Hybrid catalyst-assisted synthesis of multifunctional carbon derived from Camellia shell for high-performance sodium-ion batteries and sodium-ion hybrid capacitors

Hanshu Mao , Sisi Yang , Yingjun Yang , Jinyue Yang , Guizhi Yuan , Mingtao Zheng , Hang Hu , Yeru Liang , Xiaoyuan Yu

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 673 -688.

PDF (3765KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 673 -688. DOI: 10.1002/cnl2.146
RESEARCH ARTICLE

Hybrid catalyst-assisted synthesis of multifunctional carbon derived from Camellia shell for high-performance sodium-ion batteries and sodium-ion hybrid capacitors

Author information +
History +
PDF (3765KB)

Abstract

Biomass-derived carbon as energy storage materials have gradually attracted widespread attention due to their low cost, sustainability, and inherent structural advantages. Herein, hard carbon (H-1200) and porous carbon (PC-800) for sodium-ion batteries (SIBs), sodium-ion capacitors (SICs) half cells and sodium-ion hybrid capacitors (SIHCs) have been synthesized from the same biomass precursor of Camellia shells through different treatments. H-1200 synthesized by directly high-temperature carbonization possesses a rational graphitic layer structure and plentiful heteroatoms. When applied as anode for SIBs, it exhibits a reversible capacity of 365.5 mAh g-1 at 25 mA g-1 and capacity retention 89.0% after 400 cycles at 200 mA g-1. Additionally, PC-800 prepared by catalytic carbonization of K2C2O4/CaC2O4 hybrid catalyst has a sophisticated porous structure and a high surface area of 2186.9 m2 g-1. When employed as a cathode for SICs, it delivers a maximum capacity 104.2 mAh g-1 at 100 mA g-1 and 35.0 mAh g-1 at 5 A g-1. Furthermore, the all carbon assembled SIHC (H-1200||PC-800) using H-1200 as anode and PC-800 as cathode, features a broad output voltage range (0.01 ~ 4.1 V), high energy density of 161.5Wh kg-1, power density of 12896.1Wkg-1, and superior capacity retention of 90.32% after 10000 cycles at 10 A g-1. This research result provide a new horizon for constructing low-cost and large-scale production of biomass derived carbon for energy storage materials.

Keywords

biomass derived carbon / Camellia shell / hard carbon / hybrid catalyst / sodium ion battery / sodium ion hybrid capacitor

Cite this article

Download citation ▾
Hanshu Mao, Sisi Yang, Yingjun Yang, Jinyue Yang, Guizhi Yuan, Mingtao Zheng, Hang Hu, Yeru Liang, Xiaoyuan Yu. Hybrid catalyst-assisted synthesis of multifunctional carbon derived from Camellia shell for high-performance sodium-ion batteries and sodium-ion hybrid capacitors. Carbon Neutralization, 2024, 3(4): 673-688 DOI:10.1002/cnl2.146

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Wang, C. F. Du, Y. Xue, X. Tan, J. Kang, Y. Gao, H. Yu, Q. Yan, Exploration 2021, 1, 20210024.

[2]

D. Yang, X. Sun, K. Lim, R. Ranganathan Gaddam, N. Ashok Kumar, K. Kang, X. S. Zhao, J. Power Sources 2017, 362, 358.

[3]

M. Yan, Y. Qin, L. Wang, M. Song, D. Han, Q. Jin, S. Zhao, M. Zhao, Z. Li, X. Wang, L. Meng, X. Wang, Nanomaterials 2022, 12, 930.

[4]

Y. Sun, X. Shi, Y. Yang, G. Suo, L. Zhang, S. Lu, Z. Chen, Adv. Funct. Mater. 2022, 32, 2201584.

[5]

J. G. Wang, H. Liu, X. Zhang, X. Li, X. Liu, F. Kang, Small 2018, 14, 1703950.

[6]

L. Xu, X. Li, X. Li, Appl. Surf. Sci. 2020, 526, 146770.

[7]

Z. Chen, J. Sun, R. Bao, X. Sun, J. Zhang, L. Hou, C. Yuan, ACS Sustain. Chem. Eng. 2019, 7, 779.

[8]

J. Zhang, D. Zhang, K. Li, Y. Tian, Y. Wang, T. Sun, J. Colloid Interface Sci. 2021, 598, 250.

[9]

