Urea-based construction of hydrogen bonding networks for poly(biphenyl alkylene)s anion exchange membrane for fuel cells

Yiman Gu , Xiaoyu Chi , Tianming Dong , Yanchao Zhang , Zhanyu Li , Zhe Wang

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (6) : 1092 -1100.

PDF (1704KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (6) : 1092 -1100. DOI: 10.1002/cnl2.176
RESEARCH ARTICLE

Urea-based construction of hydrogen bonding networks for poly(biphenyl alkylene)s anion exchange membrane for fuel cells

Author information +
History +
PDF (1704KB)

Abstract

In recent decades, the “trade-off” problem of anion exchange membranes (AEMs) has been a concern. Herein, a series of urea-based multication poly (biphenyl alkylene)s AEMs are prepared by obtaining an ether bond-free backbone through ultra-strong acid catalysis, grafting it with multication side chains, and then by accessing urea-based groups in different ratios. By accessing the urea group, noncovalent bonds are used to link the molecules to act as cross-links, giving them solubility that chemical cross-links do not have. The PBTA-DQA-35U membrane possessed the highest ionic conductivity of 62.43 mS/cm. Compared with the PBTA-DQA membrane (80°C, WU= 20.45%, SR = 17.67%), the PBTA-DQA-25U membrane showed an increase in water uptake but not much change in swelling (WU = 30.23%, SR = 19.36%), which was attributed to the fact that the hydrophilic urea groups provide cation transport sites while hydrogen bonding inhibits membrane swelling. The PBTA-DQA-35U ionic conductivity is retained above 75% after 960 h of alkali stability testing. The power density of the MEA device assembled using PBTA-DQA-35U membrane is 421.78 mW/cm2.

Keywords

anion exchange membranes / hydrogen bonding networks / multication / urea groups

Cite this article

Download citation ▾
Yiman Gu, Xiaoyu Chi, Tianming Dong, Yanchao Zhang, Zhanyu Li, Zhe Wang. Urea-based construction of hydrogen bonding networks for poly(biphenyl alkylene)s anion exchange membrane for fuel cells. Carbon Neutralization, 2024, 3(6): 1092-1100 DOI:10.1002/cnl2.176

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. E. Mustain, M. Chatenet, M. Page, Y. S. Kim, Energy Environ. Sci. 2020, 13, 2805.

[2]

P. Zuo, C. Ye, Z. Jiao, J. Luo, J. Fang, U. S. Schubert, N. B. McKeown, T. L. Liu, Z. Yang, T. Xu, Nature 2023, 617, 299.

[3]

F. S. AlHumaidan, M. Absi Halabi, M. S. Rana, M. Vinoba, Energy Convers. Manage. 2023, 283, 116840.

[4]

S. P. Filippov, A. B. Yaroslavtsev, Russ. Chem. Rev. 2021, 90, 627.

[5]

M. Sining, S. Peigen, J. Phys.: Conf. Ser. 2021, 2009, 012066.

[6]

A. Pramuanjaroenkij, S. Kakac, Int. J. Hydrogen Energ. 2023, 9401, 48.

[7]

X. Shi, X. Huo, O. C. Esan, L. An, T. S. Zhao, Appl. Energy 2021, 297, 117145.

[8]

H. Chen, R. Tao, K.-T. Bang, M. Shao, Y. Kim, Adv. Energy Mater. 2022, 12, 2200934.

[9]

G. Das, J.-H. Choi, P. K. T. Nguyen, D.-J. Kim, Y. S. Yoon, Polymers 2022, 14, 1197.

[10]

R. Vedarajan, R. Balaji, K. Ramya, WIREs Energ. Environ. 2022, 12, e466.

[11]

Y. Yang, P. Li, X. Zheng, W. Sun, S. X. Dou, T. Ma, H. Pan, Chem. Soc. Rev. 2022, 9620, 51.

[12]

L. Liu, Y. Lu, C. Ning, N. Li, S. Chen, Z. Hu, Int. J. Hydrogen Energy 2022, 47, 16249.

[13]

S. Wang, Z. Wang, J. Xu, Q. Liu, Z. Sui, X. Du, Y. Cui, Y. Yuan, J. Yu, Y. Wang, Y. Chang, J. Membr. Sci. 2022, 660, 120852.

[14]

L. Li, J. Wang, M. Hussain, L. Ma, N. A. Qaisrani, S. Ma, L. Bai, X. Yan, X. Deng, G. He, F. Zhang, J. Membr. Sci. 2021, 624, 119088.

[15]

C. G. Arges, V. Ramani, Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 2490.

[16]

F. Zhang, T. Li, W. Chen, X. Wu, X. Yan, W. Xiao, Y. Zhang, X. Wang, G. He, J. Membr. Sci. 2021, 624, 119052.

[17]

L. Liu, Y. Deng, W. Zhang, J. Zhang, W. Ma, L. Li, X. Zhang, N. Li, J. Membr. Sci. 2023, 672, 121441.

[18]

T. K. Maiti, J. Singh, J. Majhi, A. Ahuja, S. Maiti, P. Dixit, S. Bhushan, A. Bandyopadhyay, S. Chattopadhyay, Polymer 2022, 255, 125151.

