zinc-Ion Batteries,” Journal of Power Sources 492 (2021):229655.

[80]

S. Bilyaz, K. C. Marr, and O. A. Ezekoye, “Modeling of Thermal Runaway Propagation in a Pouch Cell Stack,” Fire Technology 56 (2020):2441–2466.

[81]

O. Kittaneh, “On the Theory of the Arrhenius-Normal Model With Applications to the Life Distribution of Lithium-Ion Batteries,” Batteries 9 (2023):55.

[82]

S. C. C. van der Lubbe and C. Fonseca Guerra, “The Nature of Hydrogen Bonds: A Delineation of the Role of Different Energy Components on Hydrogen Bond Strengths and Lengths,” Chemistry—An Asian Journal 14 (2019):2760–2769.

[83]

Z. Shi, M. Li, X. Fu, Y. Zhang, S. Jiao, and Y. Zhao, “Bimodal Block Molecule with Ether-Type and Hydroxyl-Type Oxygen Stabilizes Zn Anode in Super-Dilute Electrolyte,” Advanced Functional Materials 34 (2024):2316427.

[84]

S. Zhou, X. Meng, Y. Chen, et al., Angewandte Chemie International Edition 63 (2024):e202403050.

[85]

J. Chen, Y. Ding, D. Yan, J. Huang, and S. Peng, “Synthesis of MXene and Its Application for Zinc-Ion Storage,” SusMat 2 (2022):293–318.

[86]

Q. Zhang, Y. Ma, Y. Lu, et al., “Modulating Electrolyte Structure for Ultralow Temperature Aqueous Zinc Batteries,” Nature Communications 11 (2020):4463.

[87]

F. Wang, O. Borodin, T. Gao, et al., “Highly Reversible Zinc Metal Anode for Aqueous Batteries,” Nature Materials 17 (2018):543–549.

[88]

J. Zheng, S. Chen, W. Zhao, J. Song, M. H. Engelhard, and J. G. Zhang, “Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes,” ACS Energy Letters 3 (2018):315–321.

[89]

C. M. Efaw, Q. Wu, N. Gao, et al., “Localized High-Concentration Electrolytes Get More Localized Through Micelle-Like Structures,” Nature Materials 22 (2023):1531–1539.

[90]

Y. Ugata and N. Yabuuchi, “New Functionality of Electrode Materials With Highly Concentrated Electrolytes,” Trends in Chemistry 5 (2023):672–683.

[91]

J. He, Y. Tang, G. Liu, et al., “Intrinsic Hydrogen-Bond Donors-Lined Organophosphate Superionic Nanochannels Levering High-Rate-Endurable Aqueous Zn Batteries,” Advanced Energy Materials 12 (2022):2202661.

[92]

Q. Zhang, K. Xia, Y. Ma, et al., “Chaotropic Anion and Fast-Kinetics Cathode Enabling Low-Temperature Aqueous Zn Batteries,” ACS Energy Letters 6 (2021):2704–2712.

[93]

T. Sun, S. Zheng, H. Du, and Z. Tao, “Synergistic Effect of Cation and Anion for Low-Temperature Aqueous Zinc-Ion Battery,” Nano-Micro Letters 13 (2021):204.

[94]

Y. Sun, H. Ma, X. Zhang, et al., “Salty Ice Electrolyte with Superior Ionic Conductivity Towards Low-Temperature Aqueous Zinc Ion Hybrid Capacitors,” Advanced Functional Materials 31 (2021):2101277.

[95]

N. Patil, C. De La Cruz, D. Ciurduc, A. Mavrandonakis, J. Palma, and R. Marcilla, “An Ultrahigh Performance Zinc-Organic Battery Using Poly(Catechol) Cathode in Zn(TFSI)2-Based Concentrated Aqueous Electrolytes,” Advanced Energy Materials 11 (2021):2100939.

[96]

B. Tang, J. Zhou, G. Fang, et al., “Engineering the Interplanar Spacing of Ammonium Vanadates as a High-Performance Aqueous Zinc-Ion Battery Cathode,” Journal of Materials Chemistry A 7 (2019):940–945.

