In-plane ferroelectrics enabling reduced hysteresis in monolayer MoS2 transistors

Mingxuan Yuan , Binbin Zhang , Jiliang Cai , Jiaqi Zhang , Yue Lu , Shuo Qiao , Kecheng Cao , Hao Deng , Qingqing Ji

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 700 -709.

PDF (1731KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 700 -709. DOI: 10.1002/cnl2.148
RESEARCH ARTICLE

In-plane ferroelectrics enabling reduced hysteresis in monolayer MoS2 transistors

Author information +
History +
PDF (1731KB)

Abstract

Two-dimensional (2D) semiconductors, such as monolayer MoS2, has emerged as a profound material platform in the post-Moore era due to their versatile applications for high-performance transistors, memories, photodetectors, neuristors, and so on. Nevertheless, the inherent defects in these atomically thin materials have given rise to significant hysteresis in their field-effect transistors (FETs), resulting in shifted threshold voltages and elevated power consumptions not only on single-device levels but also at circuitry scales. We herein report that, by vertically integrating an in-plane ferroelectric, NbOCl2, with monolayer MoS2 FETs, the hysteresis in both the output and transfer curves of the latter can be greatly suppressed, which we attribute to compensated electromigration currents by the polarization currents of the 2D ferroelectric. This work opens a new avenue to hysteresis-free 2D transistors without necessitating defect-free channels, thus allowing for their use in high driving-voltage scenarios such as power electronics.

Keywords

ferroelectrics / hysteresis / MoS 2 transistor / NbOCl 2

Cite this article

Download citation ▾
Mingxuan Yuan, Binbin Zhang, Jiliang Cai, Jiaqi Zhang, Yue Lu, Shuo Qiao, Kecheng Cao, Hao Deng, Qingqing Ji. In-plane ferroelectrics enabling reduced hysteresis in monolayer MoS2 transistors. Carbon Neutralization, 2024, 3(4): 700-709 DOI:10.1002/cnl2.148

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Tong, J. Wan, K. Xiao, J. Liu, J. Ma, X. Guo, L. Zhou, X. Chen, Y. Xia, S. Dai, Z. Xu, W. Bao, P. Zhou, Nat. Electron. 2023, 6, 37.

[2]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 2011, 6, 147.

[3]

M.-L. Chen, X. Sun, H. Liu, H. Wang, Q. Zhu, S. Wang, H. Du, B. Dong, J. Zhang, Y. Sun, S. Qiu, T. Alava, S. Liu, D.-M. Sun, Z. Han, Nat. Commun. 2020, 11, 1205.

[4]

X. Xiong, A. Tong, X. Wang, S. Liu, X. Li, R. Huang, Y. Wu, in 2021 IEEE Int. Electron Devices Meet, IEDM, IEEE, San Francisco, CA, USA 2021, pp. 7.5.1.

[5]

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, Nat. Rev. Mater. 2017, 2, 17033.

[6]

D. Lembke, A. Kis, ACS Nano 2012, 6, 10070.

[7]

S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn, G. Pitner, M. J. Kim, J. Bokor, C. Hu, H.-S. P. Wong, A. Javey, Science 2016, 354, 99.

[8]

L. Xie, M. Liao, S. Wang, H. Yu, L. Du, J. Tang, J. Zhao, J. Zhang, P. Chen, X. Lu, G. Wang, G. Xie, R. Yang, D. Shi, G. Zhang, Adv. Mater. 2017, 29, 1702522.

[9]

F. Liao, Z. Guo, Y. Wang, Y. Xie, S. Zhang, Y. Sheng, H. Tang, Z. Xu, A. Riaud, P. Zhou, J. Wan, M. S. Fuhrer, X. Jiang, D. W. Zhang, Y. Chai, W. Bao, ACS Appl. Electronic Mater. 2020, 2, 111.

[10]

N. Kaushik, D. M. A. Mackenzie, K. Thakar, N. Goyal, B. Mukherjee, P. Boggild, D. H. Petersen, S. Lodha, Npj 2D Mater. Appl 2017, 1, 34.

[11]

Y. Y. Illarionov, K. K. H. Smithe, M. Waltl, T. Knobloch, E. Pop, T. Grasser, IEEE Electron Device Lett. 2017, 38, 1763.

[12]

P. B. Shah, M. Amani, M. L. Chin, T. P. O’Regan, F. J. Crowne, M. Dubey, Solid State Electron. 2014, 91, 87.

[13]

A. Di Bartolomeo, L. Genovese, F. Giubileo, L. Iemmo, G. Luongo, T. Foller, M. Schleberger, 2D Mater. 2017, 5, 015014.

[14]

D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, C. N. R. Rao, ACS Nano 2012, 6, 5635.

