Highly active air electrode catalysts for Zn-air batteries: Catalytic mechanism and active center from obfuscation to clearness

Wenhui Deng , Zirui Song , Mingjun Jing , Tianjing Wu , Wenzhang Li , Guoqiang Zou

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 501 -532.

PDF (6833KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 501 -532. DOI: 10.1002/cnl2.133
REVIEW

Highly active air electrode catalysts for Zn-air batteries: Catalytic mechanism and active center from obfuscation to clearness

Author information +
History +
PDF (6833KB)

Abstract

Carbon-based materials have been found to accelerate the sluggish kinetic reaction and are largely subject to the overall Zn-air batteries (ZABs) property, while their full catalytic mechanism is still not excavated because of the indistinct internal structure and immature in-situ technology. Up to now, systematic methods have been utilized to study and design promising high-performance carbon-based catalysts. To resolve the real active units and catalytic mechanism, developing molecular catalyst is a significant strategy. Herein, the review will initiate to briefly introduce the working principle and composition of ZABs. An important statement is correspondingly provided about the typical structure and catalytic mechanisms for the air cathode material. It also presents the tremendous endeavors on the catalytic performance and stability of carbon-based material. Furthermore, combined with theoretical calculation, the self-defined active sites are analyzed to understand the catalytic character, where the molecular catalyst is subsequently summarized and discussed through highlighting the unambiguous and controllable structure, in the hope of surfacing the optimum catalyst. Building on the fundamental understanding of carbon-based and molecular catalysts, this review is expected to provide guidance and direction toward designing future mechanistic studies and ORR electrocatalysts.

Keywords

air electrode / catalytic mechanism / electrolyte / molecular catalysts / Zn anode

Cite this article

Download citation ▾
Wenhui Deng, Zirui Song, Mingjun Jing, Tianjing Wu, Wenzhang Li, Guoqiang Zou. Highly active air electrode catalysts for Zn-air batteries: Catalytic mechanism and active center from obfuscation to clearness. Carbon Neutralization, 2024, 3(4): 501-532 DOI:10.1002/cnl2.133

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Chu, A. Majumdar, Nature 2012, 488, 294.

[2]

X. Liu, L. Dai, Nat. Rev. Mater. 2016, 1, 16064.

[3]

Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.

[4]

F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter, R. Schmuch, Nat. Energy 2021, 6, 123.

[5]

Y. Li, H. Dai, Chem. Soc. Rev. 2014, 43, 5257.

[6]

H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao, Z. Zhang, M. Dou, F. Wang, Q. Xu, Adv. Mater. 2020, 32, 2003649.

[7]

R. Paul, L. Zhu, H. Chen, J. Qu, L. Dai, Adv. Mater. 2019, 31, e1806403.

[8]

Q. Zhai, Y. Pan, L. Dai, Acc. Mater. Res. 2021, 2, 1239.

[9]

M. Fan, Q. Yuan, Y. Zhao, Z. Wang, A. Wang, Y. Liu, K. Sun, J. Wu, L. Wang, J. Jiang, Adv. Mater. 2022, 34, e2107040.

[10]

Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, ACS Energy Lett. 2018, 3, 1183.

[11]

K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760.

[12]

S. Sarkar, A. Biswas, E. E. Siddharthan, R. Thapa, R. S. Dey, ACS Nano 2022, 16, 7890.

[13]

S. Liang, L. C. Zou, L. J. Zheng, F. Li, X. X. Wang, L. N. Song, J. J. Xu, Adv. Energy Mater. 2022, 12, 2103097.

[14]

Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Joule 2018, 2, 1242.

[15]

L. Zong, K. Fan, W. Wu, L. Cui, L. Zhang, B. Johannessen, D. Qi, H. Yin, Y. Wang, P. Liu, L. Wang, H. Zhao, Adv. Funct. Mater. 2021, 31, 2104864.

[16]

W. Wan, C. A. Triana, J. Lan, J. Li, C. S. Allen, Y. Zhao, M. Iannuzzi, G. R. Patzke, ACS Nano 2020, 14, 13279.

[17]

Y. Zang, D. Q. Lu, K. Wang, B. Li, P. Peng, Y. Q. Lan, S. Q. Zang, Nat. Commun. 2023, 14, 1792.

[18]

Z.-Y. Wu, P. Zhu, D. A. Cullen, Y. Hu, Q.-Q. Yan, S.-C. Shen, F.-Y. Chen, H. Yu, M. Shakouri, J. D Arregui-Mena, A. Ziabari, A. R. Paterson, H.-W. Liang, H. Wang, Nat. Synth. 2022, 1, 658.