[97]

L. Cao, D. Li, F. A. Soto, et al., “Highly Reversible Aqueous Zinc Batteries Enabled by Zincophilic–Zincophobic Interfacial Layers and Interrupted Hydrogen-Bond Electrolytes,” Angewandte Chemie International Edition 60 (2021):18845–18851.

[98]

N. Yesibolati, N. Umirov, A. Koishybay, et al., “High Performance Zn/LiFePO4 Aqueous Rechargeable Battery for Large Scale Applications,” Electrochimica Acta 152 (2015):505–511.

[99]

J. Q. Huang, X. Lin, H. Tan, X. Du, and B. Zhang, “Realizing High-Performance Zn-Ion Batteries by a Reduced Graphene Oxide Block Layer at Room and Low Temperatures,” Journal of Energy Chemistry 43 (2020):1–7.

[100]

G. Yang, J. Huang, X. Wan, et al., “An Aqueous Zinc-Ion Battery Working at −50°C Enabled by Low-Concentration Perchlorate-Based Chaotropic Salt Electrolyte,” EcoMat 4 (2022):e12165.

[101]

N. Chang, T. Li, R. Li, et al., “An Aqueous Hybrid Electrolyte for Low-Temperature Zinc-Based Energy Storage Devices,” Energy & Environmental Science 13 (2020):3527–3535.

[102]

L. Wang, H. Shen, W. Sun, et al., “Harnessing Eco-Friendly Additives to Manipulate Zinc-Ion Solvation Structures Towards Stable Zinc Metal Batteries,” Journal of Energy Chemistry 98 (2024):114–122.

[103]

T. C. Li, Y. Lim, X. L. Li, et al., “A Universal Additive Strategy to Reshape Electrolyte Solvation Structure toward Reversible Zn Storage,” Advanced Energy Materials 12 (2022):2103231.

[104]

J. Cao, X. Wang, D. Zhang, et al., “Boosting Zn Metal Anode Stability With a Dimethylformamide Additive,” Journal of Alloys and Compounds 972 (2024):172773.

[105]

Y. Sun, B. Liu, L. Liu, J. Lang, and J. Qiu, “A Low-Concentration and High Ionic Conductivity Aqueous Electrolyte toward Ultralow-Temperature Zinc-Ion Hybrid Capacitors,” Small Structures 4 (2023):2200345.

[106]

N. Wang, Y. Yang, X. Qiu, X. Dong, Y. Wang, and Y. Xia, “Stabilized Rechargeable Aqueous Zinc Batteries Using Ethylene Glycol as Water Blocker,” ChemSusChem 13 (2020):5556–5564.

[107]

J. Hao, L. Yuan, C. Ye, et al., “Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents,” Angewandte Chemie International Edition 60 (2021):7366–7375.

[108]

Y. Dong, N. Zhang, Z. Wang, et al., “Cell-Nucleus Structured Electrolyte for Low-Temperature Aqueous Zinc Batteries,” Journal of Energy Chemistry 83 (2023):324–332.

[109]

T. Nguyen Thanh Tran, M. Zhao, S. Geng, and D. G. Ivey, “Ethylene Glycol as an Antifreeze Additive and Corrosion Inhibitor for Aqueous Zinc-Ion Batteries,” Batteries & Supercaps 5 (2022):e202100420.

[110]

X. Lin, Z. Wang, L. Ge, et al., “Electrolyte Modification for Long-Life Zn Ion Batteries: Achieved by Methanol Additive,” ChemElectroChem 9 (2022):e202101724.

[111]

J. Wang, Y. Yang, Y. Wang, et al., “Working Aqueous Zn Metal Batteries at 100°C,” ACS Nano 16 (2022):15770–15778.

[112]

H. Wang, W. Ye, B. Yin, et al., “Modulating Cation Migration and Deposition with Xylitol Additive and Oriented Reconstruction of Hydrogen Bonds for Stable Zinc Anodes,” Angewandte Chemie International Edition 135 (2023):e202218872.

