Recycling of chicken feathers

Guiyin Xu , Minghui Shan , Huijun Chen , Yunteng Cao , Ping Nie , Tengfei Xiang , Chenyang Dang , Myles G. Stapelberg , Dongyang Zhu , Meifang Zhu

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 533 -556.

PDF (3264KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (4) : 533 -556. DOI: 10.1002/cnl2.132
REVIEW

Recycling of chicken feathers

Author information +
History +
PDF (3264KB)

Abstract

The extensive consumption of chicken has resulted in the emergence of a significant environmental issue in the form of chicken feather waste. As such, there is an urgent need for the development of green treatment and recycling methods for chicken feathers. Chicken feathers can serve as a type of heteroatomic doping carbon source, making them an excellent candidate for the electrode materials used in electrochemical energy devices. Furthermore, their unique structures and functional groups make them highly promising for use as adsorbents, electronics, and building materials. In this paper, we provide a summary and review of recent progress made in the use of chicken feathers for energy and environmental applications. Based on the theoretical knowledge and practical applications presented in this review, promising green recycling processes of chicken feathers can be developed. These processes can help to reduce environmental pollution and promote sustainable development.

Keywords

chicken feather waste / energy applications / environmental applications / recycling

Cite this article

Download citation ▾
Guiyin Xu, Minghui Shan, Huijun Chen, Yunteng Cao, Ping Nie, Tengfei Xiang, Chenyang Dang, Myles G. Stapelberg, Dongyang Zhu, Meifang Zhu. Recycling of chicken feathers. Carbon Neutralization, 2024, 3(4): 533-556 DOI:10.1002/cnl2.132

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

World population to reach 8 billion on 15 November 2022, https://www.un.org/en/desa/world-population-reach-8-billion-15-november-2022 (accessed January 8 2023).

[2]

R. R. da Silva, J. Agric. Food Chem. 2018, 66, 7219.

[3]

X. Tian, B. A. Engel, H. Qian, E. Hua, S. Sun, Y. Wang, J. Clean. Prod. 2021, 294, 126285.

[4]

Food &grocery retail market size report, 2022-2030, https://www.grandviewresearch.com/industry-analysis/food-grocery-retail-market (accessed January 13 2023).

[5]

Our world in date, https://ourworldindata.org/(accessed January 8 2023).

[6]

Chicken meat production worldwide 2012-2022 statista, https://www.statista.com/statistics/237637/production-of-poultry-meat-worldwide-since-1990/(accessed January 8 2023).

[7]

Q. Li, Front. Microbiol. 2019, 10, 2717.

[8]

D. A. Goda, M. A. Diab, H. El-Gendi, E. A. Kamoun, N. A. Soliman, A. K. Saleh, Sci. Rep. 2022, 12, 18340.

[9]

A. Lasekan, F. Abu Bakar, D. Hashim, Waste Manage. 2013, 33, 552.

[10]

T. Tesfaye, B. Sithole, D. Ramjugernath, V. Chunilall, Waste Manage. 2017, 68, 626.

[11]

R. Sharma, S. Devi, Rev. Environ. Sci. Bio/Technol. 2018, 17, 19.

[12]

G. Ji, J. Wang, Z. Liang, K. Jia, J. Ma, Z. Zhuang, G. Zhou, H. M. Cheng, Nat. Commun. 2023, 14, 584.

[13]

H. Ji, J. Wang, J. Ma, H. M. Cheng, G. Zhou, Chem. Soc. Rev. 2023, 52, 8194.

[14]

A. Lucas, P. Stettenheim, Washington, DC: US Dept. Agric, 1972.

[15]

M. Yu, Z. Yue, P. Wu, D. Y. Wu, J. A. Mayer, M. Medina, R. B. Widelitz, T. X. Jiang, C. M. Chuong, Int. J. Dev. Biol. 2004, 48, 181.

