Covalent organic framework-derived Fe, Co-nitrogen codoped carbon as a bifunctional electrocatalyst for rechargeable efficient Zn–air batteries

Zhanpeng Chen , Jiabi Jiang , Mingjun Jing , Yansong Bai , Xiaoyan Zhang , Wenhui Deng , Yufeng Wu , Fang Chen , Mingguang Yi , Meixia Yang , Xinkai Xu , Tianjing Wu , Yang Zhang , Xianyou Wang

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 689 -699.

PDF (2997KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 689 -699. DOI: 10.1002/cnl2.145
RESEARCH ARTICLE

Covalent organic framework-derived Fe, Co-nitrogen codoped carbon as a bifunctional electrocatalyst for rechargeable efficient Zn–air batteries

Author information +
History +
PDF (2997KB)

Abstract

The development of cathode materials with controllable physicochemical structures and explicit catalytic sites is important in rechargeable Zn–air batteries (ZABs). Covalent organic frameworks (COFs) have garnered increasing attention owing to their facile synthesis methods, ordered pore structure, and selectivity of functional groups. However, the sluggish kinetics of oxygen evolution reaction (OER) or oxygen reduction reaction (ORR) inhibit their practical applications in ZABs. Herein, nucleophilic substitution is adopted to synthesize pyridine bi-triazine covalent organic framework (denoted as O-COF), and meanwhile, ionothermal conversion synthesis is employed to load MOx (M=Fe, Co) onto carbon nanosheet (named as FeCo@NC) to modulate the electronic structure. The Fe, Co-N codoped carbon material possesses a large portion of pyridinic N and M-N, high graphitization, and a larger BET surface area. An outstanding bifunctional activity has been exhibited in FeCo@NC, which provides a small voltage at 10 mAcm-2 for OER (E10 = 1.67 V) and a remarkable half-wave voltage for ORR (E1/2 = 0.86 V). More impressively, when assembling ZABs, it displays notable rate performance, significant specific capacity (783.9 mAh gZn-1), and satisfactory long-term endurance. This method of regulating covalent organic framework and ionothermal synthesis can be extended to design diverse catalysts.

Keywords

covalent organic frameworks / energy conversion / Fe–Co dual phase structures / ionothermal synthesis

Cite this article

Download citation ▾
Zhanpeng Chen, Jiabi Jiang, Mingjun Jing, Yansong Bai, Xiaoyan Zhang, Wenhui Deng, Yufeng Wu, Fang Chen, Mingguang Yi, Meixia Yang, Xinkai Xu, Tianjing Wu, Yang Zhang, Xianyou Wang. Covalent organic framework-derived Fe, Co-nitrogen codoped carbon as a bifunctional electrocatalyst for rechargeable efficient Zn–air batteries. Carbon Neutralization, 2024, 3(4): 689-699 DOI:10.1002/cnl2.145

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Cai, J. Huang, J. Chen, Z. Wen, Angew. Chem. Int. Ed. 2017, 56, 4858.

[2]

J. Zhu, M. Xiao, G. Li, S. Li, J. Zhang, G. Liu, L. Ma, T. Wu, J. Lu, A. Yu, D. Su, H. Jin, S. Wang, Z. Chen, Adv. Energy Mater. 2020, 10, 1903003.

[3]

Q. Zhang, P. Kumar, X. Zhu, R. Daiyan, N. M. Bedford, K.-H. Wu, Z. Han, T. Zhang, R. Amal, X. Lu, Adv. Energy Mater. 2021, 11, 2100303.

[4]

F. Gu, W. Guo, Y. Yuan, Y.-P. Deng, H. Jin, J. Wang, Z. Chen, S. Pan, Y. Chen, S. Wang, Adv. Mater. 2024, 36, 2313096.

[5]

Y. Li, H. Dai, Chem. Soc. Rev. 2014, 43, 5257.

[6]

Y. Mu, R. Ma, S. Xue, H. Shang, W. Lu, L. Jiao, Carbon Neutralization 2024, 3, 4.

[7]

Z. Zhao, L. Duan, Y. Zhao, L. Wang, J. Zhang, F. Bu, Z. Sun, T. Zhang, M. Liu, H. Chen, Y. Yang, K. Lan, Z. Lv, L. Zu, P. Zhang, R. Che, Y. Tang, D. Chao, W. Li, D. Zhao, J. Am. Chem. Soc. 2022, 144, 11767.