[113]

D. Yuan, H. Jiang, D. Huang, et al., “Regulating the Water Molecule Hydrogen-Bond Network to Realize Dendritic-Free Zn Anodes for Zn-Ion Energy Storage Devices,” ACS Sustainable Chemistry & Engineering 11 (2023):16165–16175.

[114]

Y. Gao, J. Fu, F. Mo, L. Zhang, D. Ho, and H. Hu, “Molecular Structure Engineering of Isomeric Additives for Long Lifetime Zn Anodes,” Small 20 (2024):2400085.

[115]

Y. Quan, M. Yang, M. Chen, et al., “Electrolyte Additive of Sorbitol Rendering Aqueous Zinc-Ion Batteries With Dendrite-Free Behavior and Good Anti-Freezing Ability,” Chemical Engineering Journal 458 (2023):141392.

[116]

M. Sun, Z. Zhang, S. Fu, et al., “A Multifunctional Electrolyte Additive for Zinc-Ion Capacitors With Low Temperature Resistant and Long Lifespan,” Journal of Energy Chemistry 94 (2024):477–485.

[117]

N. Wang, X. Dong, B. Wang, et al., “Zinc–Organic Battery With a Wide Operation-Temperature Window From −70 to 150°C,” Angewandte Chemie 132 (2020):14685–14691.

[118]

S. D. Han, N. N. Rajput, X. Qu, et al., “Origin of Electrochemical, Structural, and Transport Properties in Nonaqueous Zinc Electrolytes,” ACS Applied Materials & Interfaces 8 (2016):3021–3031.

[119]

V. Verma, R. M. Chan, L. Jia Yang, et al., “Chelating Ligands as Electrolyte Solvent for Rechargeable Zinc-Ion Batteries,” Chemistry of Materials 33 (2021):1330–1340.

[120]

B. Raza, A. Naveed, J. Chen, et al., “Zn Anode Sustaining High Rate and High Loading in Organic Electrolyte for Rechargeable Batteries,” Energy Storage Materials 46 (2022):523–534.

[121]

W. Yang, X. Du, J. Zhao, et al., “Hydrated Eutectic Electrolytes With Ligand-Oriented Solvation Shells for Long-Cycling Zinc-Organic Batteries,” Joule 4 (2020):1557–1574.

[122]

R. He, F. Yu, K. Wu, et al., “A Dual Organic Solvent Zn-Ion Electrolyte Enables Highly Stable Zn Metal Batteries,” Nano Letters 23 (2023):6050–6058.

[123]

Y. Yang, C. Huang, H. Li, et al., “Study of a Novel Supramolecular Hydrogel Electrolyte for Aqueous Zinc Ion Batteries,” Journal of Materials Chemistry C 11 (2023):9559–9569.

[124]

D. Feng, F. Cao, L. Hou, T. Li, Y. Jiao, and P. Wu, “Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives,” Small 17 (2021):2103195.

[125]

S. Ilic, M. J. Counihan, S. N. Lavan, et al., “Effect of Antisolvent Additives in Aqueous Zinc Sulfate Electrolytes for Zinc Metal Anodes: The Case of Acetonitrile,” ACS Energy Letters 9 (2024):201–208.

[126]

Z. Wu, Y. Li, A. Amardeep, et al., “Unveiling the Mysteries: Acetonitrile’s Dance with Weakly-Solvating Electrolytes in Shaping Gas Evolution and Electrochemical Performance of Zinc-Ion Batteries,” Angewandte Chemie International Edition 63 (2024):e202402206.

[127]

C. Meng, W. He, Z. Kong, et al., “Multifunctional Water-Organic Hybrid Electrolyte for Rechargeable Zinc Ions Batteries,” Chemical Engineering Journal 450 (2022):138265.

[128]

S. You, Q. Deng, Z. Wang, et al., “Achieving Highly Stable Zn Metal Anodes at Low Temperature via Regulating Electrolyte Solvation Structure,” Advanced Materials 36 (2024):2402245.

[129]

J. Qiang, W. Yu, Y. Zhao, et al., “Tetrahydrofuran Stabilizing Aqueous Zinc Ion Batteries through Adsorption and Hydrogen Bonding Modulation,” Electrochimica Acta 481 (2024):143929.