[16]

M. N. Acda, Philipp. J. Sci. 2010, 139, 161.

[17]

S. Huda, Y. Yang, Compos. Sci. Technol. 2008, 68, 790.

[18]

M. A. Dalhat, S. A. Osman, A. A. A. Alhuraish, F. K. Almarshad, S. A. Qarwan, A. Y. Adesina, Constr. Build. Mater. 2020, 239, 117849.

[19]

C. O. Tiemann, M. B. Porter, L. N. Frazer, J. Acoust. Soc. Am. 2004, 115, 2834.

[20]

A. Ghosh, S. Collie, Def. Sci. J. 2014, 64, 209.

[21]

W. Kong, Q. Li, J. Liu, X. Li, L. Zhao, Y. Su, Q. Yue, B. Gao, RSC Adv. 2016, 6, 83234.

[22]

H. Durrer, Biology of the Integument 2, Vertebrates, 1986.

[23]

T. Tesfaye, B. Sithole, D. Ramjugernath, V. Chunilall, J. Clean. Prod. 2017, 149, 349.

[24]

N. Reddy, Y. Yang, J. Poly. Environ. 2007, 15, 81.

[25]

A. L. M Hernandez, C. V. Santos, M. D. Icaza, V. M. Castano, Int. J. Environ. Pollut. 2005, 23, 162.

[26]

E. Senoz, R. P. Wool, J. Appl. Polym. Sci. 2010, 118, 1752.

[27]

Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang, L. Zhou, J. Power Sour. 2013, 225, 101.

[28]

X. C. Yin, F. Y. Li, Y. F. He, Y. Wang, R. M. Wang, Biomater. Sci. 2013, 1, 528.

[29]

R. Fraser, T. MacRae, D. Parry, E. Suzuki, Polymer 1971, 12, 35.

[30]

K. M. Arai, R. Takahashi, Y. Yokote, K. Akahane, Eur. J. Biochem. 1983, 132, 501.

[31]

A. J. Poole, J. S. Church, M. G. Huson, Biomacromolecules 2009, 10, 1.

[32]

J. R. Barone, W. F. Schmidt, Bioresour. Technol. 2006, 97, 233.

[33]

B. Mu, F. Hassan, Y. Yang, Green Chem. 2020, 22, 1726.

[34]

T. Korniłłowicz-Kowalska, J. Bohacz, Waste Manage. 2011, 31, 1689.

[35]

B. Wang, W. Yang, J. McKittrick, M. A. Meyers, Prog. Mater. Sci. 2016, 76, 229.

[36]

S. Isarankura Na Ayutthaya, S. Tanpichai, J. Wootthikanokkhan, J. Poly. Environ. 2015, 23, 506.

[37]

T. Tesfaye, B. Sithole, D. Ramjugernath, V. Chunilall, Waste Manage. 2017, 68, 626.

[38]

I. O. Oladele, A. M. Okoro, J. A. Omotoyinbo, M. C. Khoathane, J. Taibah Univer. Sci. 2018, 12, 56.

[39]

B. Harrap, E. Woods, Biochem. J. 1964, 92, 19.

[40]

A. M. Woodin, Biochem. J. 1954, 57, 99.

[41]

C. E. Graham, H. K. Waitkoff, S. W. Hier, J. Biol. Chem. 1949, 177, 529.

[42]

I. Szabó, Á. Benedek, I. M. Szabó, G. Barabás, World J. Microbiol. Biotechnol. 2000, 16, 253.

[43]

B. Harrap, E. Woods, Biochem. J. 1964, 92, 8.

[44]

Chicken feather, https://www.hpj.com/home_and_family/going-coo-coo-for-chicken-feathers/article_11179d7c-1487-5957-ba42-9fab489f8aa3.html (accessed January 8 2023).

