The synergy mechanism of CsSnI3 and LiTFSI enhancing the electrochemical performance of PEO-based solid-state batteries

Rui Sun , Ruixiao Zhu , Jiafeng Li , Zhongxiao Wang , Yuting Zhu , Longwei Yin , Chengxiang Wang , Rutao Wang , Zhiwei Zhang

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 597 -605.

PDF (1569KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 597 -605. DOI: 10.1002/cnl2.134
RESEARCH ARTICLE

The synergy mechanism of CsSnI3 and LiTFSI enhancing the electrochemical performance of PEO-based solid-state batteries

Author information +
History +
PDF (1569KB)

Abstract

Lithium metal solid-state battery is the first choice of batteries for electromobiles and consumer electronic products because of the specific capacity of 3860 mAh g-1 and high electrochemical potential (-3.04 V) of Li metal. Flexible polymer solid electrolytes have become the optimal solution to produce high energy density lithium batteries with arbitrary size and shape. In this work, we introduce a halide perovskite, CsSnI3, into the polyethylene oxide/lithium bis-(trifluoromethanesuphone)imide (PEO–LiTFSI) polymer matrix. The CsSnI3 could form a LixSn alloy with Li, leading to homogenization of the electric field and Li+-flux at the interface, Sn atom also bonds with the TFSI- anion to provide more dissociated Li+. Besides that, the I atom could interact with Li to form an electronic insulation with a strong blocking effect on electron tunneling. As a proof of concept, the synergy mechanism of the PEO–LiTFSI–CsSnI3 electrolyte improves the stable cycle life of the symmetric battery to more than 500 h, and the Li+ conductivity raised to 6.1 × 10-4S cm-1 at 60°C. The application of the “zwitter ions analog” halide perovskite in PEO–LiTFSI provides a new choice among various methods to improve the electrochemical performance of polymer solid-state batteries.

Keywords

electrochemical performance / halide perovskite / polymer solid electrolytes / synergy mechanism

Cite this article

Download citation ▾
Rui Sun, Ruixiao Zhu, Jiafeng Li, Zhongxiao Wang, Yuting Zhu, Longwei Yin, Chengxiang Wang, Rutao Wang, Zhiwei Zhang. The synergy mechanism of CsSnI3 and LiTFSI enhancing the electrochemical performance of PEO-based solid-state batteries. Carbon Neutralization, 2024, 3(4): 597-605 DOI:10.1002/cnl2.134

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. J. Manthiram, Nat. Energy 2019, 4, 180.

[2]

A. Manthiram, X. Yu, S. J. Wang, Nat. Rev. Mater. 2017, 2, 16103.

[3]

Z. Yu, D. Yu, Y. Li, L. Peng, H. R. Byon, J. B. Goodenough, G. J. Yu, Chem. Soc. Rev. 2015, 44, 7968.

[4]

Q. Zhao, Z. Tu, S. Wei, K. Zhang, S. Choudhury, X. Liu, L. A. Archer, Angew. Chem. Int. Ed. Engl. 2018, 57, 992.

[5]

S. Wei, S. Xu, A. Agrawral, S. Choudhury, Y. Lu, Z. Tu, L. Ma, L. A. Archer, Nat. Commun. 2016, 7, 11722.

[6]

Z. Gao, H. Sun, F. Lin, F. Ye, Z. Yi, L. Wei, Y. J. Huang, Adv. Mater. 2018, 30, e1705702.

[7]

J.-G. Zhang, W. Xu, J. Xiao, X. Cao, J. Liu, Chem. Rev. 2020, 120, 13312.

[8]

D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J. S. Gnanaraj, H.-J. Kim, Electrochim. Acta 2004, 50, 247.

[9]

J. B. Goodenough, K. S. Park, J. Am. Chem. Soci. 2013, 135, 1167.

[10]

J. W. Fergus, J. Power Sources 2010, 195, 4569.

[11]

D. E. Fenton, J. M. Parker, P. V. Wright, Polymer 1973, 14, 589.

[12]

T.-Q. Yang, C. Wang, W.-K. Zhang, Y. Xia, Y.-P. Gan, H. Huang, X.-P. He, J. Zhang, Rare Metals 2022, 41, 1870.