[130]

W. Ni, Y. Guan, H. Chen, Y. Zhang, S. Wang, and S. Zhang, “Molecular Engineering of Cation Solvation Structure for Highly Selective Carbon Dioxide Electroreduction,” Angewandte Chemie International Edition 62 (2023):e202303233.

[131]

M. Saha, A. Kumar, R. Kanaoujiya, K. Behera, and S. Trivedi, “A Comprehensive Review of Novel Emerging Electrolytes for Supercapacitors: Aqueous and Organic Electrolytes Versus Ionic Liquid-Based Electrolytes,” Energy & Fuels 38 (2024):8528–8552.

[132]

H. Zhao, D. Yin, Y. Qin, et al., “Highly Electrically Conductive Polyiodide Ionic Liquid Cathode for High-Capacity Dual-Plating Zinc–Iodine Batteries,” Journal of the American Chemical Society 146 (2024):6744–6752.

[133]

Z. Liu, T. Cui, G. Pulletikurthi, et al., “Dendrite-Free Nanocrystalline Zinc Electrodeposition From an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries,” Angewandte Chemie International Edition 55 (2016):2889–2893.

[134]

G. Xu, Y. Zhang, M. Jiang, et al., “A Machine Learning-Assisted Study on Organic Solvents in Electrolytes for Expanding the Electrochemical Stable Window of Zinc-Ion Batteries,” Chemical Engineering Journal 476 (2023):146676.

[135]

G. Ni, G. Zou, M. Sun, et al., “Constructing Nonaqueous Rechargeable Zinc-Ion Batteries With Zinc Trifluoroacetate,” ACS Applied Energy Materials 5 (2022):12437–12447.

[136]

Z. Chen, T. Liu, Z. Zhao, et al., “Fast Anion Intercalation into Graphite Cathode Enabling High-Rate Rechargeable Zinc Batteries,” Journal of Power Sources 457 (2020):227994.

[137]

S. C. Wu, M. C. Tsa, H. J. Liao, et al., “Intercalation of Zinc Monochloride Cations by Deep Eutectic Solvents for High-Performance Rechargeable Non-Aqueous Zinc Ion Batteries,” ACS Applied Materials & Interfaces 14 (2022):7814–7825.

[138]

Y. Luo, L. Wei, H. Geng, Y. Zhang, Y. Yang, and C. C. Li, “Amorphous Bimetallic Oxides Fe–V–O With Tunable Compositions Toward Rechargeable Zn-Ion Batteries With Excellent Low-Temperature Performance,” ACS Applied Materials & Interfaces 12 (2020):11753–11760.

[139]

D. Han, C. Cui, K. Zhang, et al., “A Non-Flammable Hydrous Organic Electrolyte for Sustainable Zinc Batteries,” Nature Sustainability 5 (2021):205–213.

[140]

X. Lin, G. Zhou, M. J. Robson, J. Yu, S. C. T. Kwok, and F. Ciucci, “Hydrated Deep Eutectic Electrolytes for High-Performance Zn-Ion Batteries Capable of Low-Temperature Operation,” Advanced Functional Materials 32 (2022):2109322.

[141]

Z. Chen, Y. Tang, X. Du, et al., “Anion Solvation Reconfiguration Enables High-Voltage Carbonate Electrolytes for Stable Zn/Graphite Cells,” Angewandte Chemie International Edition 59 (2020):21769–21777.

[142]

D. Wang, X. Guo, Z. Chen, Y. Zhao, Q. Li, and C. Zhi, “Ionic Liquid-Softened Polymer Electrolyte for Anti-Drying Flexible Zinc Ion Batteries,” ACS Applied Materials & Interfaces 14 (2022):27287–27293.

[143]

F. Cao, B. Wu, T. Li, S. Sun, Y. Jiao, and P. Wu, “Mechanoadaptive Morphing Gel Electrolyte Enables Flexible and Fast-Charging Zn-Ion Batteries With Outstanding Dendrite Suppression Performance,” Nano Research 15 (2022):2030–2039.