[45]

H. Xu, Y. Yang, ACS Sustain. Chem. Engin. 2014, 2, 1404.

[46]

Z. Hussain, K. Khatak, A. Sardar, K. M. Khan, S. Perveen, J. Chem. Soc. Pakistan 2016, 38, 398.

[47]

F. Pati, B. Adhikari, S. Dhara, Bioresour. Technol. 2010, 101, 3737.

[48]

J. E. Eastoe, Biochem. J. 1957, 65, 363.

[49]

V. R. Ferro, H. Leiva, E. Cadena, J. L. Valverde, Ind. Eng. Chem. Res. 2023, 62, 13324.

[50]

A. Gousterova, D. Braikova, I. Goshev, P. Christov, K. Tishinov, E. Vasileva-Tonkova, T. Haertle, P. Nedkov, Lett. Appl. Microbiol. 2005, 40, 335.

[51]

Z. Hussain, A. Sardar, K. M. Khan, M. Y. Naz, S. A. Sulaiman, S. Shukrullah, Waste Biom. Valorizat. 2020, 11, 2129.

[52]

V. Muthukumaraswamy Rangaraj, A. Achazhiyath Edathil, P. Kadirvelayutham, F. Banat, Mater. Chem. Phys. 2020, 248, 122953.

[53]

J. Zhao, J. A. Syed, X. Wen, H. Lu, X. Meng, J. Alloys Compd. 2019, 777, 974.

[54]

T. Garrido, I. Leceta, K. de la Caba, P. Guerrero, Int. J. Biol. Macromol. 2018, 106, 523.

[55]

Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang, L. Zhou, J. Power Sources 2013, 225, 101.

[56]

Z. Zhao, Y. Wang, M. Li, R. Yang, RSC Adv. 2015, 5, 34803.

[57]

S. K. Singh, H. Prakash, M. J. Akhtar, K. K. Kar, ACS Sust. Chem. Engin. 2018, 6, 5381.

[58]

E. Senoz, R. P. Wool, C. W. J. McChalicher, C. K. Hong, Polym. Degrad. Stab. 2012, 97, 297.

[59]

M. Brebu, I. Spiridon, J. Anal. Appl. Pyrolysis 2011, 91, 288.

[60]

F. J. Wortmann, G. Wortmann, J. Marsh, K. Meinert, J. Struct. Biol. 2012, 177, 553.

[61]

L. Gao, H. Hu, X. Sui, C. Chen, Q. Chen, Environ. Sci. Technol. 2014, 48, 6500.

[62]

L. Gao, R. Li, X. Sui, R. Li, C. Chen, Q. Chen, Environ. Sci. Technol. 2014, 48, 10191.

[63]

L. Wei, N. Yan, Q. Chen, Environ. Sci. Technol. 2011, 45, 534.

[64]

B. Yu, X. Kong, L. Wei, Q. Chen, J. Mat. Cyc. Waste Manag. 2011, 13, 298.

[65]

Y. Fang, H. Wang, H. Yu, F. Peng, Electrochim. Acta 2016, 213, 273.

[66]

J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496.

[67]

A. Tyagi, S. Banerjee, S. Singh, K. K. Kar, Int. J. Hydrogen Energy 2020, 45, 16930.

[68]

A. Tyagi, A. Yadav, P. Sinha, S. Singh, P. Paik, K. K. Kar, Appl. Surf. Sci. 2019, 495, 143603.

[69]

Z. Guo, L. Xu, C. Liu, F. Sun, Y. Kang, S. Liang, Desalinat. Water Treat. 2016, 57, 21957.

[70]

H. Wang, X. Y. Jin, H. B. Wu, J. Appl. Polym. Sci. 2015, 132, 41555.

[71]

H. Gao, Y. Liu, G. Zeng, W. Xu, T. Li, W. Xia, J. Hazard. Mater. 2008, 150, 446.

[72]

D. Lin, Y. Liu, Y. Cui, Nature Nanotechnol. 2017, 12, 194.

[73]

S. A. Sayed, S. M. Saleh, E. E. Hasan, Desalination 2005, 181, 243.

[74]

