Research progress of electrocatalysts for hydrogen oxidation reaction in alkaline media

Youze Zeng , Xue Wang , Yang Hu , Wei Qi , Zhuoqi Wang , Meiling Xiao , Changpeng Liu , Wei Xing , Jianbing Zhu

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 710 -736.

PDF (12952KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 710 -736. DOI: 10.1002/cnl2.152
REVIEW

Research progress of electrocatalysts for hydrogen oxidation reaction in alkaline media

Author information +
History +
PDF (12952KB)

Abstract

Anion exchange membrane fuel cells (AEMFCs) have been hailed as a promising hydrogen energy technology due to high energy conversion efficiency, zero carbon emission and the potential independence on scare and expensive noble metal electrocatalysts. A variety of platinum group metal (PGM)-free catalysts has been developed with superior catalytic performance to noble metal benchmarks toward cathodic oxygen reduction reactions (ORR). However, PGM electrocatalysts still dominate the anodic catalyst research because the kinetics of hydrogen oxidation reaction (HOR) are two or three orders of magnitude slower than in that acidic media. Therefore, it is urgently desirable to improve noble metal utilization efficiency and/or develop high-performance PGM-free electrocatalysts for HOR, thus promoting the real-world implementation of AEMFCs. In this review, the current research progress of electrocatalysts for HOR in alkaline media is summarized. We start with the discussion on the current HOR reaction mechanisms and existing controversies. Then, methodologies to improve the HOR performance are reviewed. Following these principles, the recently developed HOR electrocatalysts including PGM and PGM-free HOR electrocatalysts in alkaline media are systematically introduced. Finally, we put forward the challenges and prospects in the field of HOR catalysis.

Keywords

design strategies / electrocatalysts / fuel cells / hydrogen oxidation reactions

Cite this article

Download citation ▾
Youze Zeng, Xue Wang, Yang Hu, Wei Qi, Zhuoqi Wang, Meiling Xiao, Changpeng Liu, Wei Xing, Jianbing Zhu. Research progress of electrocatalysts for hydrogen oxidation reaction in alkaline media. Carbon Neutralization, 2024, 3(4): 710-736 DOI:10.1002/cnl2.152

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. D. Abruña, J. Chem. Educ. 2013, 90, 1411.

[2]

M. K. Debe, Nature 2012, 486, 43.

[3]

H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal., B 2005, 56, 9.

[4]

M. Shao, Q. Chang, J. P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116, 3594.

[5]

W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J. G. Chen, Y. Yan, Nat. Commun. 2015, 6, 5848.

[6]

N. Ramaswamy, S. Ghoshal, M. K. Bates, Q. Jia, J. Li, S. Mukerjee, Nano Energy 2017, 41, 765.

[7]

Y. Wang, G. Wang, G. Li, B. Huang, J. Pan, Q. Liu, J. Han, L. Xiao, J. Lu, L. Zhuang, Energy Environ. Sci. 2015, 8, 177.

[8]

D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic, D. van der Vliet, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, Nat. Chem. 2013, 5, 300.

[9]

Y. Yang, C. R. Peltier, R. Zeng, R. Schimmenti, Q. Li, X. Huang, Z. Yan, G. Potsi, R. Selhorst, X. Lu, W. Xu, M. Tader, A. V. Soudackov, H. Zhang, M. Krumov, E. Murray, P. Xu, J. Hitt, L. Xu, H. Y. Ko, B. G. Ernst, C. Bundschu, A. Luo, D. Markovich, M. Hu, C. He, H. Wang, J. Fang, R. A. DiStasio, Jr., L. F. Kourkoutis, A. Singer, K. J. T. Noonan, L. Xiao, L. Zhuang, B. S. Pivovar, P. Zelenay, E. Herrero, J. M. Feliu, J. Suntivich, E. P. Giannelis, S. Hammes-Schiffer, T. Arias, M. Mavrikakis, T. E. Mallouk, J. D. Brock, D. A. Muller, F. J. DiSalvo, G. W. Coates, H. D. Abruña, Chem. Rev. 2022, 122, 6117.