[144]

P. Dedetemo Kimilita, Y. Yoshimi, and N. Sonoyama, “Keggin Bicapped-Type Polyoxovanadate as Cathode Material for High-Performance Quasi-Solid-State Zinc-Ion Batteries,” ACS Applied Energy Materials 7 (2024):629–638.

[145]

H. Wang, M. S. Riaz, T. Ali, J. Gu, Y. Zhong, and Y. Hu, “Organo-Hydrogel Electrolytes with Versatile Environmental Adaptation for Advanced Flexible Aqueous Energy Storage Devices,” Small Science 3 (2023):2200104.

[146]

R. Ma, Z. Xu, and X. Wang, “Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zinc-Ion Batteries and Capacitors,” Energy & Environmental Materials 6 (2023):e12464.

[147]

Y. Tan, R. Liao, Y. Mu, et al., “Hierarchically-Structured and Mechanically-Robust Hydrogel Electrolytes for Flexible Zinc-Iodine Batteries,” Advanced Functional Materials 34 (2024):2407050.

[148]

M. Nujud Badawi, M. Kuniyil, M. Bhatia, et al., “Recent Advances in Flexible/Stretchable Hydrogel Electrolytes in Energy Storage Devices,” Journal of Energy Storage 73 (2023):108810.

[149]

X. Liu, Y. Cao, H. Wang, et al., “Phytic Acid Cross-Linked and Hofmeister Effect Strengthened Polyvinyl Alcohol Hydrogels for Zinc Ion Storage,” Chemical Communications 60 (2024):554–557.

[150]

Z. Shen, Y. Liu, Z. Li, et al., “Highly-Entangled Hydrogel Electrolyte for Fast Charging/Discharging Properties in Aqueous Zinc Ion Batteries,” Advanced Functional Materials 34 (2024):2406620.

[151]

Y. Wang, W. Jiang, J. Li, et al., “Zinc-Ion Engineered Plant-Based Multifunctional Hydrogels for Flexible Wearable Strain Sensors, Bio-Electrodes and Zinc-Ion Hybrid Capacitors,” Chemical Engineering Journal 465 (2023):142917.

[152]

Y. Li, X. Feng, L. Zhu, et al., “Modeling of Fiber-Constrained Planar PVC Gel Actuators,” Nanomaterials 13 (2023):1483.

[153]

J. Zhou, Y. Li, L. Xie, et al., “Humidity-Sensitive, Shape-Controllable, and Transient Zinc-Ion Batteries Based on Plasticizing Gelatin-Silk Protein Electrolytes,” Materials Today Energy 21 (2021):100712.

[154]

J. Xu, M. Yang, S. Li, S. Kainuma, B. Ji, and S. Murayama, “Application of Cathodic Protection Method on Steel Structures Using Sacrificial Anode and Sodium Polyacrylate-Sodium Carboxymethyl Cellulose (PANa-CMC) Hydrogel Electrolyte,” Case Studies in Construction Materials 20 (2024):e02742.

[155]

M. Moaness, A. M. Kamel, A. Salama, R. Kamel, H. H. Beherei, and M. Mabrouk, “Fast Skin Healing Chitosan/PEO Hydrogels: In Vitro and in Vivo Studies,” International Journal of Biological Macromolecules 265 (2024):130950.

[156]

T. Liu, Z. Chang, Y. Yin, K. Chen, Y. Zhang, and X. Zhang, “The PVDF-HFP Gel Polymer Electrolyte for Li-O2 Battery,” Solid State Ionics 318 (2018):88–94.

[157]

S. Zhao, Y. Zuo, T. Liu, et al., “Multi-Functional Hydrogels for Flexible Zinc-Based Batteries Working Under Extreme Conditions,” Advanced Energy Materials 11 (2021):2101749.

[158]

S. Huang, L. Hou, T. Li, Y. Jiao, and P. Wu, “Antifreezing Hydrogel Electrolyte With Ternary Hydrogen Bonding for High-Performance Zinc-Ion Batteries,” Advanced Materials 34 (2022):2110140.