[8]

C. Xia, L. Huang, D. Yan, A. I. Douka, W. Guo, K. Qi, B. Y. Xia, Adv. Funct. Mater. 2021, 31, 2105021.

[9]

H.-F. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 2018, 28, 1803329.

[10]

T. Wang, Y. He, Y. Liu, F. Guo, X. Li, H. Chen, H. Li, Z. Lin, Nano Energy 2021, 79, 105487.

[11]

Q. Wang, K. Dastafkan, C. Zhao, Curr. Opin. Electrochem. 2018, 10, 16.

[12]

Y.-T. Lu, Y.-J. Chien, C.-F. Liu, T.-H. You, C.-C. Hu, J. Mater. Chem. A 2017, 5, 21016.

[13]

C. Zhu, Z. Yin, W. Lai, Y. Sun, L. Liu, X. Zhang, Y. Chen, S.-L. Chou, Adv. Energy Mater. 2018, 8, 1802327.

[14]

C. Tang, B. Wang, H.-F. Wang, Q. Zhang, Adv. Mater. 2017, 29, 1703185.

[15]

X. Gong, J. Zhu, J. Li, R. Gao, Q. Zhou, Z. Zhang, H. Dou, L. Zhao, X. Sui, J. Cai, Y. Zhang, B. Liu, Y. Hu, A. Yu, S.-h Sun, Z. Wang, Z. Chen, Adv. Funct. Mater. 2021, 31, 2008085.

[16]

W. Wang, M. Tang, Z. Zheng, S. Chen, Adv. Energy Mater. 2019, 9, 1901718.

[17]

D. Aasen, M. P. Clark, D. G. Ivey, Batter. Supercaps 2020, 3, 174.

[18]

Y. Wang, Y. Pan, L. Zhu, H. Yu, B. Duan, R. Wang, Z. Zhang, S. Qiu, Carbon 2019, 146, 671.

[19]

D. Zhu, G. Xu, M. Barnes, Y. Li, C.-P. Tseng, Z. Zhang, J.-J. Zhang, Y. Zhu, S. Khalil, M. M. Rahman, R. Verduzco, P. M. Ajayan, Adv. Funct. Mater. 2021, 31, 2100505.

[20]

J. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 2020, 49, 3565.

[21]

L. An, Y. Li, M. Luo, J. Yin, Y.-Q. Zhao, C. Xu, F. Cheng, Y. Yang, P. Xi, S. Guo, Adv. Funct. Mater. 2017, 27, 1703779.

[22]

H. Wang, L. Xu, D. Deng, X. Liu, H. Li, D. Su, J. Energy Chem. 2023, 76, 359.

[23]

C.-Y. Su, H. Cheng, W. Li, Z.-Q. Liu, N. Li, Z. Hou, F.-Q. Bai, H.-X. Zhang, T.-Y. Ma, Adv. Energy Mater. 2017, 7, 1602420.

[24]

K. T. Tan, S. Ghosh, Z. Wang, F. Wen, D. Rodríguez-San-Miguel, J. Feng, N. Huang, W. Wang, F. Zamora, X. Feng, A. Thomas, D. Jiang, Nat. Rev. Methods Primers 2023, 3, 1.

