Bismuth-based metal-organic frameworks and derivatives for photocatalytic applications in energy and environment: Advances and challenges

Yankun Wang , He Sun , Zhuxian Yang , Yanqiu Zhu , Yongde Xia

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 737 -767.

PDF (5664KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 737 -767. DOI: 10.1002/cnl2.153
REVIEW

Bismuth-based metal-organic frameworks and derivatives for photocatalytic applications in energy and environment: Advances and challenges

Author information +
History +
PDF (5664KB)

Abstract

Photocatalysis is an environmentally friendly technology for the utilizations of solar energy and has garnered significant attention in both scientific and industrial sectors. Developing cost-effective semiconductive materials is the core issue in photocatalysis. Bismuth-based metal-organic frameworks (Bi-MOFs) have emerged as attractive candidates in various photocatalytic applications, and Bi-MOFs derivatives further expand and consolidate their promising potential in the realm of photocatalysis. Various modification strategies including in-situ tailoring or external doping, as well as meticulous design and selection of metal nodes and organic linkers allow for fine control over the surface multifunctionality in Bi-MOF-based and derived photocatalytic composites with adjustable energy band structures and enhanced photocatalytic performance. In this review, the recent progress in the synthesis of diverse Bi-MOFs-based materials, Bi-MOFs derivatives, and their Bi-containing semiconductive composites were systemically analyzed and reviewed. The state-of-the-art research progresses in the applications of Bi-MOFs and derivatives, as well as composites in photocatalytic water splitting for hydrogen production, photodegradation of organic pollutants, and photocatalytic carbon dioxide reduction are comprehensively summarized. The relationships between structures, properties, and photocatalytic performance of Bi-based semiconductive composites are discussed in detail. In addition, the perspectives and future challenges on Bi-MOFs-based and derived materials for photocatalytic applications are also offered.

Keywords

bismuth-based MOFs / composites / derivatives / photocatalytic CO 2 reduction / photocatalytic H 2 generation / photodegradation

Cite this article

Download citation ▾
Yankun Wang, He Sun, Zhuxian Yang, Yanqiu Zhu, Yongde Xia. Bismuth-based metal-organic frameworks and derivatives for photocatalytic applications in energy and environment: Advances and challenges. Carbon Neutralization, 2024, 3(4): 737-767 DOI:10.1002/cnl2.153

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Franceschini, P. Jagdale, M. Bartoli, A. Tagliaferro, Curr. Opin. Environ. Sci. Health 2022, 26, 100345.

[2]

J. Ran, M. Jaroniec, S. Z. Qiao, Adv. Mater. 2018, 30, 1704649.

[3]

Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 2019, 48, 2109.

[4]

M. Hussain, Z. Yang, Z. Huang, Q. Jia, Y. Zhu, Y. Xia, Adv. Sci. 2021, 8, 2100625.

[5]

M. Cheng, P. Yan, X. Zheng, B. Gao, X. Yan, G. Zhang, X. Cui, Q. Xu, Chem. Eur. J. 2023, 29, e202302395.

[6]

C. Zhao, X. Pan, Z. Wang, C. C. Wang, Chem. Eng. J. 2021, 417, 128022.

[7]

O. Ola, M. M Maroto-Valer, J. Photochem. Photobiol. C 2015, 24, 16.

[8]

S. Dong, L. Wang, W. Lou, Y. Shi, L. Li, Z. Cao, Y. Zhang, J. Sun, J. Dispers. Sci. Technol. 2022, 44, 2058.

[9]

Q. Liang, X. Liu, G. Zeng, Z. Liu, L. Tang, B. Shao, Z. Zeng, W. Zhang, Y. Liu, M. Cheng, W. Tang, S. Gong, Chem. Eng. J. 2019, 372, 429.

[10]

H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature 1999, 402, 276.

[11]

T. Wu, X. Liu, Y. Liu, M. Cheng, Z. Liu, G. Zeng, B. Shao, Q. Liang, W. Zhang, Q. He, W. Zhang, Coord. Chem. Rev. 2020, 403, 213097.