T. N. Baroud, E. P. Giannelis, Carbon 2018, 139, 614.

[75]

U. Farooq, J. A. Kozinski, M. A. Khan, M. Athar, Bioresour. Technol. 2010, 101, 5043.

[76]

L. Azeez, A. Lateef, A. L. Adejumo, J. T. Adeleke, R. O. Adetoro, Z. Mustapha, Chemistry Africa 2019, 3, 237.

[77]

L. Azeez, A. Lateef, S. A. Adebisi, A. O. Oyedeji, Appl. Water Sci. 2018, 8, 32.

[78]

K. Jedynak, D. Wideł, N. Rędzia, Coll. Interf. 2019, 3, 30.

[79]

T. Tesfaye, B. Sithole, D. Ramjugernath, T. Tesfaye, B. Sithole, D. Ramjugernath, Int. J. Chem. Sci. 2018, 16, 282.

[80]

A. A. Okoya, N. O. Ochor, A. B. Akinyele, O. O. Olaiya, J. Agr. Ecol. Res. Int. 2020, 21, 43.

[81]

M. A Sanchez-Romero, J. Casadesus, Proc. Nat. Acad. Sci. USA. 2014, 111, 355.

[82]

I. El Meouche, M. J. Dunlop, Science 2018, 362, 686.

[83]

M. Fingas, Chem. Ind. 1995, 1005.

[84]

G. Goodbody-Gringley, D. L. Wetzel, D. Gillon, E. Pulster, A. Miller, K. B. Ritchie, PLoS One 2013, 8, e45574.

[85]

N. Ali, M. El-Harbawi, A. A. Jabal, C. Y. Yin, Environ. Technol. 2012, 33, 481.

[86]

A. L. Ahmad, S. Sumathi, B. H. Hameed, Chem. Eng. J. 2005, 108, 179.

[87]

D. Aderhold, C. J. Williams, R. G. J. Edyvean, Bioresour. Technol. 1996, 58, 1.

[88]

L. Charerntanyarak, Water Sci. Technol. 1999, 39, 135.

[89]

F. Mohammadtabar, R. G. Pillai, B. Khorshidi, A. Hayatbakhsh, M. Sadrzadeh, Sep. Purif. Technol. 2019, 221, 166.

[90]

S. Sharma, H. Simsek, Chemosphere 2019, 221, 630.

[91]

S. Sharma, H. Simsek, Chemosphere 2020, 238, 124669.

[92]

M. Anantha, S. Olivera, C. Hu, B. Jayanna, N. Reddy, K. Venkatesh, H. Muralidhara, R. Naidu, Environm. Technol. Innovat. 2020, 17, 100612.

[93]

A. Bashir, L. A. Malik, S. Ahad, T. Manzoor, M. A. Bhat, G. N. Dar, A. H. Pandith, Environ. Chem. Lett. 2019, 17, 729.

[94]

S. Madaeni, Y. Mansourpanah, Filtrat. Separation 2003, 40, 40.

[95]

R. M. Atlas, J. Chem. Technol. Biotechnol. 1991, 52, 149.

[96]

M. Ajaz, S. Shakeel, A. Rehman, Int. Microbiol. 2019, 23, 149.

[97]

A. Sharma, H. Jamali, A. Vaishnav, B. S. Giri, A. K. Srivastava, in New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms, Elsevier, 2020, p.205.

[98]

S. Agrahari, N. Wadhwa, Int. J. Poul. Sci. 2010, 9, 482.

[99]

B. Ma, X. Qiao, X. Hou, Y. Yang, Int. J. Biol. Macromol. 2016, 89, 614.

[100]

A. Mittal, L. Kurup, J. Mittal, J. Hazard. Mater. 2007, 146, 243.

[101]

J. Zhang, Y. Li, J. Li, Z. Zhao, X. Liu, Z. Li, Y. Han, J. Hu, A. Chen, Powder Technol. 2013, 246, 356.

[102]

D. D. Belarmino, R. Ladchumananandasivam, L. D. Belarmino, J. R. M. Pimentel, B. G. da Rocha, A. O. Galvão, S. M. B. de Andrade, Mater. Sci. Appl. 2012, 3, 887.