[10]

X. Tian, P. Zhao, W. Sheng, Adv. Mater. 2019, 31, e1808066.

[11]

S. Intikhab, L. Rebollar, X. Fu, Q. Yue, Y. Li, Y. Kang, M. H. Tang, J. D. Snyder, Nano Energy 2019, 64, 103963.

[12]

E. S. Davydova, S. Mukerjee, F. Jaouen, D. R. Dekel, ACS Catal. 2018, 8, 6665.

[13]

Z. Zhuang, S. A. Giles, J. Zheng, G. R. Jenness, S. Caratzoulas, D. G. Vlachos, Y. Yan, Nat. Commun. 2016, 7, 10141.

[14]

W. Sheng, A. P. Bivens, M. Myint, Z. Zhuang, R. V. Forest, Q. Fang, J. G. Chen, Y. Yan, Energy Environ. Sci. 2014, 7, 1719.

[15]

W. Sheng, H. A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 2010, 157, B1529.

[16]

Y. Cong, B. Yi, Y. Song, Nano Energy 2018, 44, 288.

[17]

J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz, H. A. Gasteiger, Energy Environ. Sci. 2014, 7, 2255.

[18]

M. Alesker, M. Page, M. Shviro, Y. Paska, G. Gershinsky, D. R. Dekel, D. Zitoun, J. Power Sources 2016, 304, 332.

[19]

R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011, 334, 1256.

[20]

T. Shinagawa, A. T Garcia-Esparza, K. Takanabe, Sci. Rep. 2015, 5, 13801.

[21]

J. Li, S. Ghoshal, M. K. Bates, T. E. Miller, V. Davies, E. Stavitski, K. Attenkofer, S. Mukerjee, Z. F. Ma, Q. Jia, Angew. Chem. Int. Ed. 2017, 56, 15594.

[22]

C. A. Campos-Roldán, L. Calvillo, G. Granozzi, N. Alonso-Vante, J. Electroanal. Chem. 2020, 857, 113449.

[23]

J. Jiang, J. Liao, S. Tao, T. Najam, W. Ding, H. Wang, Z. Wei, Electrochim. Acta 2020, 333, 1354444.

[24]

K. Okubo, J. Ohyama, A. Satsuma, Chem. Commun. 2019, 55, 3101.

[25]

B. Zhang, B. Zhang, G. Zhao, J. Wang, D. Liu, Y. Chen, L. Xia, M. Gao, Y. Liu, W. Sun, H. Pan, Nat. Commun. 2022, 13, 5894.

[26]

F. Yang, X. Bao, P. Li, X. Wang, G. Cheng, S. Chen, W. Luo, Angew. Chem. Int. Ed. 2019, 58, 14179.

[27]

M. T. M Koper, Nat. Chem. 2013, 5, 255.

[28]

I. T. McCrum, M. T. M. Koper, Nat. Energy 2020, 5, 891.

[29]

J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.

[30]

T. Cheng, L. Wang, B. V. Merinov, W. A., Goddard, 3rd, J. Am. Chem. Soc. 2018, 140, 7787.

[31]

S. Lu, Z. Zhuang, J. Am. Chem. Soc. 2017, 139, 5156.

[32]

E. Liu, J. Li, L. Jiao, H. T. T. Doan, Z. Liu, Z. Zhao, Y. Huang, K. M. Abraham, S. Mukerjee, Q. Jia, J. Am. Chem. Soc. 2019, 141, 3232.

[33]

H. Wang, H. D. Abruña, ACS Catal. 2019, 9, 5057.

[34]

H.-S. Park, J. Yang, M. K. Cho, Y. Lee, S. Cho, S.-D. Yim, B.-S. Kim, J. H. Jang, H.-K. Song, Nano Energy 2019, 55, 49.

[35]

B. Zhang, G. Fu, Y. Li, L. Liang, N. S. Grundish, Y. Tang, J. B. Goodenough, Z. Cui, Angew. Chem. Int. Ed. 2020, 59, 7857.