[12]

D. Jiang, P. Xu, H. Wang, G. Zeng, D. Huang, M. Chen, C. Lai, C. Zhang, J. Wan, W. Xue, Coord. Chem. Rev. 2018, 376, 449.

[13]

Y. Liu, Z. Liu, D. Huang, M. Cheng, G. Zeng, C. Lai, C. Zhang, C. Zhou, W. Wang, D. Jiang, H. Wang, B. Shao, Coord. Chem. Rev. 2019, 388, 63.

[14]

J. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.

[15]

H. Y. Li, S. N. Zhao, S. Q. Zang, J. Li, Chem. Soc. Rev. 2020, 49, 6364.

[16]

M. Z. Hussain, B. van der Linden, Z. Yang, Q. Jia, H. Chang, R. A. Fischer, F. Kapteijn, Y. Zhu, Y. Xia, J. Mater. Chem. A 2021, 9, 4103.

[17]

M. Z. Hussain, Z. Yang, A. M. E. Khalil, S. Hussain, S. U. Awan, Q. Jia, R. A. Fischer, Y. Zhu, Y. Xia, J. Mater. Sci. Technol. 2022, 101, 49.

[18]

H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424.

[19]

H. F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc. Rev. 2020, 49, 1414.

[20]

C. C. Wang, X. D. Du, J. Li, X. X. Guo, P. Wang, J. Zhang, Appl. Catal. B 2016, 193, 198.

[21]

L. Shen, R. Liang, L. Wu, Chin. J. Catal. 2015, 36, 2071.

[22]

M. Fuentes-Cabrera, D. M. Nicholson, B. G. Sumpter, M. Widom, J. Chem. Phys. 2005, 123, 124713.

[23]

M. A. Nasalevich, M. van der Veen, F. Kapteijn, J. Gascon, CrystEngComm 2014, 16, 4919.

[24]

H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.

[25]

Z. Hasan, S. H. Jhung, J. Hazard. Mater. 2015, 283, 329.

[26]

Y. X. Li, X. Wang, C. C. Wang, H. Fu, Y. Liu, P. Wang, C. Zhao, J. Hazard. Mater. 2020, 399, 123085.

[27]

J. Liu, R. Li, Y. Hu, T. Li, Z. Jia, Y. Wang, Y. Wang, X. Zhang, C. Fan, Appl. Catal. B 2017, 202, 64.

[28]

M. Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, H. Garcia, Angew. Chem. Int. Ed. 2019, 58, 15188.

[29]

H. Tang, S. Cai, S. Xie, Z. Wang, Y. Tong, M. Pan, X. Lu, Adv. Sci. 2016, 3, 1500265.

[30]

X. Liu, W. Zang, C. Guan, L. Zhang, Y. Qian, A. M. Elshahawy, D. Zhao, S. J. Pennycook, J. Wang, ACS Energy Lett. 2018, 3, 2462.

[31]

Y. Zhou, R. Abazari, J. Chen, M. Tahir, A. Kumar, R. R. Ikreedeegh, E. Rani, H. Singh, A. M. Kirillov, Coord. Chem. Rev. 2022, 451, 214264.

[32]

Z. Wang, Z. Zeng, H. Wang, G. Zeng, P. Xu, R. Xiao, D. Huang, S. Chen, Y. He, C. Zhou, M. Cheng, H. Qin, Coord. Chem. Rev. 2021, 439, 213902.

[33]

B. Chen, Z. Yang, Q. Jia, R. J. Ball, Y. Zhu, Y. Xia, Mater. Sci. Eng. R Rep. 2023, 152, 100714.

[34]

G. G. Briand, N. Burford, Chem. Rev. 1999, 99, 2601.

[35]

M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J. M. Dieterich, T. Reimer, U. Kolb, D. de’Vos, N. Stock, Angew. Chem. Int. Ed. 2012, 51, 10373.