[159]

Y. Liu, F. Li, J. Hao, et al., “A Polyanionic Hydrogel Electrolyte with Ion Selective Permeability for Building Ultra-Stable Zn/I2 Batteries With 100°C Wide Temperature Range,” Advanced Functional Materials 34 (2024):2400517.

[160]

K. Leng, G. Li, J. Guo, et al., “A Safe Polyzwitterionic Hydrogel Electrolyte for Long-Life Quasi-Solid State Zinc Metal Batteries,” Advanced Functional Materials 30 (2020):2001317.

[161]

B. Wu, E. Feng, Y. Liao, H. Liu, R. Tang, and Y. Tan, “Brush-Modified Hydrogels: Preparations, Properties, and Applications,” Chemistry of Materials 34 (2022):6210–6231.

[162]

Y. Duan, T. Lv, K. Dong, et al., “A Novel Hydrogel Electrolyte for All-Climate High-Performance Flexible Zinc-Ion Hybrid Capacitors Within Temperature Range from −50 to 100°C,” Chemical Engineering Journal 474 (2023):145551.

[163]

C. Ramasamy, P. Porion, L. Timperman, and M. Anouti, “An Amide Based Polyvinyl Alcohol/Protic Ionic Liquid (PVA/PIL) Gel Electrolyte for Supercapacitor Applications,” Synthetic Metals 299 (2023):117469.

[164]

M. Han, T. C. Li, X. Chen, and H. Y. Yang, “Electrolyte Modulation Strategies for Low-Temperature Zn Batteries,” Small 20 (2024):2304901.

[165]

M. Reynolds, L. M. Stoy, J. Sun, et al., “Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels,” Gels 10 (2024):115.

[166]

C. Wang, L. Zhang, L. Shang, et al., “Compartmentalized Biomolecular Condensates via Controlled Nucleation,” Research 7 (2024):0298.

[167]

D. Chao and S. Z. Qiao, “Toward High-Voltage Aqueous Batteries: Super-or Low-Concentrated Electrolyte,” Joule 4 (2020):1846–1851.

[168]

C. Yan, Y. Wang, Z. Chen, and X. Deng, “Hygroscopic Double-Layer Gel Polymer Electrolyte Toward High-Performance Low-Temperature Zinc Hybrid Batteries,” Batteries & Supercaps 4 (2021):1627–1635.

[169]

L. Chen, “Stabilization of Zn Anodes via a Butanediol Additive,” Journal of Solid State Electrochemistry 28 (2024):507–515.

[170]

J. Wang, Y. Huang, B. Liu, et al., “Flexible and Anti-Freezing Zinc-Ion Batteries Using a Guar-Gum/Sodium-Alginate/Ethylene-Glycol Hydrogel Electrolyte,” Energy Storage Materials 41 (2021):599–605.

[171]

X. Li, H. Wang, X. Sun, J. Li, and Y. N. Liu, “Flexible Wide-Temperature Zinc-Ion Battery Enabled by an Ethylene Glycol-Based Organohydrogel Electrolyte,” ACS Applied Energy Materials 4 (2021):12718–12727.

[172]

Y. Wu, S. Ju, F. Li, M. Zhang, X. Ren, and M. Li, “Tailoring Crystalline Orientation of Electrodeposited Cobalt by Alkynol Additives,” Electrochimica Acta 497 (2024):144593.

[173]

T. Niemann, J. Neumann, P. Stange, et al., “The Double-Faced Nature of Hydrogen Bonding in Hydroxy-Functionalized Ionic Liquids Shown by Neutron Diffraction and Molecular Dynamics Simulations,” Angewandte Chemie International Edition 58 (2019):12887–12892.

[174]

V. G. Muir and J. A. Burdick, “Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels,” Chemical Reviews 121 (2021):10908–10949.

[175]

F. Mo, G. Liang, Q. Meng, et al., “A Flexible Rechargeable Aqueous Zinc Manganese-Dioxide Battery Working at −20°C,” Energy & Environmental Science 12 (2019):706–715.

[176]

C. Yuan, X. Zhong, P. Tian, et al., “Antifreezing Zwitterionic-Based Hydrogel Electrolyte for Aqueous Zn Ion Batteries,” ACS Applied Energy Materials 5 (2022):7530–7537.