C. Senthil, J. W. Park, N. Shaji, G. S. Sim, C. W. Lee, J. Energy Chem. 2022, 64, 286.

[10]

Y. Guo, W. Liu, R. Wu, L. Sun, Y. Zhang, Y. Cui, S. Liu, H. Wang, B. Shan, ACS Appl. Mater. Interfaces 2018, 10, 38376.

[11]

S. Guo, Y. Chen, L. Tong, Y. Cao, H. Jiao, Z. Long, X. Qiu, Electrochim. Acta 2022, 410, 140017.

[12]

C. M. Saavedra Rios, V. Simone, L. Simonin, S. Martinet, C. Dupont, Biomass Bioenergy 2018, 117, 32.

[13]

C. Zheng, B. Jian, X. Xu, J. Zhong, H. Yang, S. Huang, Chem. Eng. J. 2023, 455, 140434.

[14]

H. Liu, X. Liu, H. Wang, Y. Zheng, H. Zhang, J. Shi, W. Liu, M. Huang, J. Kan, X. Zhao, D. Li, ACS Sustain. Chem. Eng. 2019, 7, 12188.

[15]

S. Wang, R. Wang, Y. Zhang, D. Jin, L. Zhang, J. Power Sources 2018, 379, 33.

[16]

N. Phattharasupakun, J. Wutthiprom, N. Ma, N. Chanlek, M. Sawangphruk, Electrochim. Acta 2018, 286, 55.

[17]

F. Xing, Z. Bi, F. Su, F. Liu, Z. Wu, Adv. Energy Mater. 2022, 12, 2200594.

[18]

J. Li, Q. Jiang, L. Wei, L. Zhong, X. Wang, J. Mater. Chem. A 2020, 8, 1469.

[19]

M. Sevilla, G. A. Ferrero, A. B. Fuertes, Chem. Mater. 2017, 29, 6900.

[20]

J. Yang, Z. Tan, X. Chen, Y. Liang, M. Zheng, H. Hu, H. Dong, X. Liu, Y. Liu, Y. Xiao, J. Colloid Interface Sci. 2021, 599, 381.

[21]

D. Zeng, H. Xiong, K. Qi, X. Guo, Y. Qiu, J. Colloid Interface Sci. 2022, 605, 741.

[22]

B. Wang, J. R. Fitzpatrick, A. Brookfield, A. J. Fielding, E. Reynolds, J. Entwistle, J. Tong, B. F. Spencer, S. Baldock, K. Hunter, C. M. Kavanagh, N. Tapia-Ruiz, Nat. Commun. 2024, 15, 3013.

[23]

N. Sun, Z. Guan, Y. Liu, Y. Cao, Q. Zhu, H. Liu, Z. Wang, P. Zhang, B. Xu, Adv. Energy Mater. 2019, 9, 1901351.

[24]

J. Duan, Y. Sun, S. Chen, X. Chen, C. Zhao, J. Mater. Chem. A 2020, 8, 18810.

[25]

M. Xue, H. Xu, Y. Tan, C. Chen, B. Li, C. Zhang, J. Electroanal. Chem. 2021, 893, 115306.

[26]

S. Alvin, D. Yoon, C. Chandra, H. S. Cahyadi, J. H. Park, W. Chang, K. Y. Chung, J. Kim, Carbon 2019, 145, 67.

[27]

H. Mao, W. Chen, Y. Liu, H. Huang, J. Zhang, X. Yu, J. Energy Storage 2023, 70, 108082.

[28]

C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song, Y. Yao, Y. Gong, I. Kierzewski, J. Xie, L. Hu, Energy Environ. Sci. 2017, 10, 538.

[29]

W. Tian, P. Ren, J. Wang, X. Hou, A. Sun, Y. Jin, Z. Chen, J. Energy Storage 2023, 63, 107039.

[30]

S. Natarajan, Y. S. Lee, V. Aravindan, Chem.–Asian J. 2019, 14, 936.

[31]

Q. Li, Y. Liu, L. Yang, Y. Wang, Y. Liu, Y. Chen, X. Guo, Z. Wu, B. Zhong, J. Colloid Interface Sci. 2021, 585, 43.

[32]

X. Pu, Y. Zheng, A. Qi, L. Lyu, G. Ruan, Y. Cao, Z. Chen, Z. L. Xu, Carbon Neutralization 2024, 3, 94.

[33]

J. C. Jin, J. Nai, O. Sheng, H. Yuan, W. Zhang, X. Tao, X. Lou, Energy Environ. Sci. 2021, 14, 1326.

[34]

Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang, J. Liu, Nano Lett. 2012, 12, 3783.