[19]

K. Cui, Q. Wang, Z. Bian, G. Wang, Y. Xu, Adv. Energy Mater. 2021, 11, 2102062.

[20]

Y. Zang, C. Mi, R. Wang, H. Chen, P. Peng, Z. Xiang, S. Q. Zang, T. C. W. Mak, Angew. Chem. Int. Ed. 2021, 60, 20865.

[21]

C. Mi, H. Yu, L. Han, L. Zhang, L. Zhai, X. Li, Y. Liu, Z. Xiang, Adv. Funct. Mater. 2023, 33, 2303235.

[22]

Y. Arafat, M. R. Azhar, Y. Zhong, H. R. Abid, M. O. Tadé, Z. Shao, Adv. Energy Mater. 2021, 11, 2100514.

[23]

X. Cai, L. Lai, J. Lin, Z. Shen, Mater. Horiz. 2017, 4, 945.

[24]

Q. Wang, S. Kaushik, X. Xiao, Q. Xu, Chem. Soc. Rev. 2023, 52, 6139.

[25]

C. Tang, H. F. Wang, X. Chen, B. Q. Li, T. Z. Hou, B. Zhang, Q. Zhang, M. M. Titirici, F. Wei, Adv. Mater. 2016, 28, 6845.

[26]

X. Zhu, C. Hu, R. Amal, L. Dai, X. Lu, Energy Environ. Sci. 2020, 13, 4536.

[27]

D. U. Lee, P. Xu, Z. P. Cano, A. G. Kashkooli, M. G. Park, Z. Chen, J. Mater. Chem. A 2016, 4, 7107.

[28]

Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 2015, 44, 2168.

[29]

Z. L. Wang, D. Xu, J. J. Xu, X. B. Zhang, Chem. Soc. Rev. 2014, 43, 7746.

[30]

J. Sun, N. Wang, Z. Qiu, L. Xing, L. Du, Catalysts 2022, 12, 843.

[31]

J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, Z. Chen, Adv. Mater. 2017, 29, 1604685.

[32]

Y.-J. Kim, K.-S. Ryu, Appl. Surf. Sci. 2019, 480, 912.

[33]

S. J. Banik, R. Akolkar, J. Electrochem. Soc. 2013, 160, D519.

[34]

M. Xu, D. G. Ivey, Z. Xie, W. Qu, J. Power Sources 2015, 283, 358.

[35]

F. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172.

[36]

Y. Peng, C. Lai, M. Zhang, X. Liu, Y. Yin, Y. Li, Z. Wu, J. Power Sources 2022, 526, 231173.

[37]

L. Zhang, B. Zhang, T. Zhang, T. Li, T. Shi, W. Li, T. Shen, X. Huang, J. Xu, X. Zhang, Z. Wang, Y. Hou, Adv. Funct. Mater. 2021, 31, 2100186.

[38]

H. Kim, G. Jeong, Y.-U. Kim, J.-H. Kim, C.-M. Park, H.-J. Sohn, Chem. Soc. Rev. 2013, 42, 9011.

[39]

Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energy Environ. Sci. 2019, 12, 1938.

[40]

S.-M. Lee, Y.-J. Kim, S.-W. Eom, N.-S. Choi, K.-W. Kim, S.-B. Cho, J. Power Sources 2013, 227, 177.

[41]

Y. Shen, K. Kordesch, J. Power Sources 2000, 87, 162.

[42]

A. Nakata, H. Arai, H. Murayama, K. Fukuda, T. Yamane, T. Hirai, Y. Uchimoto, J.-i Yamaki, Z. Ogumi, APL Mater. 2018, 6, 047703.