[15]

R. Yu, L. He, C. Gao, X. Zhang, E. Li, T. Guo, W. Li, H. Chen, Nat. Commun. 2022, 13, 7019.

[16]

J. Du, D. Xie, Q. Zhang, H. Zhong, F. Meng, X. Fu, Q. Sun, H. Ni, T. Li, E. Guo, H. Guo, M. He, C. Wang, L. Gu, X. Xu, G. Zhang, G. Yang, K. Jin, C. Ge, Nano Energy 2021, 89, 106439.

[17]

B. Cui, Z. Fan, W. Li, Y. Chen, S. Dong, Z. Tan, S. Cheng, B. Tian, R. Tao, G. Tian, D. Chen, Z. Hou, M. Qin, M. Zeng, X. Lu, G. Zhou, X. Gao, J.-M. Liu, Nat. Commun. 2022, 13, 1707.

[18]

S. Wan, Y. Li, W. Li, X. Mao, C. Wang, C. Chen, J. Dong, A. Nie, J. Xiang, Z. Liu, W. Zhu, H. Zeng, Adv. Funct. Mater. 2019, 29, 1808606.

[19]

W. Li, Y. Guo, Z. Luo, S. Wu, B. Han, W. Hu, L. You, K. Watanabe, T. Taniguchi, T. Alava, J. Chen, P. Gao, X. Li, Z. Wei, L. Wang, Y. Liu, C. Zhao, X. Zhan, Z. V. Han, H. Wang, Adv. Mater. 2023, 35, 2208266.

[20]

P. Singh, D. Rhee, S. Baek, H. H. Yoo, J. Niu, M. Jung, J. Kang, S. Lee, EcoMat 2023, 5, e12333.

[21]

G. Wu, B. Tian, L. Liu, W. Lv, S. Wu, X. Wang, Y. Chen, J. Li, Z. Wang, S. Wu, H. Shen, T. Lin, P. Zhou, Q. Liu, C. Duan, S. Zhang, X. Meng, S. Wu, W. Hu, X. Wang, J. Chu, J. Wang, Nat. Electronics 2020, 3, 43.

[22]

W. Y. Kim, H.-D. Kim, T.-T. Kim, H.-S. Park, K. Lee, H. J. Choi, S. H. Lee, J. Son, N. Park, B. Min, Nat. Commun. 2016, 7, 10429.

[23]

I. Abdelwahab, B. Tilmann, Y. Wu, D. Giovanni, I. Verzhbitskiy, M. Zhu, R. Berté, F. Xuan, L. S. Menezes, G. Eda, T. C. Sum, S. Y. Quek, S. A. Maier, K. P. Loh, Nat. Photonics 2022, 16, 644.

[24]

Q. Guo, X.-Z. Qi, L. Zhang, M. Gao, S. Hu, W. Zhou, W. Zang, X. Zhao, J. Wang, B. Yan, M. Xu, Y.-K. Wu, G. Eda, Z. Xiao, S. A. Yang, H. Gou, Y. P. Feng, G.-C. Guo, W. Zhou, X.-F. Ren, C.-W. Qiu, S. J. Pennycook, A. T. S. Wee, Nature 2023, 613, 53.

[25]

H. Wang, X. Qian, Nano Lett. 2017, 17, 5027.

[26]

L. Ye, W. Zhou, D. Huang, X. Jiang, Q. Guo, X. Cao, S. Yan, X. Wang, D. Jia, D. Jiang, Y. Wang, X. Wu, X. Zhang, Y. Li, H. Lei, H. Gou, B. Huang, Nat. Commun. 2023, 14, 5911.

[27]

I. Abdelwahab, B. Tilmann, X. Zhao, I. Verzhbitskiy, R. Berté, G. Eda, W. L. Wilson, G. Grinblat, L. De, S. Menezes, K. P. Loh, S. A. Maier, Adv. Opt. Mater. 2023, 11, 2202833.

[28]

Y. Li, J. Fu, X. Mao, C. Chen, H. Liu, M. Gong, H. Zeng, Nat. Commun. 2021, 12, 5896.

[29]

F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, Z. Liu, Nat. Commun. 2016, 7, 12357.

[30]

A. Belianinov, Q. He, A. Dziaugys, P. Maksymovych, E. Eliseev, A. Borisevich, A. Morozovska, J. Banys, Y. Vysochanskii, S. V. Kalinin, Nano Lett. 2015, 15, 3808.

[31]

L. Zhao, Y. Liang, J. Ma, Z. Pan, X. Liu, M. Yang, Y. Sun, W. Gao, B. Li, J. Li, N. Huo, Adv. Funct. Mater. 2023, 33, 2306708.