[36]

J. Ke, J. Liu, H. Sun, H. Zhang, X. Duan, P. Liang, X. Li, M. O. Tade, S. Liu, S. Wang, Appl. Catal. B 2017, 200, 47.

[37]

S. Park, S. Kim, G. J. Sun, C. Lee, ACS Appl. Mater. Interfaces 2015, 7, 8138.

[38]

A. Odularu, J. Chem. 2020, 2020, 9802934.

[39]

S. Dong, L. Wang, W. Lou, Y. Shi, Z. Cao, Y. Zhang, J. Sun, Ultrason. Sonochem. 2022, 91, 106223.

[40]

M. Köppen, O. Beyer, S. Wuttke, U. Lüning, N. Stock, Dalton Trans. 2017, 46, 8658.

[41]

M. Köppen, V. Meyer, J. Ångström, A. K. Inge, N. Stock, Cryst. Growth Des. 2018, 18, 4060.

[42]

H. Ouyang, N. Chen, G. Chang, X. Zhao, Y. Sun, S. Chen, H. Zhang, D. Yang, Angew. Chem. Int. Ed. 2018, 57, 13197.

[43]

E. Grape, H. Xu, O. Cheung, M. Calmels, J. Zhao, C. Dejoie, D. Proserpio, X. Zou, A. Inge, Cryst. Growth Des. 2019, 20, 320.

[44]

E. S. Grape, J. G. Flores, T. Hidalgo, E. Martínez-Ahumada, A. Gutiérrez-Alejandre, A. Hautier, D. R. Williams, M. O’Keeffe, L. Öhrström, T. Willhammar, P. Horcajada, I. A. Ibarra, A. K. Inge, J. Am. Chem. Soc. 2020, 142, 16795.

[45]

M. Savage, S. Yang, M. Suyetin, E. Bichoutskaia, W. Lewis, A. J. Blake, S. A. Barnett, M. Schröder, Chem. Eur. J. 2014, 20, 8024.

[46]

B. Zhang, H. Xu, M. Wang, L. Su, S. Zhang, Y. Zhang, Q. Wang, J. Environ. Chem. Eng. 2022, 10, 108469.

[47]

X. Zhao, J. Feng, J. Liu, J. Lu, W. Shi, G. Yang, G. Wang, P. Feng, P. Cheng, Adv. Sci. 2018, 5, 1700590.

[48]

Z. Wang, J. Huang, J. Mao, Q. Guo, Z. Chen, Y. Lai, J. Mater. Chem. A 2020, 8, 2934.

[49]

Y. Z. Chen, R. Zhang, L. Jiao, H. L. Jiang, Coord. Chem. Rev. 2018, 362, 1.

[50]

S. R. Zhu, M. K. Wu, W. N. Zhao, P. F. Liu, F. Y. Yi, G. C. Li, K. Tao, L. Han, Cryst. Growth Des. 2017, 17, 2309.

[51]

L. Lei, Y. Liu, F. Tong, G. Zhai, H. Zhang, C. Zhang, Z. Wang, P. Wang, Z. Zheng, H. Cheng, Y. Dai, B. Huang, Inorg. Chem. 2022, 61, 11110.

[52]

L. Song, X. Jin, A. Zada, D. Hu, Z. Li, R. Yan, Y. Qu, L. Jing, J. Environ. Chem. Eng. 2023, 11, 110069.

[53]

G. Huang, Z. Li, K. Liu, X. Tang, J. Huang, G. Zhang, Catal. Sci. Technol. 2020, 10, 4645.

[54]

J. H. Kim, J. W. Yoon, T. H. Kim, Y. M. Jo, J. S. Kim, S. Y. Jeong, J. H. Lee, Chem. Eng. J. 2021, 425, 131496.

[55]

M. Liu, P. Ye, M. Wang, L. Wang, C. Wu, J. Xu, Y. Chen, J. Environ. Chem. Eng. 2022, 10, 108436.

[56]

X. Li, Q. Dong, F. Li, Q. Zhu, Q. Tian, L. Tian, Y. Zhu, B. Pan, M. Padervand, C. Wang, Appl. Catal. B 2024, 340, 123238.