[36]

J. Ohyama, T. Sato, A. Satsuma, J. Power Sources 2013, 225, 311.

[37]

J. Ohyama, T. Sato, Y. Yamamoto, S. Arai, A. Satsuma, J. Am. Chem. Soc. 2013, 135, 8016.

[38]

L. Han, P. Ou, W. Liu, X. Wang, H. T. Wang, R. Zhang, C. W. Pao, X. Liu, W. F. Pong, J. Song, Z. Zhuang, M. V. Mirkin, J. Luo, H. L. Xin, Sci. Adv. 2022, 8, eabm3779.

[39]

S. S. Hardisty, X. Lin, A. R. J. Kucernak, D. Zitoun, Carbon Energy 2023, 6, e409.

[40]

N. M. Markovića, S. T. Sarraf, H. A. Gasteiger, P. N. Ross, J. Chem. Soc., Faraday Trans. 1996, 92, 3719.

[41]

M. E. Scofield, Y. Zhou, S. Yue, L. Wang, D. Su, X. Tong, M. B. Vukmirovic, R. R. Adzic, S. S. Wong, ACS Catal. 2016, 6, 3895.

[42]

Y. Li, J. Abbott, Y. Sun, J. Sun, Y. Du, X. Han, G. Wu, P. Xu, Appl. Catal., B 2019, 258, 117952.

[43]

L. An, G. Luo, J. Yang, J. Zhu, D. Wang, Chem. Eng. J. 2024, 486, 150272.

[44]

X. Yan, X. Hu, G. Fu, L. Xu, J. M. Lee, Y. Tang, Small 2018, 14, e1703940.

[45]

T. Zhao, M. Li, D. Xiao, X. Yang, L. An, Z. Deng, T. Shen, M. Gong, Y. Chen, H. Liu, L. Feng, X. Yang, L. Li, D. Wang, Angew. Chem. Int. Ed. Engl. 2024, 63, e202315148.

[46]

T. Zhao, M. Li, D. Xiao, X. Yang, Q. Li, L. An, Z. Deng, T. Shen, M. Gong, Y. Chen, G. Wang, X. Zhao, L. Xiao, X. Yang, L. Li, D. Wang, J. Am. Chem. Soc. 2023, 145, 4088.

[47]

Q. Wang, H. Wang, H. Cao, C.-W. Tung, W. Liu, S.-F. Hung, W. Wang, C. Zhu, Z. Zhang, W. Cai, Y. Cheng, H. B. Tao, H. M. Chen, Y.-G. Wang, Y. Li, H. B. Yang, Y. Huang, J. Li, B. Liu, Nat. Catal. 2023, 6, 916.

[48]

X. Wang, X. Liu, J. Fang, H. Wang, X. Liu, H. Wang, C. Chen, Y. Wang, X. Zhang, W. Zhu, Z. Zhuang, Nat. Commun. 2024, 15, 1137.

[49]

Z. Qiu, Y. Li, Y. Gao, Z. Meng, Y. Sun, Y. Bai, N. T. Suen, H. C. Chen, Y. Pi, H. Pang, Angew. Chem. Int. Ed. Engl. 2023, 62, e202306881.

[50]

Y. Fang, C. Wei, Z. Bian, X. Yin, B. Liu, Z. Liu, P. Chi, J. Xiao, W. Song, S. Niu, C. Tang, J. Liu, X. Ge, T. Xu, G. Wang, Nat. Commun. 2024, 15, 1614.

[51]

Y. Zhao, X. Wang, G. Cheng, W. Luo, ACS Catal. 2020, 10, 11751.

[52]

C. Long, K. Wang, Y. Shi, Z. Yang, X. Zhang, Y. Zhang, J. Han, Y. Bao, L. Chang, S. Liu, Z. Tang, Inorg. Chem. Front. 2019, 6, 2900.