[103]

M. A. Khosa, A. Ullah, J. Hazard. Mater. 2014, 278, 360.

[104]

E. Senoz, R. P. Wool, C. W. J. McChalicher, C. K. Hong, Polym. Degrad. Stab. 2012, 97, 297.

[105]

J. Kluska, D. Kardaś Ł. Heda, M. Szumowski, J. Szuszkiewicz, Waste Manage. 2016, 49, 411.

[106]

M. Yu, P. Wu, R. B. Widelitz, C. M. Chuong, Nature 2002, 420, 308.

[107]

C. M. Chuong, BioEssays 1993, 15, 513.

[108]

A. M. Lucas, Avian Anatomy: Integument, US Agricultural Research Service, 1972.

[109]

C. K. Hong, R. P. Wool, J. Appl. Polym. Sci. 2005, 95, 1524.

[110]

N. K. Mondal, S. Basu, B. Das, Appl. Water Sci. 2019, 9, 50.

[111]

H. Li, J. Hu, Y. Meng, J. Su, X. Wang, Sci. Total Environ 2017, 603-604, 39.

[112]

D. D. Belarmino, R. Ladchumananandasivam, L. D. Belarmino, J. R. dM. Pimentel, B. G. da Rocha, A. O. Galv, S. M. de Andrade, Mat. Sci. Applicat. 2012, 3, 887.

[113]

A. Tuna, Y. Okumuş H. Çelebi, A. T. Seyhan, J. Anal. Appl. Pyrolysis 2015, 115, 112.

[114]

S. C. Moldoveanu, Analytical Pyrolysis of Natural Organic Polymers, Elsevier, 1998.

[115]

I. A Aguayo-Villarreal, A. Bonilla-Petriciolet, V. Hernández-Montoya, M. A. Montes-Morán, H. E Reynel-Avila, Chem. Eng. J. 2011, 167, 67.

[116]

S. Al-Asheh, F. Banat, D. Al-Rousan, J. Clean. Prod. 2003, 11, 321.

[117]

A. Rahmani-Sani, P. Singh, P. Raizada, E. Claudio Lima, I. Anastopoulos, D. A. Giannakoudakis, S. Sivamani, T. A. Dontsova, A. Hosseini-Bandegharaei, Bioresour. Technol. 2020, 297, 122452.

[118]

E. Solgi, A. Zamaninan, Arch. Hyg. Sci. 2020, 9, 97.

[119]

Y. Sekimoto, T. Okiharu, H. Nakajima, T. Fujii, K. Shirai, H. Moriwaki, Environ. Sci. Pollut. Res. 2013, 20, 6531.

[120]

P. Gao, Z. Liu, X. Wu, Z. Cao, Y. Zhuang, W. Sun, G. Xue, M. Zhou, CLEAN–Soil, Air, Water 2014, 42, 1558.

[121]

N. K. Mondal, S. Basu, B. Das, Appl. Water Sci. 2019, 9, 50.

[122]

S. A. Sayed, S. M. Saleh, E. E. Hasan, Desalination 2005, 181, 243.

[123]

P. Kar, M. Misra, J. Chem. Technol. Biotechnol. 2004, 79, 1313.

[124]

F. Banat, S. Al-Asheh, D. Al-Rousan, Adsorpt. Sci. Technol. 2002, 20, 393.

[125]

R. Chakraborty, A. Asthana, A. K. Singh, S. Yadav, M. A. B. H. Susan, S. A. C. Carabineiro, J. Mol. Liq. 2020, 312, 113475.