[43]

Z. Ji-Iing zhu, Z. Yun-Hong zhou, Y. Hanxi Yang, J. Power Sources 1997, 69, 169.

[44]

D. Stock, S. Dongmo, F. Walther, J. Sann, J. Janek, D. Schröder, ACS Appl. Mater. Interfaces 2018, 10, 8640.

[45]

Y. Zhou, J. Pan, X. Ou, Q. Liu, Y. Hu, W. Li, R. Wu, J. Wen, F. Yan, Adv. Energy Mater. 2021, 11, 2102047.

[46]

S. Hosseini, S. J. Han, A. Arponwichanop, T. Yonezawa, S. Kheawhom, Sci. Rep. 2018, 8, 11273.

[47]

S. Hosseini, A. Abbasi, L. O. Uginet, N. Haustraete, S. Praserthdam, T. Yonezawa, S. Kheawhom, Sci. Rep. 2019, 9, 14958.

[48]

H. Yang, J. Power Sources 2004, 128, 97.

[49]

C. J. Lan, C. Y. Lee, T. S. Chin, Electrochim. Acta 2007, 52, 5407.

[50]

G. D. Wilcox, P. J. Mitchell, J. Power Sources 1990, 32, 31.

[51]

J. Zhu, Y. Zhou, J. Power Sources 1998, 73, 266.

[52]

M.-C. Huang, S.-H. Huang, S.-C. Chiu, K.-L. Hsueh, W.-S. Chang, C.-C. Yang, C.-C. Wu, J.-C. Lin, J. Chin. Chem. Soc. 2018, 65, 1239.

[53]

H.-I. Kim, H.-C. Shin, J. Alloys Compd. 2015, 645, 7.

[54]

D. Schröder, N. N. Sinai Borker, M. König, U. Krewer, J. Appl. Electrochem. 2015, 45, 427.

[55]

P. K. Leung, C. Ponce-de-León, C. T. J. Low, F. C. Walsh, Electrochim. Acta 2011, 56, 6536.

[56]

Y. Wen, J. Cheng, L. Zhang, X. Yan, Y. Yang, J. Power Sources 2009, 193, 890.

[57]

A. R. Mainar, E. Iruin, L. C. Colmenares, J. A. Blázquez, H.-J. Grande, Energy Sci. Eng. 2018, 6, 174.

[58]

A. R. Mainar, O. Leonet, M. Bengoechea, I. Boyano, I. de Meatza, A. Kvasha, A. Guerfi, J. Alberto Blázquez, Int. J. Energy Res. 2016, 40, 1032.

[59]

D. M. See, R. E. White, J. Chem. Eng. 1997, 42, 1266.

[60]

C. W. Lee, K. Sathiyanarayanan, S. W. Eom, H. S. Kim, M. S. Yun, J. Power Sources 2006, 159, 1474.

[61]

J. Lee, B. Hwang, M.-S. Park, K. Kim, Electrochim. Acta 2016, 199, 164.

[62]

Z. Cao, H. Hu, M. Wu, K. Tang, T. Jiang, J. Mater. Chem. A 2019, 7, 17581.

[63]

A. Li, A. Wang, J. Chen, J. Appl. Polym. Sci. 2004, 92, 1596.

[64]

J. Fu, J. Zhang, X. Song, H. Zarrin, X. Tian, J. Qiao, L. Rasen, K. Li, Z. Chen, Energy Environ. Sci. 2016, 9, 663.

[65]

M. Li, B. Liu, X. Fan, X. Liu, J. Liu, J. Ding, X. Han, Y. Deng, W. Hu, C. Zhong, ACS Appl. Mater. Interfaces 2019, 11, 28909.

[66]

G. M. Wu, S. J. Lin, C. C. Yang, J. Membr. Sci. 2006, 280, 802.

[67]

H. Miao, B. Chen, S. Li, X. Wu, Q. Wang, C. Zhang, Z. Sun, H. Li, J. Power Sources 2020, 450, 227653.

[68]

P. Zhang, K. Wang, Y. Zuo, M. Wei, H. Wang, Z. Chen, N. Shang, P. Pei, ACS Appl. Mater. Interfaces 2022, 14, 49109.

[69]

L. Li, F. Lu, C. Wang, F. Zhang, W. Liang, S. Kuga, Z. Dong, Y. Zhao, Y. Huang, M. Wu, J. Mater. Chem. A 2018, 6, 24468.

[70]

T. Lin, M. Shi, F. Huang, J. Peng, Q. Bai, J. Li, M. Zhai, ACS Appl. Mater. Interfaces 2018, 10, 29684.

[71]

X. Jin, G. Sun, G. Zhang, H. Yang, Y. Xiao, J. Gao, Z. Zhang, L. Qu, Nano Res. 2019, 12, 1199.

[72]