[19]

X. Wu, N. Chen, C. Hu, H.-A. Klok, Y. M. Lee, X. Hu, Adv. Mater. 2023, 35, 2210432.

[20]

Y. Gu, Y. Zhang, Z. Wang, D. Liu, Y. Wang, T. Dong, S. Wang, Z. Li, J. Wu, Y. Lei, Ind. Chem. Mater. 2024, 2, 141.

[21]

F. Xu, Y. Chen, X. Cao, J. Li, B. Lin, N. Yuan, J. Ding, J. Power Sources 2022, 545, 231880.

[22]

X. Wu, N. Chen, H.-A. Klok, Y. M. Lee, X. Hu, Angew. Chem. Int. Ed. 2022, 61, e202114892.

[23]

J. Wang, Y. Zhao, B. P. Setzler, S. Rojas-Carbonell, C. Ben Yehuda, A. Amel, M. Page, L. Wang, K. Hu, L. Shi, S. Gottesfeld, B. Xu, Y. Yan, Nat. Energy 2019, 4, 392.

[24]

Y. Zhang, W. Chen, T. Li, X. Yan, F. Zhang, X. Wang, X. Wu, B. Pang, G. He, J. Power Sources 2021, 490, 229544.

[25]

X. Zhang, J. Guo, X. Chu, C. Fang, Y. Huang, L. Liu, N. Li, J. Membr. Sci. 2022, 659, 120820.

[26]

N. Zhang, P. Li, X. Li, S. Tang, Int. J. Hydrogen Energy 2022, 47, 29481.

[27]

H. Tang, D. Li, N. Li, Z. Zhang, Z. Zhang, J. Membr. Sci. 2018, 558, 9.

[28]

T. Zhu, Y. Sha, H. A. Firouzjaie, X. Peng, Y. Cha, D. M. Dissanayake, M. D. Smith, A. K. Vannucci, W. E. Mustain, C. Tang, J. Am. Chem. Soc. 2020, 142, 1083.

[29]

L. Li, J. Zhang, T. Jiang, X. Sun, Y. Li, X. Li, S. Yang, S. Lu, H. Wei, Y. Ding, ACS Appl. Energy Mater. 2020, 3, 6268.

[30]

P. Dai, Z.-H. Mo, R.-W. Xu, S. Zhang, Y.-X. Wu, ACS Appl. Mater. Interfaces 2016, 8, 20329.

[31]

X. Zhou, L. Wu, G. Zhang, R. Li, X. Hu, X. Chang, Y. Shen, L. Liu, N. Li, J. Membr. Sci. 2021, 631, 119335.

[32]

P. P. Sharma, Y. Jeon, D. Kim, Molecules 2022, 27, 364.

[33]

Y. He, L. Wu, J. Pan, Y. Zhu, X. Ge, Z. Yang, J. Ran, T. Xu, J. Membr. Sci. 2016, 504, 47.

[34]

Y. Wu, J. Song, T. Zhao, Y. Xie, D. Liu, L. Wang, G. Wei, H. Ma, Z. Wang, J. Membr. Sci. 2024, 707, 123031.

[35]

Z. Li, Y. Gu, Y. Zhang, Z. Wang, D. Liu, T. Dong, X. Chi, J. Wu, Y. Lei, Mater. Today Chem. 2024, 38, 102122.

[36]

Y. Zhou, S. Liu, X. Hu, Y. Ge, C. Shi, H. Wu, T. Zhou, Z. Li, J. Qiao, Process Saf. Environ. Prot. 2023, 172, 48.

[37]

N. Agmon, H. J. Bakker, R. K. Campen, R. H. Henchman, P. Pohl, S. Roke, M. Thämer, A. Hassanali, Chem. Rev. 2016, 116, 7642.

[38]

M. Chen, L. Zheng, B. Santra, H.-Y. Ko, R. A. DiStasio Jr., M. L. Klein, R. Car, X. Wu, Nat. Chem. 2018, 10, 413.

[39]

Z. Sun, J. Pan, J. Guo, F. Yan, Adv. Sci. 2018, 5, 1800065.

[40]

F. Wang, Y. Li, C. Li, H. Zhu, J. Membr. Sci. 2021, 620, 118919.

[41]

J. Han, B. Lin, H. Peng, Y. Zhu, Z. Ren, L. Xiao, L. Zhuang, J. Power Sources 2020, 459, 227838.

[42]

B. Liu, T. Li, Q. Li, S. Zhu, Y. Duan, J. Li, H. Zhang, C. Zhao, J. Membr. Sci. 2022, 660, 120816.

[43]

W. Wang, Y. Fan, J. Sunarso, Y. Jin, J. Song, X. Meng, N. Yang, Chem. Eng. J. 2024, 483, 149376.

[44]

L. Liu, L. Bai, Z. Liu, S. Miao, J. Pan, L. Shen, Y. Shi, N. Li, J. Membr. Sci. 2023, 665, 121135.

[45]

W. Tang, T. Mu, X. Che, J. Dong, J. Yang, ACS Sustain. Chem. Eng. 2021, 9, 14297.

[46]

S. Li, S. Zhao, F. Hu, L. Li, J. Ren, L. Jiao, S. Ramakrishna, S. Peng, Prog. Mater. Sci. 2024, 145, 101294.

[47]

S. Zhao, S. F. Hung, L. Deng, W. J. Zeng, T. Xiao, S. Li, C. H. Kuo, H. Y. Chen, F. Hu, S. Peng, Nat. Commun. 2024, 15, 2728.

[48]

F. Gu, W. G. Guo, Y. F. Yuan, Y. P. Deng, H. L. Jin, J. C. Wang, Z. W. Chen, S. Pan, Y. H. Chen, S. Wang, Adv. Mater. 2024, 36, 2313096.

[49]

W. G. Guo, F. Gu, Q. L. Chen, K. X. Fu, Y. Q. Zhong, J. Lv, S. Pan, Y. H. Chen, Carbon Energy 2024, 6, e567.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (1704KB)

243

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/