[57]

F. Li, G. H. Gu, C. Choi, P. Kolla, S. Hong, T. S. Wu, Y. L. Soo, J. Masa, S. Mukerjee, Y. Jung, J. Qiu, Z. Sun, Appl. Catal. B 2020, 277, 119241.

[58]

J. Y. Koo, C. Lee, T. Joo, H. C. Choi, Commun. Chem. 2021, 4, 167.

[59]

J. Luczak, M. Kroczewska, M. Baluk, J. Sowik, P. Mazierski, A. Zaleska-Medynska, Adv. Colloid Interface Sci. 2023, 314, 102864.

[60]

W. Fan, X. Zhang, Z. Kang, X. Liu, D. Sun, Coord. Chem. Rev. 2021, 443, 213968.

[61]

J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450.

[62]

P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, C. Serre, Chem. Rev. 2012, 112, 1232.

[63]

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105.

[64]

Q. X. Wang, G. Li, Inorg. Chem. Front. 2021, 8, 572.

[65]

W. Wang, D. Zeng, J. Wang, Y. Zhang, L. Zhang, W. Wang, Prog. Chem. 2022, 34, 2405.

[66]

E. Zhang, T. Wang, K. Yu, J. Liu, W. Chen, A. Li, H. Rong, R. Lin, S. Ji, X. Zheng, Y. Wang, L. Zheng, C. Chen, D. Wang, J. Zhang, Y. Li, J. Am. Chem. Soc. 2019, 141, 16569.

[67]

Y. Ying, B. Khezri, J. Kosina, M. Pumera, ChemSusChem 2021, 14, 3402.

[68]

P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman, B. Y. Xia, Angew. Chem. Int. Ed. 2020, 59, 10807.

[69]

Z. Luo, J. Li, G. Sui, Y. Zhuang, D. Guo, R. Xu, S. Liang, H. Yao, C. Wang, S. Chen, Korean J. Chem. Eng. 2022, 39, 2127.

[70]

E. P. Gómez-Oliveira, N. Méndez, M. Iglesias, E. Gutiérrez-Puebla, L. M. Aguirre-Díaz, M. Á. Monge, Inorg. Chem. 2022, 61, 7523.

[71]

M. Shandilya, R. Rai, J. Singh, Adv. Appl. Ceram. 2016, 115, 354.

[72]

H. Akbar, M. S. Javed, S. T. Iqbal, M. I. Khan, T. Anwar, F. Anjum, A. Ahmad, M. Muneeb, A. Ali, W. C. Oh, J. Korean Ceram. Soc. 2024, 61, 367.

[73]

V. H. Nguyen, T. D. Nguyen, T. Van Nguyen, Top. Catal. 2020, 63, 1109.

[74]

J. Albo, M. Perfecto-Irigaray, G. Beobide, A. Irabien, J. CO2 Util. 2019, 33, 157.

[75]

A. C. Wibowo, M. D. Smith, H. C. zur Loye, CrystEngComm 2011, 13, 426.

[76]

V. H. Nguyen, A. L. H. Pham, V. H. Nguyen, T. Lee, T. D. Nguyen, Chem. Eng. Res. Des. 2022, 177, 321.

[77]

S. Navalón, A. Dhakshinamoorthy, M. Álvaro, B. Ferrer, H. García, Chem. Rev. 2023, 123, 445.

[78]

Q. Huang, Y. Yang, J. Qian, Coord. Chem. Rev. 2023, 484, 215101.

[79]

G. Wang, Y. Liu, B. Huang, X. Qin, X. Zhang, Y. Dai, Dalton Trans. 2015, 44, 16238.

[80]

G. Wang, Q. Sun, Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, Chem. Eur. J. 2015, 21, 2364.

[81]

R. Zhang, Y. Liu, Z. Wang, P. Wang, Z. Zheng, X. Qin, X. Zhang, Y. Dai, M. H. Whangbo, B. Huang, Appl. Catal. B 2019, 254, 463.