[177]

Y. Quan, M. Chen, W. Zhou, Q. Tian, and J. Chen, “High-Performance Anti-Freezing Flexible Zn-MnO2 Battery Based on Polyacrylamide/Graphene Oxide/Ethylene Glycol Gel Electrolyte,” Frontiers in Chemistry 8 (2020):603.

[178]

H. Lyu, S. Zhao, C. Liao, G. Li, J. Zhi, and F. Huang, “Electric Double Layer Oriented Eutectic Additive Design toward Stable Zn Anodes With a High Depth of Discharge,” Advanced Materials 36 (2024):2400976.

[179]

W. Wei, F. Zhang, H. Li, et al., “Modulating the Solvation Structure and Electrode Interface Through Phosphate Additive for Highly Reversible Zinc Metal Anode,” Chemical Engineering Journal 485 (2024):149944.

[180]

R. Wang, M. Yao, S. Huang, J. Tian, and Z. Niu, “An Anti-Freezing and Anti-Drying Multifunctional Gel Electrolyte for Flexible Aqueous Zinc-Ion Batteries,” Science China Materials 65 (2022):2189–2196.

[181]

M. Chen, W. Zhou, A. Wang, et al., “Anti-Freezing Flexible Aqueous Zn–MnO2 batteries Working at −35°C Enabled by a Borax-Crosslinked Polyvinyl Alcohol/Glycerol Gel Electrolyte,” Journal of Materials Chemistry A 8 (2020):6828–6841.

[182]

M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao, and C. Wong, “Realizing an All-Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite-Free Aqueous Zn-MnO2 Batteries,” Advanced Materials 33 (2021):2007559.

[183]

H. Luo, L. Wang, P. Ren, et al., “Atomic Engineering Promoted Electrooxidation Kinetics of Manganese-Based Cathode for Stable Aqueous Zinc-Ion Batteries,” Nano Research 15 (2022):8603–8612.

[184]

S. Pan, D. Lu, H. Gan, et al., “Long-Range Hydrophobic Force Enhanced Interfacial Photocatalysis for the Submerged Surface Anti-Biofouling,” Water Research 243 (2023):120383.

[185]

F. Mo, H. Li, Z. Pei, et al., “A Smart Safe Rechargeable Zinc Ion Battery Based on Sol–Gel Transition Electrolytes,” Science Bulletin 63 (2018):1077–1086.

[186]

X. Ke, Y. Wang, G. Ren, and C. Yuan, “Towards Rational Mechanical Design of Inorganic Solid Electrolytes for All-Solid-State Lithium Ion Batteries,” Energy Storage Materials 26 (2020):313–324.

[187]

X. Huang, T. Li, W. Fan, R. Xiao, and X. Cheng. “Challenges and Solutions of Solid-State Electrolyte Film for Large-Scale Applications,” Advanced Energy Materials 14 (2024):2303850.

[188]

M. Al-Abbasi, Y. Zhao, H. He, et al., “Challenges and Protective Strategies on Zinc Anode Toward Practical Aqueous Zinc-Ion Batteries,” Carbon Neutralization 3 (2024):108–141.

[189]

J. Hu, Y. Qu, F. Shi, et al., “Enhancing the Kinetics of Zinc Ion Deposition by Catalytic Ion in Polymer Electrolytes for Advanced Zn-MnO2 Batteries,” Advanced Functional Materials 32 (2022):2209463.

[190]

K. Wu, J. Huang, J. Yi, et al., “Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives,” Advanced Energy Materials 10 (2020):1903977.

[191]

L. Ma, S. Chen, N. Li, et al., “Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries,” Advanced Materials 32 (2020):1908121.

[192]

H. Cao, N. N. Neal, S. Pas, et al., “Architecting MXenes in Polymer Composites,” Progress in Polymer Science 153 (2024):101830.

[193]

Z. Chen, X. Li, D. Wang, et al., “Grafted Mxene/Polymer Electrolyte for High Performance Solid Zinc Batteries With Enhanced Shelf Life at Low/High Temperatures,” Energy & Environmental Science 14 (2021):3492–3501.