Z. Li, M. Li, Q. Fan, X. Qi, L. Qu, M. Tian, ACS Appl. Mater. Interfaces 2021, 13, 14778.

[73]

C. Liu, W. Xu, C. Mei, M. Li, W. Chen, S. Hong, W.-Y. Kim, S.-y Lee, Q. Wu, Adva. Energy Mater 2021, 11, 2003902.

[74]

R. Wang, M. Yao, S. Huang, J. Tian, Z. Niu, Sci. China Mater. 2022, 65, 2189.

[75]

P. Zhang, K. Wang, Y. Zuo, M. Wei, H. Wang, Z. Chen, N. Shang, P. Pei, Chem. Eng. J. 2023, 451, 138622.

[76]

T. N. T Tran, H.-J. Chung, D. G. Ivey, Electrochim. Acta 2019, 327, 135021.

[77]

Z. Song, X. Liu, J. Ding, J. Liu, X. Han, Y. Deng, C. Zhong, W. Hu, ACS Appl. Mater. Interfaces 2022, 14, 49801.

[78]

Y. Guo, X. Zhou, Q. Tang, H. Bao, G. Wang, P. Saha, J. Mater. Chem. A 2016, 4, 8769.

[79]

L. Li, L. Liu, Y. Qing, Z. Zhang, N. Yan, Y. Wu, C. Tian, Electrochim. Acta 2018, 270, 302.

[80]

J. J. Xu, H. Ye, J. Huang, Electrochem. Commun. 2005, 7, 1309.

[81]

D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon, C. A. Angell, Energy Environ. Sci. 2014, 7, 232.

[82]

M. Xu, D. G. Ivey, Z. Xie, W. Qu, E. Dy, Electrochim. Acta 2013, 97, 289.

[83]

T. J. Simons, D. R. MacFarlane, M. Forsyth, P. C. Howlett, ChemElectroChem 2014, 1, 1688.

[84]

H. Sadeghifar, N. Djilali, M. Bahrami, J. Power Sources 2014, 248, 632.

[85]

M. Wu, G. Zhang, M. Wu, J. Prakash, S. Sun, Energy Storage Mater. 2019, 21, 253.

[86]

X. Wang, X. Zhou, C. Li, H. Yao, C. Zhang, J. Zhou, R. Xu, L. Chu, H. Wang, M. Gu, H. Jiang, M. Huang, Adv. Mater. 2022, 34, e2204021.

[87]

F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang, J. Qiao, S. Sun, Nano-Micro Lett. 2021, 14, 36.

[88]

H. B. Yang, J. Miao, S.-F. Hung, J. Chen, H. B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H. M. Chen, L. Dai, B. Liu, Sci. Adv. 2, e1501122.

[89]

T. V. Tam, S. G. Kang, M. H. Kim, S. G. Lee, S. H. Hur, J. S. Chung, W. M. Choi, Adv. Energy Mater. 2019, 9, 1900945.

[90]

T. Y. Ma, J. Ran, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2015, 54, 4646.

[91]

J. Zhu, W. Li, S. Li, J. Zhang, H. Zhou, C. Zhang, J. Zhang, S. Mu, Small 2018, 14, e1800563.

[92]

X. Zheng, J. Wu, X. Cao, J. Abbott, C. Jin, H. Wang, P. Strasser, R. Yang, X. Chen, G. Wu, Appl. Catal. B 2019, 241, 442.

[93]

J. Zhao, Q. Li, Q. Zhang, R. Liu, Chem. Eng. J. 2022, 431, 133730.

[94]

D. Xue, Y. Guo, B.-A. Lu, H. Xia, W. Yan, D. Xue, S. Mu, J.-N. Zhang, Adv. Sci. 2023, 10, 2302930.

[95]

F. Qiang, J. Feng, H. Wang, J. Yu, J. Shi, M. Huang, Z. Shi, S. Liu, P. Li, L. Dong, ACS Catal. 2022, 12, 4002.

[96]

X. Zhang, G. Han, S. Zhu, Small 2023, 20, 2305406.

[97]

S. Chen, L. Zhao, J. Ma, Y. Wang, L. Dai, J. Zhang, Nano Energy 2019, 60, 536.

[98]

C. Hu, L. Dai, Adv. Mater. 2017, 29, 1604942.

[99]

Y. Wang, R. Gan, S. Zhao, W. Ma, X. Zhang, Y. Song, C. Ma, J. Shi, Appl. Surf. Sci. 2022, 598, 153891.

[100]

J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 2015, 10, 444.