[13]

Y.-N. Liu, Z. Xiao, W.-K. Zhang, J. Zhang, H. Huang, Y.-P. Gan, X.-P. He, G. G. Kumar, Y. J. Xia, Rare Metals 2022, 41, 3762.

[14]

Y. Lu, C. Z. Zhao, H. Yuan, X. B. Cheng, J. Q. Huang, Q. Zhang, Adv. Funct. Mater. 2021, 31, 2009925.

[15]

D. E. Mathew, S. Gopi, M. Kathiresan, A. M. Stephan, S. Thomas, Electrochim. Acta 2019, 319, 189.

[16]

R. Fang, B. Xu, N. S. Grundish, Y. Xia, Y. Li, C. Lu, Y. Liu, N. Wu, J. B. Goodenough, Angew. Int. Ed. Chem. 2021, 133, 17842.

[17]

H. Chen, C.-J. Zhou, X.-R. Dong, M. Yan, J.-Y. Liang, S. Xin, X.-W. Wu, Y.-G. Guo, X. X. Zeng, ACS Appl. Mater. Interfaces. 2021, 13, 22978.

[18]

J. Tao, D. Wang, Y. Yang, J. Li, Z. Huang, S. Mathur, Z. Hong, Y. Lin, Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany). 2022, 9, 2103786.

[19]

Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q. H. Yang, Adv. Funct. Mater. 2019, 29, 1805301.

[20]

Y.-T. Xu, S.-J. Dai, X.-F. Wang, X.-W. Wu, Y.-G. Guo, X.-X. Zeng, InfoMat 2023, 5, e12498.

[21]

S. Li, L. Zhu, Z. Kan, Y. Hua, F. Wu, J. Mater. Chem. A 2020, 8, 19555.

[22]

W. H. Meyer, Adv. Mater. 1998, 10, 439.

[23]

P. Li, B. P. Roberts, D. K. Chakravorty, K. M. Merz Jr., J. Chem. Theory Comput. 2013, 9, 2733.

[24]

Y. Guo, W. Sato, K. Shoyama, E. Nakamura, J. Am. Chem. Soc. 2016, 138, 5410.

[25]

O. Sheng, C. Jin, J. Luo, H. Yuan, H. Huang, Y. Gan, J. Zhang, Y. Xia, C. Liang, W. Zhang, X. Tao, Nano Lett. 2018, 18, 3104.

[26]

M. Rozenberg, G. Shoham, Biophys. Chem. 2007, 125, 166.

[27]

E. A. Disalvo, A. M. Bouchet, M. A. Frias, Biochim. Biophys. Acta 2013, 1828, 1683.

[28]

I. Rey, J. Lassegues, J. Grondin, L. J. Servant, Electrochim. Acta 1998, 43, 1505.

[29]

C.-W. Liew, S. Ramesh, R. Durairaj, J. Mater. Res. 2012, 27, 2996.

[30]

M. D. Tikekar, L. A. Archer, D. L. Koch, J. Electrochem. Soc. 2014, 161, A847.

[31]

W. Li, X. Sun, Y. J. Yu, Small Methods 2017, 1, 1600037.

[32]

M. Wan, S. Kang, L. Wang, H.-W. Lee, G. W. Zheng, Y. Cui, Y. Sun, Nat. Commun. 2020, 11, 829.

[33]

W. Li, J. Gao, H. Tian, X. Li, S. He, J. Li, W. Wang, L. Li, H. Li, J. Qiu, W. Zhou, Angew. Chem. 2022, 61, e202114805.

[34]

R. Pathak, K. Chen, A. Gurung, K. M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, K. Xu, Q. Q. Qiao, Nat. Commun.. 2020, 11, 93.

[35]

J. Zhang, N. Zhao, M. Zhang, Y. Li, P. K. Chu, X. Guo, Z. Di, X. Wang, H. J. Li, Nano Energy 2016, 28, 447.

[36]

Y. Lu, X. Huang, Z. Song, K. Rui, Q. Wang, S. Gu, J. Yang, T. Xiu, M. E. Badding, Z. J. Wen, Energy Storage Mater 2018, 15, 282.

[37]

W. Ping, C. Wang, Z. Lin, E. Hitz, C. Yang, H. Wang, L. J. Hu, Adv. Energy Mater. 2020, 10, 2000702.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (1569KB)

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/