[53]

Q. Xue, Z. Ge, Z. Yuan, J. Huang, B. He, Y. Chen, Mater. Today Phys. 2023, 31, 100980.

[54]

Z. Yang, X. Xia, M. Fang, L. Wang, S. Pan, Y. Guo, Mater. Today Phys. 2023, 36, 101158.

[55]

X. Zhang, Z. Li, X. Sun, L. Wei, H. Niu, S. Chen, Q. Chen, C. Wang, F. Zheng, ACS Mater. Lett. 2022, 4, 2097.

[56]

Y. Xue, L. Shi, X. Liu, J. Fang, X. Wang, B. P. Setzler, W. Zhu, Y. Yan, Z. Zhuang, Nat. Commun. 2020, 11, 5651.

[57]

W. Xiao, W. Lei, J. Wang, G. Gao, T. Zhao, M. A. L. Cordeiro, R. Lin, M. Gong, X. Guo, E. Stavitski, H. L. Xin, Y. Zhu, D. Wang, J. Mater. Chem. A 2018, 6, 11346.

[58]

W. H. Lai, Z. Miao, Y. X. Wang, J. Z. Wang, S. L. Chou, Adv. Energy Mater. 2019, 9, 1900722.

[59]

N. Cheng, L. Zhang, K. Doyle-Davis, X. Sun, Electrochem. Energy Rev. 2019, 2, 539.

[60]

J. Cai, X. Zhang, Z. Lyu, H. Huang, S. Wang, L. Fu, Q. Wang, X.-F. Yu, Z. Xie, S. Xie, ACS Catal. 2023, 13, 6974.

[61]

R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng, C. Gao, C. He, N. Chen, Z. Qi, L. Song, J. Jiang, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 2017, 139, 4486.

[62]

Y. Peng, Z. Geng, S. Zhao, L. Wang, H. Li, X. Wang, X. Zheng, J. Zhu, Z. Li, R. Si, J. Zeng, Nano Lett. 2018, 18, 3785.

[63]

J. Mao, C. T. He, J. Pei, Y. Liu, J. Li, W. Chen, D. He, D. Wang, Y. Li, Nano Lett. 2020, 20, 3442.

[64]

W. Ni, J. L. Meibom, N. U. Hassan, M. Chang, Y.-C. Chu, A. Krammer, S. Sun, Y. Zheng, L. Bai, W. Ma, S. Lee, S. Jin, J. S. Luterbacher, A. Schüler, H. M. Chen, W. E. Mustain, X. Hu, Nat. Catal. 2023, 6, 773.

[65]

X. Tian, R. Ren, F. Wei, J. Pei, Z. Zhuang, L. Zhuang, W. Sheng, Nat. Commun. 2024, 15, 76.

[66]

L. Wang, Z. Xu, C. H. Kuo, J. Peng, F. Hu, L. Li, H. Y. Chen, J. Wang, S. Peng, Angew. Chem. Int. Ed. Engl. 2023, 62, e202311937.

[67]

Y. Zhou, Z. Xie, J. Jiang, J. Wang, X. Song, Q. He, W. Ding, Z. Wei, Nat. Catal. 2020, 3, 454.

[68]

M. Li, Z. Xie, X. Zheng, L. Li, J. Li, W. Ding, Z. Wei, ACS Catal. 2021, 11, 14932.

[69]

S. J. Lee, S. Mukerjee, E. A. Ticianelli, J. McBreen, Electrochim. Acta 1999, 44, 3283.

[70]

P. P. Lopes, K. S. Freitas, E. A. Ticianelli, Electrocatalysis 2010, 1, 200.

[71]

Y. Yang, F. Y. Gao, X. L. Zhang, S. Qin, L. R. Zheng, Y. H. Wang, J. Liao, Q. Yang, M. R. Gao, Angew. Chem. Int. Ed. Engl. 2022, 61, e202208040.

[72]

Z. Huang, S. Hu, M. Sun, Y. Xu, S. Liu, R. Ren, L. Zhuang, T. S. Chan, Z. Hu, T. Ding, J. Zhou, L. Liu, M. Wang, Y. C. Huang, N. Tian, L. Bu, B. Huang, X. Huang, Nat. Commun. 2024, 15, 1097.

[73]

J. Liu, F. R. Lucci, M. Yang, S. Lee, M. D. Marcinkowski, A. J. Therrien, C. T. Williams, E. C. H. Sykes, M. Flytzani-Stephanopoulos, J. Am. Chem. Soc. 2016, 138, 6396.