[82]

V. H. Nguyen, L. Van Tan, T. Lee, T. D. Nguyen, Sustain. Chem. Pharm. 2021, 20, 100385.

[83]

Y. Zhang, J. Xu, J. Zhou, L. Wang, Chin. J. Catal. 2022, 43, 971.

[84]

P. V. L Reddy, K. H. Kim, B. Kavitha, V. Kumar, N. Raza, S. Kalagara, J. Environ. Manage. 2018, 213, 189.

[85]

P. Zhou, L. Zhang, Y. Dai, W. Wu, X. Sui, Y. Zhong, B. Wang, Z. Chen, X. Feng, H. Xu, Z. Mao, J. Clean. Prod. 2020, 246, 119007.

[86]

Z. Li, G. Huang, K. Liu, X. Tang, Q. Peng, J. Huang, M. Ao, G. Zhang, J. Clean. Prod. 2020, 272, 122892.

[87]

X. Yu, J. Zhou, Q. Li, W. N. Zhao, S. Zhao, H. Chen, K. Tao, L. Han, Dalton Trans. 2019, 48, 9057.

[88]

M. Xu, Y. Deng, S. Li, J. Zheng, J. Liu, P. L. Tremblay, T. Zhang, Chemosphere 2023, 312, 137249.

[89]

X. Zou, Z. Mei, J. Jiang, H. Guo, Appl. Surf. Sci. 2022, 586, 152813.

[90]

C. Song, L. Wang, S. Sun, Y. Wu, L. Xu, L. Gan, New Carbon Mater. 2020, 35, 609.

[91]

A. Geng, L. Meng, J. Han, Q. Zhong, M. Li, S. Han, C. Mei, L. Xu, L. Tan, L. Gan, Cellulose 2018, 25, 4133.

[92]

C. Liu, S. Mao, H. Wang, Y. Wu, F. Wang, M. Xia, Q. Chen, Chem. Eng. J. 2022, 430, 132806.

[93]

F. Li, M. Sun, B. Zhou, B. Zhu, T. Yan, B. Du, Y. Shao, J. Colloid Interface Sci. 2022, 614, 233.

[94]

Y. Cao, Q. Wang, Z. Xu, G. Lyu, J. Guangdong Univ. Technol. 2022, 39, 113.

[95]

M. L. Xu, X. J. Jiang, J. R. Li, F. J. Wang, K. Li, X. Cheng, ACS Appl. Mater. Interfaces 2021, 13, 56171.

[96]

G. Huang, Z. Li, K. Liu, Y. Zhang, X. Tang, Q. Peng, J. Huang, G. Zhang, J. Water Process Eng. 2022, 46, 102636.

[97]

W. Gu, Q. Li, H. Zhu, L. Zou, J. Colloid Interface Sci. 2022, 606, 1998.

[98]

F. Zhang, X. Xiao, Y. Xiao, Dalton Trans. 2022, 51, 10992.

[99]

Z. Wang, H. Wang, Z. Zeng, G. Zeng, P. Xu, R. Xiao, D. Huang, X. Chen, L. He, C. Zhou, Y. Yang, Z. Wang, W. Wang, W. Xiong, Appl. Catal. B 2020, 267, 118700.

[100]

J. Jiang, W. Wei, Y. Tang, S. Yang, X. Wang, Y. Xu, L. Ai, Inorg. Chem. 2022, 61, 19847.

[101]

Z. Li, X. Tang, G. Huang, X. Luo, D. He, Q. Peng, J. Huang, M. Ao, K. Liu, Sep. Purif. Technol. 2020, 242, 116825.

[102]

N. Tsumori, L. Chen, Q. Wang, Q. L. Zhu, M. Kitta, Q. Xu, Chem 2018, 4, 845.

[103]

D. Luo, C. Li, Y. Zhang, Q. Ma, C. Ma, Y. Nie, M. Li, X. Weng, R. Huang, Y. Zhao, L. Shui, X. Wang, Z. Chen, Adv. Mater. 2022, 34, 2105541.