[101]

Z. Li, S. Ji, H. Liu, C. Xu, C. Guo, X. Lu, H. Sun, S. Dou, S. Xin, J. H. Horton, C. He, Adv. Funct. Mater. 2024, 34, 2314444.

[102]

Y. Wang, N. Xu, R. He, L. Peng, D. Cai, J. Qiao, Appl. Catal. B 2021, 285, 119811.

[103]

T. Lu, X. Hu, J. He, R. Li, J. Gao, Q. Lv, Z. Yang, S. Cui, C. Huang, Nano Energy 2021, 85, 106024.

[104]

X. Wang, R. K. M. Raghupathy, C. J. Querebillo, Z. Liao, D. Li, K. Lin, M. Hantusch, Z. Sofer, B. Li, E. Zschech, I. M. Weidinger, T. D. Kühne, H. Mirhosseini, M. Yu, X. Feng, Adv. Mater. 2021, 33, 2008752.

[105]

Z. Wu, Y. Yu, G. Zhang, Y. Zhang, R. Guo, L. Li, Y. Zhao, Z. Wang, Y. Shen, G. Shao, Adv. Sci. 2022, 9, 2200614.

[106]

Q. Liu, Y. Wang, L. Dai, J. Yao, Adv. Mater. 2016, 28, 3000.

[107]

L. Yan, Y. Xu, P. Chen, S. Zhang, H. Jiang, L. Yang, Y. Wang, L. Zhang, J. Shen, X. Zhao, L. Wang, Adv. Mater. 2020, 32, 2003313.

[108]

X. Zou, M. Tang, Q. Lu, Y. Wang, Z. Shao, L. An, Energy Environ. Sci. 2024, 17, 386.

[109]

Y. Jiao, Y. Zheng, K. Davey, S.-Z. Qiao, Nat. Energy 2016, 1, 16130.

[110]

J. Su, X. Cao, J. Wu, C. Jin, J.-H. Tian, R. Yang, RSC Adv. 2016, 6, 24728.

[111]

R. Langer, P. Błoński, C. Hofer, P. Lazar, K. Mustonen, J. C. Meyer, T. Susi, M. Otyepka, ACS Appl. Mater. Interfaces 2020, 12, 34074.

[112]

C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Adv. Mater. 2013, 25, 4932.

[113]

X. Zhang, Z. Lu, Z. Fu, Y. Tang, D. Ma, Z. Yang, J. Power Sources 2015, 276, 222.

[114]

N. Yang, X. Zheng, L. Li, J. Li, Z. Wei, J. Phys. Chem. C 2017, 121, 19321.

[115]

Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, ACS Nano 2012, 6, 205.

[116]

L. Zhang, Z. Xia, J. Phys. Chem. C 2011, 115, 11170.

[117]

L. Zhang, J. Niu, M. Li, Z. Xia, J. Phys. Chem. C 2014, 118, 3545.

[118]

Z. Lu, S. Li, C. Liu, C. He, X. Yang, D. Ma, G. Xu, Z. Yang, RSC Adv. 2017, 7, 20398.

[119]

L. Li, Z. Wu, J. Zhang, Y. Zhao, G. Shao, ChemElectroChem 2021, 8, 4790.

[120]

C. Zhao, G. Liu, N. Sun, X. Zhang, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Chem. Eng. J. 2018, 334, 1270.

[121]

J. Gao, Y. Wang, H. Wu, X. Liu, L. Wang, Q. Yu, A. Li, H. Wang, C. Song, Z. Gao, M. Peng, M. Zhang, N. Ma, J. Wang, W. Zhou, G. Wang, Z. Yin, D. Ma, Angew. Chem. Int. Ed. 2019, 58, 15089.

[122]

J. Zhang, Y. Sun, J. Zhu, Z. Kou, P. Hu, L. Liu, S. Li, S. Mu, Y. Huang, Nano Energy 2018, 52, 307.

[123]

Q. Wang, Y. Lei, Y. Zhu, H. Wang, J. Feng, G. Ma, Y. Wang, Y. Li, B. Nan, Q. Feng, Z. Lu, H. Yu, ACS Appl. Mater. Interfaces 2018, 10, 29448.