[74]

S. M. M Ehteshami, S. H. Chan, Electrochim. Acta 2013, 93, 334.

[75]

E. Antolini, Appl. Catal., B 2009, 88(1–2), 1.

[76]

X. Wang, L. Zhao, X. Li, Y. Liu, Y. Wang, Q. Yao, J. Xie, Q. Xue, Z. Yan, X. Yuan, W. Xing, Nat. Commun. 2022, 13, 1596.

[77]

K. Bhunia, S. Khilari, D. Pradhan, Dalton Trans. 2017, 46, 15558.

[78]

J. Tao, Q. Ji, G. Shao, Z. Li, T. Liu, Y. Wen, J. Alloys Compd. 2017, 716, 240.

[79]

Q. Chen, C. Du, Y. Yang, Q. Shen, J. Qin, M. Hong, X. Zhang, J. Chen, Mater. Today Phys. 2023, 30, 100931.

[80]

Y. Zhou, Y. Kuang, G. Hu, X. Wang, L. Feng, Mater. Today Phys. 2022, 27, 100831.

[81]

B. M. Stühmeier, S. Selve, M. U. M. Patel, T. N. Geppert, H. A. Gasteiger, H. A El-Sayed, ACS Appl. Energy Mater. 2019, 2, 5534.

[82]

C. Zhang, Q. Liu, J. Zhu, H. Wang, X. Mu, W. Zeng, Z. Pu, P. Wang, L. Chen, J. Yu, R. Lin, S. Mu, Mater. Today Phys. 2023, 31, 100996.

[83]

Y. Zhou, D. Liu, W. Qiao, Z. Liu, J. Yang, L. Feng, Mater. Today Phys. 2021, 17, 100357.

[84]

Y. Yang, Q. Dai, L. Shi, Y. Liu, T. T. Isimjan, X. Yang, J. Phys. Chem. Lett. 2022, 13, 2107.

[85]

K. A. Kuttiyiel, K. Sasaki, G. G. Park, M. B. Vukmirovic, L. Wu, Y. Zhu, J. G. Chen, R. R. Adzic, Chem. Commun. 2017, 53, 1660.

[86]

S. Henning, J. Herranz, H. A. Gasteiger, J. Electrochem. Soc. 2014, 162, F178.

[87]

J. Zheng, S. Zhou, S. Gu, B. Xu, Y. Yan, J. Electrochem. Soc. 2016, 163, F499.

[88]

R. Jervis, N. Mansor, C. Gibbs, C. A. Murray, C. C. Tang, P. R. Shearing, D. J. L. Brett, J. Electrochem. Soc. 2014, 161, F458.

[89]

Y. Cong, I. T. McCrum, X. Gao, Y. Lv, S. Miao, Z. Shao, B. Yi, H. Yu, M. J. Janik, Y. Song, J. Mater. Chem. A 2019, 7, 3161.

[90]

X. Qin, L. Zhang, G.-L. Xu, S. Zhu, Q. Wang, M. Gu, X. Zhang, C. Sun, P. B. Balbuena, K. Amine, M. Shao, ACS Catal. 2019, 9, 9614.

[91]

S. M. Alia, Y. Yan, J. Electrochem. Soc. 2015, 162, F849.

[92]

A. C. Arulrajan, P. Subramanian, R. K. Singh, A. Schechter, Isr. J. Chem. 2019, 60, 563.

[93]

H. A. Miller, A. Lavacchi, F. Vizza, M. Marelli, F. Di’Benedetto, F. D’Acapito, Y. Paska, M. Page, D. R. Dekel, Angew. Chem. Int. Ed. 2016, 55, 6004.

[94]

H. A. Miller, F. Vizza, M. Marelli, A. Zadick, L. Dubau, M. Chatenet, S. Geiger, S. Cherevko, H. Doan, R. K. Pavlicek, S. Mukerjee, D. R. Dekel, Nano Energy 2017, 33, 293.