[32]

Y. Bao, P. Song, Y. Liu, Z. Chen, M. Zhu, I. Abdelwahab, J. Su, W. Fu, X. Chi, W. Yu, W. Liu, X. Zhao, Q.-H. Xu, M. Yang, K. P. Loh, Nano Lett. 2019, 19, 5109.

[33]

N. Higashitarumizu, H. Kawamoto, C.-J. Lee, B.-H. Lin, F.-H. Chu, I. Yonemori, T. Nishimura, K. Wakabayashi, W.-H. Chang, K. Nagashio, Nat. Commun. 2020, 11, 2428.

[34]

K. C. Kwon, Y. Zhang, L. Wang, W. Yu, X. Wang, I.-H. Park, H. S. Choi, T. Ma, Z. Zhu, B. Tian, C. Su, K. P. Loh, ACS Nano 2020, 14, 7628.

[35]

Y. Li, C. Chen, W. Li, X. Mao, H. Liu, J. Xiang, A. Nie, Z. Liu, W. Zhu, H. Zeng, Adv. Electron. Mater. 2020, 6, 2000061.

[36]

C. Cui, W.-J. Hu, X. Yan, C. Addiego, W. Gao, Y. Wang, Z. Wang, L. Li, Y. Cheng, P. Li, X. Zhang, H. N. Alshareef, T. Wu, W. Zhu, X. Pan, L.-J. Li, Nano Lett. 2018, 18, 1253.

[37]

L. Wang, X. Wang, Y. Zhang, R. Li, T. Ma, K. Leng, Z. Chen, I. Abdelwahab, K. P. Loh, Adv. Funct. Mater. 2020, 30, 2004609.

[38]

F. Xue, J. Zhang, W. Hu, W.-T. Hsu, A. Han, S.-F. Leung, J.-K. Huang, Y. Wan, S. Liu, J. Zhang, J.-H. He, W.-H. Chang, Z. L. Wang, X. Zhang, L.-J. Li, ACS Nano 2018, 12, 4976.

[39]

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, K. Lai, Nano Lett. 2017, 17, 5508.

[40]

Y. Yan, Q. Deng, S. Li, T. Guo, X. Li, Y. Jiang, X. Song, W. Huang, J. Yang, C. Xia, Nanoscale 2021, 13, 16122.

[41]

Y. Jia, M. Zhao, G. Gou, X. C. Zeng, J. Li, Nanoscale Horiz. 2019, 4, 1113.

[42]

B. Mortazavi, M. Shahrokhi, B. Javvaji, A. V. Shapeev, X. Zhuang, Nanotechnology 2022, 33, 275701.

[43]

C. Liu, X. Zhang, X. Wang, Z. Wang, I. Abdelwahab, I. Verzhbitskiy, Y. Shao, G. Eda, W. Sun, L. Shen, K. P. Loh, ACS Nano 2023, 17, 7170.

[44]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.

[45]

Y. Wu, I. Abdelwahab, K. C. Kwon, I. Verzhbitskiy, L. Wang, W. H. Liew, K. Yao, G. Eda, K. P. Loh, L. Shen, S. Y. Quek, Nat. Commun. 2022, 13, 1884.

[46]

B. Mohammad, M. A. Jaoude, V. Kumar, D. M. Al Homouz, H. A. Nahla, M. Al-Qutayri, N. Christoforou, Nanotechnol. Rev. 2016, 5, 311.

[47]

R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 2009, 21, 2632.

[48]

Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, X. Duan, Nature 2018, 557, 696.

[49]

V. K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M. E. Beck, K.-S. Chen, M. C. Hersam, Nature 2018, 554, 500.

[50]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722.

[51]

X. Wang, C. Zhu, Y. Deng, R. Duan, J. Chen, Q. Zeng, J. Zhou, Q. Fu, L. You, S. Liu, J. H. Edgar, P. Yu, Z. Liu, Nat. Commun. 2021, 12, 1109.

[52]

J. Yao, Z. Feng, Z. Hu, Y. Xiong, Q. Pan, G. Du, H. Ji, T. Sha, J. Lu, Y. You, Adv. Funct. Mater. 2024, 34, 2314790.

[53]

Z. Luo, M. Yang, Y. Liu, M. Alexe, Adv. Mater. 2021, 33, 2005620.

[54]

G. Kresse, D. Joubert, Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 1758.

[55]

J. P. Perdew, W. Yue, Phys. Rev. B Condens. Matter Mater. Phys. 1986, 33, 8800.

[56]

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B Condens. Matter Mater. Phys. 1992, 46, 6671.

[57]

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (1731KB)

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/