[124]

T. Zhou, Y. Zhou, R. Ma, Z. Zhou, G. Liu, Q. Liu, Y. Zhu, J. Wang, Carbon 2017, 114, 177.

[125]

Q. Lv, N. Wang, W. Si, Z. Hou, X. Li, X. Wang, F. Zhao, Z. Yang, Y. Zhang, C. Huang, Appl. Catal. B 2020, 261, 118234.

[126]

H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E. L. G. Samuel, P. M. Ajayan, J. M. Tour, ACS Nano 2014, 8, 10837.

[127]

R. Zhao, Q. Li, Z. Chen, V. Jose, X. Jiang, G. Fu, J.-M. Lee, S. Huang, Carbon 2020, 164, 398.

[128]

Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2013, 52, 3110.

[129]

S. Gao, H. Liu, K. Geng, X. Wei, Nano Energy 2015, 12, 785.

[130]

H. Pang, M. Wang, P. Sun, W. Zhang, D. Wang, R. Zhang, L. Qiao, W. Wang, M. Gao, Y. Li, J. Chen, K. Liang, B. Kong, NPG Asia Mater. 2023, 15, 15.

[131]

Z. Wang, W. Xu, X. Chen, Y. Peng, Y. Song, C. Lv, H. Liu, J. Sun, D. Yuan, X. Li, X. Guo, D. Yang, L. Zhang, Adv. Funct. Mater. 2019, 29, 1902875.

[132]

X. Shi, X. Ling, L. Li, C. Zhong, Y. Deng, X. Han, W. Hu, J. Mater. Chem. A 2019, 7, 23787.

[133]

C. C. Hou, L. Zou, Y. Wang, Q. Xu, Angew. Chem. Int. Ed. 2020, 59, 21360.

[134]

Y. Rao, S. Chen, Q. Yue, Y. Kang, ACS Catal. 2021, 11, 8097.

[135]

Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu, J. Lu, Adv. Mater. 2018, 30, 1703657.

[136]

P. Liu, J. Ran, B. Xia, S. Xi, D. Gao, J. Wang, Nano-Micro Lett. 2020, 12, 68.

[137]

H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao, Z. Zhang, M. Dou, F. Wang, Q. Xu, Adv. Mater. 2020, 32, 2003649.

[138]

W. Liu, J. Zhang, Z. Bai, G. Jiang, M. Li, K. Feng, L. Yang, Y. Ding, T. Yu, Z. Chen, A. Yu, Adv. Funct. Mater. 2018, 28, 1706675.

[139]

H. Liu, L. Jiang, Y. Sun, J. Khan, B. Feng, J. Xiao, H. Zhang, H. Xie, L. Li, S. Wang, L. Han, Adv. Funct. Mater. 2023, 33, 2304074.

[140]

Y. Li, Y. Ding, B. Zhang, Y. Huang, H. Qi, P. Das, L. Zhang, X. Wang, Z.-S. Wu, X. Bao, Energy Environ. Sci. 2023, 16, 2629.

[141]

Y. Zhou, R. Lu, X. Tao, Z. Qiu, G. Chen, J. Yang, Y. Zhao, X. Feng, K. Müllen, J. Am. Chem. Soc. 2023, 145, 3647.

[142]

X. Zhao, X. Li, Z. Bi, Y. Wang, H. Zhang, X. Zhou, Q. Wang, Y. Zhou, H. Wang, G. Hu, J. Energy Chem. 2022, 66, 514.

[143]

Z.-y Mei, G. Zhao, C. Xia, S. Cai, Q. Jing, X. Sheng, H. Wang, X. Zou, L. Wang, H. Guo, B. Y. Xia, Angew. Chem. Int. Edit. 2023, 62, 202303871.

[144]

C. Chen, Y. Li, A. Huang, X. Liu, J. Li, Y. Zhang, Z. Chen, Z. Zhuang, Y. Wu, W.-C. Cheong, X. Tan, K. Sun, Z. Xu, D. Liu, Z. Wang, K. Zhou, C. Chen, J. Am. Chem. Soc. 2023, 145, 21273.

[145]

H. Osgood, S. V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today 2016, 11, 601.

[146]

X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu, L. Ma, Y. Deng, X. Han, T. Wu, W. Hu, J. Lu, Adv. Energy Mater. 2017, 7, 1700779.