[95]

H. Yu, E. S. Davydova, U. Ash, H. A. Miller, L. Bonville, D. R. Dekel, R. Maric, Nano Energy 2019, 57, 820.

[96]

B. Qin, H. Yu, J. Jia, C. Jun, X. Gao, D. Yao, X. Sun, W. Song, B. Yi, Z. Shao, Nanoscale 2018, 10, 4872.

[97]

A. Jiang, Z. Wang, Q. Li, M. Dong, Mater. Today Phys. 2021, 16, 100300.

[98]

W. Luo, Y. Wang, C. Cheng, Mater. Today Phys. 2020, 15, 100274.

[99]

X. Yang, B. Ouyang, P. Shen, Y. Sun, Y. Yang, Y. Gao, E. Kan, C. Li, K. Xu, Y. Xie, J. Am. Chem. Soc. 2022, 144, 11138.

[100]

Z. Cheng, Y. Yang, F. Zheng, S. Chen, P. Wang, P. Wang, H. Huang, C. Wang, D. Wang, Q. Chen, ACS Catal. 2024, 14, 3845.

[101]

H. Wang, Y. Yang, F. J. DiSalvo, H. D. Abruña, ACS Catal. 2020, 10, 4608.

[102]

Y. Zhao, D. Wu, W. Luo, ACS Sustain. Chem. Eng. 2022, 10, 1616.

[103]

J. Zheng, Z. Zhuang, B. Xu, Y. Yan, ACS Catal. 2015, 5, 4449.

[104]

J. Ohyama, D. Kumada, A. Satsuma, J. Mater. Chem. A 2016, 4, 15980.

[105]

B. Qin, H. Yu, X. Gao, D. Yao, X. Sun, W. Song, B. Yi, Z. Shao, J. Mater. Chem. A 2018, 6, 20374.

[106]

B. Qin, H. Yu, J. Chi, J. Jia, X. Gao, D. Yao, B. Yi, Z. Shao, RSC Adv. 2017, 7, 31574.

[107]

X. Ji, P. Chen, Y. Liu, Z. Ji, H. Zhou, C. Chen, X. Shen, X. Fu, G. Zhu, J. Mater. Chem. A 2023, 11, 5076.

[108]

Y. Zhang, G. Li, Z. Zhao, L. Han, Y. Feng, S. Liu, B. Xu, H. Liao, G. Lu, H. L. Xin, X. Huang, Adv. Mater. 2021, 33, e2105049.

[109]

M. K. Kundu, R. Mishra, T. Bhowmik, S. Barman, J. Mater. Chem. A 2018, 6, 23531.

[110]

J. Zhang, X. Liu, Y. Ji, X. Liu, D. Su, Z. Zhuang, Y. C. Chang, C. W. Pao, Q. Shao, Z. Hu, X. Huang, Nat. Commun. 2023, 14, 1761.

[111]

L. Su, Y. Zhao, F. Yang, T. Wu, G. Cheng, W. Luo, J. Mater. Chem. A 2020, 8, 11923.

[112]

Y. Duan, X. L. Zhang, F. Y. Gao, Y. Kong, Y. Duan, X. T. Yang, X. X. Yu, Y. R. Wang, S. Qin, Z. Chen, R. Wu, P. P. Yang, X. S. Zheng, J. F. Zhu, M. R. Gao, T. B. Lu, Z. Y. Yu, S. H. Yu, Angew. Chem. Int. Ed. Engl. 2023, 62, e202217275.

[113]

A. G. Oshchepkov, G. Braesch, A. Bonnefont, E. R. Savinova, M. Chatenet, ACS Catal. 2020, 10, 7043.

[114]

N. Ramaswamy, S. Mukerjee, Chem. Rev. 2019, 119, 11945.

[115]

Y. Duan, Z. Y. Yu, L. Yang, L. R. Zheng, C. T. Zhang, X. T. Yang, F. Y. Gao, X. L. Zhang, X. Yu, R. Liu, H. H. Ding, C. Gu, X. S. Zheng, L. Shi, J. Jiang, J. F. Zhu, M. R. Gao, S. H. Yu, Nat. Commun. 2020, 11, 4789.