[35]

X. Chen, C. Liu, Y. Fang, X. Ai, F. Zhong, H. Yang, Y. Cao, Energy 2022, 4, 1133.

[36]

M. Liu, Z. Zhang, M. Dou, Z. Li, F. Wang, Carbon 2019, 151, 28.

[37]

X. Liu, Y. Zhu, Z. Lu, J. Xiao, G. Zou, H. Hou, X. Ji, Carbon Neutralization 2023, 2, 721.

[38]

J. Zhang, Z. Chen, G. Wang, L. Hou, C. Yuan, Appl. Surf. Sci. 2020, 533, 147511.

[39]

F. Zhang, J. Tao, X. Yang, Z. Shi, H. Zhang, L. He, L. Shen, X. Zhang, J. Electroanal. Chem. 2021, 898, 115616.

[40]

Y. Cai, Y. Luo, H. Dong, X. Zhao, Y. Xiao, Y. Liang, H. Hu, Y. Liu, M. Zheng, J. Power Sources 2017, 353, 260.

[41]

M. Vadivazhagan, P. Parameswaran, U. Mani, K. Nallathamby, ACS Sustain. Chem. Eng. 2018, 6, 13915.

[42]

H. D. Pham, K. Mahale, T. M. L. Hoang, S. G. Mundree, P. Gomez-Romero, D. P. Dubal, ACS Appl. Mater. Interfaces 2020, 12, 48518.

[43]

H. Jiang, J. Guo, J. Tao, X. Li, W. Zheng, G. He, Y. Dai, ACS Appl. Energy Mater. 2022, 5, 2308.

[44]

G. Xu, S. Gao, X. Song, Y. Jiang, X. Zhang, Appl. Surf. Sci. 2022, 574, 151634.

[45]

X. Liu, H. Wang, Y. Cui, X. Xu, H. Zhang, G. Lu, J. Shi, W. Liu, S. Chen, X. Wang, J. Mater. Sci. 2018, 53, 6763.

[46]

Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan, J. Dong, L. Mai, D. L. Peng, Nano-Micro Lett. 2021, 13, 55.

[47]

Y. Lian, N. Yang, Y. Bai, D. Wang, H. Yan, Z. Wang, J. Zhao, H. Zhang, J. Alloys Compd. 2022, 896, 163128.

[48]

C. Chen, Q. Hu, F. Yang, H. Xue, Y. Zhang, H. Yan, Y. Lu, Y. Luo, RSC Adv. 2022, 12, 21558.

[49]

R. Thangavel, R. Ponraj, A. G. Kannan, K. Kaliyappan, D. W. Kim, Z. Chen, Y. S. Lee, Green Chem. 2018, 20, 4920.

[50]

W. Feng, V. S. Avvaru, S. J. Hinder, V. Etacheri, J. Energy Chem. 2022, 69, 338.

[51]

Y. Long, J. Yang, X. Gao, X. Xu, W. Fan, J. Yang, S. Hou, Y. Qian, ACS Appl. Mater. Interfaces 2018, 10, 10945.

[52]

L. Wei, T. Cao, D. Li, Z. Chen, Z. Yang, H. Huang, W. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 17547.

[53]

W. Feng, V. S. Avvaru, R. R. Maça, S. J. Hinder, M. C. Rodríguez, V. Etacheri, ACS Appl. Mater. Interfaces 2021, 13, 27999.

[54]

L. Zhang, H. Zhao, L. Dai, F. Yao, Y. Huang, W. Xue, J. Zhu, J. Sun, J. Energy Storage 2022, 52, 104970.

[55]

Y. Song, Y. Peng, H. Li, X. Sun, L. Li, C. Zhang, F. Yin, Chem. Eng. J. 2022, 447, 137450.

[56]

H. Zhang, B. Liu, Z. Lu, J. Hu, J. Xie, A. Hao, Y. Cao, Small 2023, 19, 2207214.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (3765KB)

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/