[194]

B. Liu, Y. Huang, J. Wang, et al., “Highly Conductive Locust Bean Gum Bio-Electrolyte for Superior Long-Life Quasi-Solid-State Zinc-Ion Batteries,” RSC Advances 11 (2021):24862–24871.

[195]

W. Xu, C. Liu, Q. Wu, et al., “A Stretchable Solid-State Zinc Ion Battery Based on a Cellulose Nanofiber–Polyacrylamide Hydrogel Electrolyte and a Mg0.23V2O5·1.0H2O Cathode,” Journal of Materials Chemistry A 8 (2020):18327–18337.

[196]

C. Liu, W. Xu, C. Mei, M. C. Li, X. Xu, and Q. Wu, “Highly Stable H2V3O8/Mxene Cathode for Zn-Ion Batteries With Superior Rate Performance and Long Lifespan,” Chemical Engineering Journal 405 (2021):126737.

[197]

J. Zhao, W. Wu, X. Jia, et al., “High-Value Utilization of Biomass Waste: From Garbage Floating on the Ocean to High-Performance Rechargeable Zn–MnO2 Batteries With Superior Safety,” Journal of Materials Chemistry A 8 (2020):18198–18206.

[198]

W. Zhou, J. Chen, M. Chen, et al., “An Environmentally Adaptive Quasi-Solid-State Zinc-Ion Battery Based on Magnesium Vanadate Hydrate With Commercial-Level Mass Loading and Anti-Freezing Gel Electrolyte,” Journal of Materials Chemistry A 8 (2020):8397–8409.

[199]

Y. Wang and Y. Chen, “A Flexible Zinc-Ion Battery Based on the Optimized Concentrated Hydrogel Electrolyte for Enhanced Performance at Subzero Temperature,” Electrochimica Acta 395 (2021):139178.

[200]

H. Zhang, X. Liu, H. Li, B. Qin, and S. Passerini, “High-Voltage Operation of a V2O5 Cathode in a Concentrated Gel Polymer Electrolyte for High-Energy Aqueous Zinc Batteries,” ACS Applied Materials & Interfaces 12 (2020):15305–15312.

[201]

Y. Tang, C. Liu, H. Zhu, et al., “Ion-Confinement Effect Enabled by Gel Electrolyte for Highly Reversible Dendrite-Free Zinc Metal Anode,” Energy Storage Materials 27 (2020):109–116.

[202]

S. Chen, P. Sun, J. Humphreys, et al., “Acetate-Based ‘Oversaturated Gel Electrolyte’Enabling Highly Stable Aqueous Zn–MnO2 Battery,” Energy Storage Materials 42 (2021):240–251.

[203]

Q. Bai, Q. Meng, W. Liu, et al., “Advanced Electrolyte With High Stability and Low-Temperature Resistance for Zinc-Ion Batteries,” Journal of Materials Chemistry A 12 (2024):277–285.

[204]

Z. Chen, T. Shen, M. Zhang, et al., “Tough, Anti-Fatigue, Self-Adhesive, and Anti-Freezing Hydrogel Electrolytes for Dendrite-Free Flexible Zinc Ion Batteries and Strain Sensors,” Advanced Functional Materials 34 (2024):2314864.

[205]

H. Lu, J. Hu, L. Wang, et al., “Multi-Component Crosslinked Hydrogel Electrolyte toward Dendrite-Free Aqueous Zn Ion Batteries With High Temperature Adaptability,” Advanced Functional Materials 32 (2022):2112540.

[206]

X. Jin, L. Song, C. Dai, et al., “A Self-Healing Zinc Ion Battery under −20°C,” Energy Storage Materials 44 (2022):517–526.

[207]

J. Shi, S. Wang, X. Chen, et al., “An Ultrahigh Energy Density Quasi-Solid-State Zinc Ion Microbattery With Excellent Flexibility and Thermostability,” Advanced Energy Materials 9 (2019):1901957.

RIGHTS & PERMISSIONS

2024 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/