[116]

A. G. Oshchepkov, P. A. Simonov, O. V. Cherstiouk, R. R. Nazmutdinov, D. V. Glukhov, V. I. Zaikovskii, T. Y. Kardash, R. I. Kvon, A. Bonnefont, A. N. Simonov, V. N. Parmon, E. R. Savinova, Top. Catal. 2015, 58, 1181.

[117]

O. V. Cherstiouk, P. A. Simonov, A. G. Oshchepkov, V. I. Zaikovskii, T. Y. Kardash, A. Bonnefont, V. N. Parmon, E. R. Savinova, J. Electroanal. Chem. 2016, 783, 146.

[118]

D. Salmazo, M. F. Juarez, A. G. Oshchepkov, O. V. Cherstiouk, A. Bonnefont, S. A. Shermukhamedov, R. R. Nazmutdinov, W. Schmickler, E. R. Savinova, Electrochim. Acta 2019, 305, 452.

[119]

F. Yang, X. Bao, Y. Zhao, X. Wang, G. Cheng, W. Luo, J. Mater. Chem. A 2019, 7, 10936.

[120]

T. Wang, M. Wang, H. Yang, M. Xu, C. Zuo, K. Feng, M. Xie, J. Deng, J. Zhong, W. Zhou, T. Cheng, Y. Li, Energy Environ. Sci. 2019, 12, 3522.

[121]

Z. Y. Tian, X. Q. Han, J. Du, Z. B. Li, Y. Y. Ma, Z. G. Han, ACS Appl. Mater. Interfaces 2023, 15, 11853.

[122]

F. Song, W. Li, J. Yang, G. Han, P. Liao, Y. Sun, Nat. Commun. 2018, 9, 4531.

[123]

W. Ni, A. Krammer, C. S. Hsu, H. M. Chen, A. Schüler, X. Hu, Angew. Chem. Int. Ed. 2019, 58, 7445.

[124]

X. Zhao, X. Li, L. An, L. Zheng, J. Yang, D. Wang, Angew. Chem. Int. Ed. Engl. 2022, 61, e202206588.

[125]

Y. Ding, L. Zhao, Y. Tong, W. Kong, B. Li, J. Wang, X. Han, W. Xing, J. Xu, J. Phys. Chem. C 2022, 126, 13617.

[126]

M. Feng, J. Huang, Y. Peng, C. Huang, X. Yue, S. Huang, Chem. Eng. J. 2022, 428, 131206.

[127]

G. Meng, Z. Chang, X. Cui, H. Tian, Z. Ma, L. Peng, Y. Chen, C. Chen, J. Shi, Chem. Eng. J. 2021, 417, 127913.

[128]

M. E. Ahmed, A. Nayek, A. Križan, N. Coutard, A. Morozan, S. Ghosh Dey, R. Lomoth, L. Hammarström, V. Artero, A. Dey, J. Am. Chem. Soc. 2022, 144, 3614.

[129]

J. Schild, B. Reuillard, A. Morozan, P. Chenevier, E. Gravel, E. Doris, V. Artero, J. Am. Chem. Soc. 2021, 143, 18150.

[130]

A. Z. Haddad, B. D. Garabato, P. M. Kozlowski, R. M. Buchanan, C. A. Grapperhaus, J. Am. Chem. Soc. 2016, 138, 7844.

[131]

X. Yang, B. Ouyang, L. Zhao, Q. Shen, G. Chen, Y. Sun, C. Li, K. Xu, J. Am. Chem. Soc. 2023, 145, 27010.

[132]

G. Huang, W. Liang, Y. Wu, J. Li, Y. Q. Jin, H. Zeng, H. Zhang, F. Xie, J. Chen, N. Wang, Y. Jin, H. Meng, J. Catal. 2020, 390, 23.

[133]

B. Xiong, W. Zhao, L. Chen, J. Shi, Adv. Funct. Mater. 2019, 29, 1902505.

RIGHTS & PERMISSIONS

2024 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (12952KB)

238

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/