[147]

Z. Zhang, X. Wang, G. Cui, A. Zhang, X. Zhou, H. Xu, L. Gu, Nanoscale 2014, 6, 3540.

[148]

J. S. Chen, J. Ren, M. Shalom, T. Fellinger, M. Antonietti, ACS Appl. Mater. Interfaces 2016, 8, 5509.

[149]

C. Xuan, W. Lei, J. Wang, T. Zhao, C. Lai, Y. Zhu, Y. Sun, D. Wang, J. Mater. Chem. A 2019, 7, 12350.

[150]

X. Luan, H. Du, Y. Kong, F. Qu, L. Lu, Chem. Commun. 2019, 55, 7335.

[151]

R. Liu, S. Xu, X. Shao, Y. Wen, X. Shi, L. Huang, M. Hong, J. Hu, Z. Yang, ACS Appl. Mater. Interfaces 2021, 13, 47717.

[152]

S. Lu, J. Jiang, H. Yang, Y. J. Zhang, D. N. Pei, J. J. Chen, Y. Yu, ACS Nano 2020, 14, 10438.

[153]

A. Wang, X. Zhang, S. Gao, C. Zhao, S. Kuang, S. Lu, J. Niu, G. Wang, W. Li, D. Chen, H. Zhang, X. Zhou, S. Zhang, B. Zhang, W. Wang, Adv. Mater. 2022, 34, e2204247.

[154]

K. Liu, C. Zhang, Y. Sun, G. Zhang, X. Shen, F. Zou, H. Zhang, Z. Wu, E. C. Wegener, C. J. Taubert, J. T. Miller, Z. Peng, Y. Zhu, ACS Nano 2018, 12, 158.

[155]

J. Han, H. Bao, J.-Q. Wang, L. Zheng, S. Sun, Z. L. Wang, C. Sun, Appl. Catal. B 2021, 280, 119411.

[156]

J. Ban, X. Wen, H. Xu, Z. Wang, X. Liu, G. Cao, G. Shao, J. Hu, Adv. Funct. Mater. 2021, 31, 2010472.

[157]

X. Luo, X. Wei, H. Wang, W. Gu, T. Kaneko, Y. Yoshida, X. Zhao, C. Zhu, Nano-Micro Lett. 2020, 12, 163.

[158]

Z. Xiang, Y. Xue, D. Cao, L. Huang, J. F. Chen, L. Dai, Angew. Chem. Int. Ed. 2014, 53, 2433.

[159]

B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, C. Cheng, Adv. Mater. 2021, 33, e2006042.

[160]

P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem. Int. Ed. 2016, 55, 10800.

[161]

J. Duan, S. Chen, C. Zhao, Nat. Commun. 2017, 8, 15341.

[162]

X. Wang, W. Chen, L. Zhang, T. Yao, W. Liu, Y. Lin, H. Ju, J. Dong, L. Zheng, W. Yan, X. Zheng, Z. Li, X. Wang, J. Yang, D. He, Y. Wang, Z. Deng, Y. Wu, Y. Li, J. Am. Chem. Soc. 2017, 139, 9419.

[163]

Z. Liang, H. Y. Wang, H. Zheng, W. Zhang, R. Cao, Chem. Soc. Rev. 2021, 50, 2540.

[164]

J. Gu, Y. Peng, T. Zhou, J. Ma, H. Pang, Y. Yamauchi, Nano Res. Energy 2022, 1, e9120009.

[165]

B. Z. Peng, L. V. Bock, R. Belardinelli, F. Peske, H. Grubmüller, M. V. Rodnina, Sci. Adv. 2019, 5, eaaw2322.

[166]

L. Wan, K. Zhao, Y.-C. Wang, N. Wei, P. Zhang, J. Yuan, Z. Zhou, S.-G. Sun, ACS Catal. 2022, 12, 11097.

[167]

Q. Li, Y. Xu, A. Pedersen, M. Wang, M. Zhang, J. Feng, H. Luo, M.-M. Titirici, C. R. Jones, Adv. Funct. Mater. 2023, 33, 2311086.

[168]

Y. Wang, M. Wang, T. Chen, W. Yu, H. Liu, H. Cheng, W. Bi, M. Zhou, Y. Xie, C. Wu, Angew. Chem. Int. Ed. 2023, 62, e202308070.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (6833KB)

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/