[104]

Y. Cheng, X. Xiao, X. Guo, H. Yao, H. Pang, ACS Sustain. Chem. Eng. 2020, 8, 8675.

[105]

A. Thirumurugan, A. K. Cheetham, Eur. J. Inorg. Chem. 2010, 2010, 3823.

[106]

G. Zhang, Y. Li, X. Xiao, Y. Shan, Y. Bai, H. G. Xue, H. Pang, Z. Tian, Q. Xu, Nano Lett. 2021, 21, 3016.

[107]

L. Ai, N. Li, M. Chen, H. Jiang, J. Jiang, J. Mater. Chem. A 2021, 9, 16479.

[108]

Q. Fu, X. Wang, Q. Cai, Z. Xie, L. Zhang, P. Su, Inorg. Chem. Commun. 2022, 140, 109445.

[109]

B. Zhang, H. Xu, M. Wang, L. Su, C. Wu, Q. Wang, J. Environ. Chem. Eng. 2023, 11, 110417.

[110]

M. Gupta, J. J. Vittal, Coord. Chem. Rev. 2021, 435, 213789.

[111]

R. Abazari, S. Sanati, A. Morsali, A. M. Kirillov, Inorg. Chem. 2021, 60, 9660.

[112]

R. He, D. Xu, B. Cheng, J. Yu, W. Ho, Nanoscale Horiz. 2018, 3, 464.

[113]

J. Di, J. Xia, H. Li, S. Guo, S. Dai, Nano Energy 2017, 41, 172.

[114]

Y. Xin, Q. Zhu, T. Gao, X. Li, W. Zhang, H. Wang, D. Ji, Y. Huang, M. Padervand, F. Yu, C. Wang, Appl. Catal. B 2023, 324, 122238.

[115]

X. Li, Q. Dong, Q. Tian, A. Sial, H. Wang, H. Wen, B. Pan, K. Zhang, J. Qin, C. Wang, Mater. Today Chem. 2022, 26, 101037.

[116]

B. Xu, Y. An, Y. Liu, B. Huang, X. Qin, X. Zhang, Y. Dai, M. H. Whangbo, Chem. Commun. 2016, 52, 13507.

[117]

A. K. Inge, M. Köppen, J. Su, M. Feyand, H. Xu, X. Zou, M. O’Keeffe, N. Stock, J. Am. Chem. Soc. 2016, 138, 1970.

[118]

W. Bi, N. Leblanc, N. Mercier, P. Auban-Senzier, C. Pasquier, Chem. Mater. 2009, 21, 4099.

[119]

W. Fang, W. Shangguan, Int. J. Hydrogen Energy 2019, 44, 895.

[120]

A. Kudo, S. Hijii, Chem. Lett. 1999, 28, 1103.

[121]

S. Tokunaga, H. Kato, A. Kudo, Chem. Mater. 2001, 13, 4624.

[122]

M. Z. Hussain, Z. Yang, B. Linden, Z. Huang, Q. Jia, E. Cerrato, R. A. Fischer, F. Kapteijn, Y. Zhu, Y. Xia, J. Energy Chem. 2021, 57, 485.

[123]

Y. Xiao, X. Guo, J. Liu, L. Liu, F. Zhang, C. Li, Chin. J. Catal. 2019, 40, 1339.

[124]

Q. Zhang, Y. Li, H. Ren, Q. Zhai, C. Zhang, L. Cheng, Chem. Eng. J. 2021, 408, 127267.

[125]

Z. Wei, Y. Zhu, W. Guo, J. Liu, Z. Jiang, W. Shangguan, Chem. Eng. J. 2021, 414, 128911.

[126]

M. Amiri, A. Lulich, N. C. Chiu, S. Wolff, D. B. Fast, W. F. Stickle, K. C. Stylianou, M. Nyman, ACS Appl. Mater. Interfaces 2023, 15, 18087.

[127]

A. García-Sánchez, M. Gomez-Mendoza, M. Barawi, I. J Villar-Garcia, M. Liras, F. Gándara, V. A. de la Peña O’Shea, J. Am. Chem. Soc. 2020, 142, 318.