[25]

S. Wu, M. Li, H. Phan, D. Wang, T. S. Herng, J. Ding, Z. Lu, J. Wu, Angew. Chem. Int. Ed. 2018, 57, 8007.

[26]

Q. Xu, Y. Tang, X. Zhang, Y. Oshima, Q. Chen, D. Jiang, Adv. Mater. 2018, 30, 1706330.

[27]

H. Cui, M. Jiao, Y.-N. Chen, Y. Guo, L. Yang, Z. Xie, Z. Zhou, S. Guo, Small Methods 2018, 2, 1800144.

[28]

S. Han, X. Hu, J. Wang, X. Fang, Y. Zhu, Adv. Energy Mater. 2018, 8, 1800955.

[29]

X. Zhang, S. Pan, H. Song, W. Guo, F. Gu, C. Yan, H. Jin, L. Zhang, Y. Chen, S. Wang, J. Mater. Chem. A 2021, 9, 19734.

[30]

S. H. Ahn, X. Yu, A. Manthiram, Adv. Mater. 2017, 29, 1606534.

[31]

H. Zhong, L. Alberto Estudillo-Wong, Y. Gao, Y. Feng, N. Alonso-Vante, J. Energy Chem. 2021, 59, 615.

[32]

L.-H. Xu, K.-K. Lu, J. Li, D. Shan, ChemCatChem 2020, 12, 3082.

[33]

K. Song, J. Wei, W. Dong, Z. Zou, J. Wang, Int. J. Hydrogen Energy 2022, 47, 20529.

[34]

F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 2014, 5, 5261.

[35]

J.-C. Li, Y. Meng, L. Zhang, G. Li, Z. Shi, P.-X. Hou, C. Liu, H.-M. Cheng, M. Shao, Adv. Funct. Mater. 2021, 31, 2103360.

[36]

W. Deng, G. Li, T. Wu, L. He, J. Wu, J. Liu, H. Zheng, X. Li, Y. Yang, M. Jing, Y. Wang, X. Wang, Carbon 2022, 186, 589.

[37]

G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu, B.-A. Lu, X. Xue, H. Yin, W. Cheng, J. Cheng, W. Xu, J. Li, J. Hu, S. Mu, J.-N. Zhang, Nat. Commun. 2021, 12, 1734.

[38]

L. Meng, X. Zou, S. Guo, H. Ma, Y. Zhao, G. Zhu, ACS Appl. Mater. Interfaces 2015, 7, 15561.

[39]

W. Deng, T. Wu, Y. Wu, H. Zheng, G. Li, M. Yang, X. Zou, Y. Bai, Y. Yang, M. Jing, X. Wang, J. Mater. Chem. A 2022, 10, 20993.

[40]

Y. Yang, Y. Yang, Z. Pei, K.-H. Wu, C. Tan, H. Wang, L. Wei, A. Mahmood, C. Yan, J. Dong, S. Zhao, Y. Chen, Matter 2020, 3, 1442.

[41]

Y. Pan, X. Ma, M. Wang, X. Yang, S. Liu, H.-C. Chen, Z. Zhuang, Y. Zhang, W.-C. Cheong, C. Zhang, X. Cao, R. Shen, Q. Xu, W. Zhu, Y. Liu, X. Wang, X. Zhang, W. Yan, J. Li, H. M. Chen, C. Chen, Y. Li, Adv. Mater. 2022, 34, 2203621.

[42]

S. Sarkar, A. Biswas, E. E. Siddharthan, R. Thapa, R. S. Dey, ACS Nano 2022, 16, 7890.

[43]

M. Xu, Q. Xia, J. Yue, X. Zhu, Q. Guo, J. Zhu, H. Xia, Adv. Funct. Mater. 2019, 29, 1807377.

[44]

Q. Huang, X. Zhong, Q. Zhang, X. Wu, M. Jiao, B. Chen, J. Sheng, G. Zhou, J. Energy Chem. 2022, 68, 679.

[45]

W. Tang, K. Teng, W. Guo, F. Gu, B. Li, R. Qi, R. Liu, Y. Lin, M. Wu, Y. Chen, Small 2022, 18, 2202194.

[46]

Z. Zhang, M. Dou, H. Liu, L. Dai, F. Wang, Small 2016, 12, 4193.

[47]

Y. Han, J. Wang, Y. Liu, T. Li, T. Wang, X. Li, X. Ye, G. Li, J. Li, W. Hu, Y. Deng, Carbon Neutralization 2024, 3, 172.

[48]

Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu, J. Lu, Adv. Mater. 2018, 30, 1703657.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (2997KB)

190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/