[128]

S. Lin, H. Huang, T. Ma, Y. Zhang, Adv. Sci. 2020, 8, 2002458.

[129]

Y. C. López, H. Viltres, N. K. Gupta, P. Acevedo-Peña, C. Leyva, Y. Ghaffari, A. Gupta, S. Kim, J. Bae, K. S. Kim, Environ. Chem. Lett. 2021, 19, 1295.

[130]

J. B. Tarkwa, N. Oturan, E. Acayanka, S. Laminsi, M. A. Oturan, Environ. Chem. Lett. 2018, 17, 473.

[131]

P. K. Chukowry, A. Mudhoo, S. J. Santchurn, Environ. Chem. Lett. 2017, 15, 531.

[132]

D. Dai, J. Qiu, G. Xia, Y. Tang, Z. Wu, J. Yao, Sep. Purif. Technol. 2023, 316, 123819.

[133]

F. Ye, Z. X. Wei, J. F. Song, X. H. Wu, P. Yue, Zeitschrift für anorganische und allgemeine Chemie 2017, 643, 669.

[134]

Z. Wang, P. Xu, H. Wang, E. Almatrafi, C. Zhou, Y. He, H. Yang, S. Chen, W. Tang, Z. Zeng, G. Zeng, Chem. Eng. J. 2022, 430, 133026.

[135]

H. A. L Pham, T. K. Vo, D. T. Nguyen, H. K. Huynh, Q. T. S. Pham, V. C. Nguyen, Green Chem. Lett. Rev. 2022, 15, 572.

[136]

J. Chen, X. Chen, X. Zhang, Y. Yuan, R. Bi, F. You, Z. Wang, R. Yu, Chem. Res. Chin. Univ. 2020, 36, 120.

[137]

C. Yao, P. Hu, X. Song, J. Zhang, Q. Wang, H. Liu, Y. Xin, Y. Miao, J. Alloys Compd. 2023, 962, 171016.

[138]

J. Wu, X. Fang, H. Dong, L. Lian, N. Ma, W. Dai, J. Alloys Compd. 2021, 877, 160262.

[139]

E. Gong, S. Ali, C. B. Hiragond, H. S. Kim, N. S. Powar, D. Kim, H. Kim, S. I. In, Energy Environ. Sci. 2022, 15, 880.

[140]

J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 2020, 32, 222.

[141]

W. Zhan, L. Sun, X. Han, Nano-Micro Lett. 2019, 11, 1.

[142]

S. Nahar, M. Zain, A. Kadhum, H. Hasan, M. Hasan, Materials 2017, 10, 629.

[143]

I. I. Alkhatib, C. Garlisi, M. Pagliaro, K. Al-Ali, G. Palmisano, Catal. Today 2020, 340, 209.

[144]

G. Zhai, Y. Liu, L. Lei, J. Wang, Z. Wang, Z. Zheng, P. Wang, H. Cheng, Y. Dai, B. Huang, ACS Catal. 2021, 11, 1988.

[145]

X. Yue, L. Cheng, F. Li, J. Fan, Q. Xiang, Angew. Chem. Int. Ed. 2022, 61, e202208414.

[146]

L. Ding, Y. Ding, F. Bai, G. Chen, S. Zhang, X. Yang, H. Li, X. Wang, Inorg. Chem. 2023, 62, 2289.

[147]

H. Qin, Y. Lv, H. Kobayashi, M. Xiao, H. Song, J. Yang, J. Alloys Compd. 2022, 920, 165900.

[148]

J. Hua, Z. Wang, J. Zhang, K. Dai, C. Shao, K. Fan, J. Mater. Sci. Technol. 2023, 156, 64.

[149]

L. Ding, Y. Li, Y. Ding, F. Bai, B. Jia, H. Li, X. Wang, Appl. Surf. Sci. 2023, 624, 157100.

[150]

M. Z. Hussain, P. F. Großmann, F. Kohler, T. Kratky, L. Kronthaler, B. van der Linden, K. Rodewald, B. Rieger, R. A. Fischer, Y. Xia, Solar RRL 2022, 6, 2200552.

RIGHTS & PERMISSIONS

2024 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (5664KB)

189

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/