[126]

E. Nieboer, D. H. S. Richardson, Environm. Pollut. Ser. B, Chem. Phy. 1980, 1, 3.

[127]

J. Remade, Biosorption of heavy metals, CRC Press Boca Raton, 1990, p.83.

[128]

H. Zhang, F. Carrillo, M. López-Mesas, C. Palet, Text. Res. J. 2018, 89, 1153.

[129]

A. Mittal, V. Thakur, V. Gajbe, Environ. Sci. Pollut. Res. 2013, 20, 260.

[130]

P. Pradhan, A. Bajpai, Mat. Today Proc. 2020, 29, 1204.

[131]

K. Song, H. Xu, L. Xu, K. Xie, Y. Yang, Bioresour. Technol. 2017, 232, 254.

[132]

A. Mittal, J. Hazard. Mater. 2006, 128, 233.

[133]

H. Li, J. Hu, C. Wang, X. Wang, Water, Air, Soil Pollut. 2017, 228, 201.

[134]

A. Ifelebuegu, P. Chinonyere, Proc. 4th Int. Conf. Adv. Appl. Sci. Environm. Technol. 2016, 1, 61.

[135]

H. I. Kelle, A. N. Eboatu, J. Appl. Sci. Environm. Manage. 2018, 22, 267.

[136]

L. T. Zhou, G. Yang, X. X. Yang, Z. J. Cao, M. H. Zhou, Environ. Sci. Pollut. Res. 2014, 21, 5730.

[137]

A. A. Onifade, N. A Al-Sane, A. A. Al-Musallam, S. Al-Zarban, Bioresour. Technol. 1998, 66, 1.

[138]

G. Coward-Kelly, V. S. Chang, F. K. Agbogbo, M. T. Holtzapple, Bioresour. Technol. 2006, 97, 1337.

[139]

A. Nurdiawati, B. Nakhshiniev, I. N. Zaini, N. Saidov, F. Takahashi, K. Yoshikawa, Environ. Prog. Sustainable Ener. 2018, 37, 375.

[140]

M. C. Papadopoulos, A. R. El Boushy, A. E. Roodbeen, E. H. Ketelaars, Anim. Feed Sci. Technol. 1986, 14, 279.

[141]

C. M. Williams, C. S. Richter, J. M. Mackenzie, J. C. H. Shih, Appl. Environ. Microbiol. 1990, 56, 1509.

[142]

J. H. Jeong, K. H. Park, D. J. Oh, D. Y. Hwang, H. S. Kim, C. Y. Lee, H. J. Son, Polym. Degrad. Stab. 2010, 95, 1969.

[143]

Y. Yang, Z. Tong, Y. Geng, Y. Li, M. Zhang, J. Agric. Food Chem. 2013, 61, 8166.

[144]

M. Samaan, A. Mirmiran, M. Shahawy, J. Struct. Engin. 1998, 124, 1025.

[145]

R. F. Zollo, Cem. Conc. Compo. 1997, 19, 107.

[146]

Z. Wu, C. Shi, W. He, L. Wu, Constr. Build. Mater. 2016, 103, 8.

[147]

D. Shen, X. Liu, Q. Li, L. Sun, W. Wang, Constr. Build. Mater. 2019, 196, 307.

[148]

W. C. Wang, H. Y. Wang, K. H. Chang, S. Y. Wang, Constr. Build. Mater. 2020, 245, 118387.

[149]

S. T. Tassew, A. S. Lubell, Constr. Build. Mater. 2014, 51, 215.

[150]

Y. Xiao, H. Wu, J. Mater. Civil Eng. 2000, 12, 139.

[151]

W. Song, J. Yi, H. Wu, X. He, Q. Song, J. Yin, J. Clean. Prod. 2019, 238, 117819.

[152]

Y. Chen, G. Cen, Y. Cui, Constr. Build. Mater. 2018, 192, 818.

[153]

H. Bolat, O. Şimşek, M. Çullu, G. Durmuş, Ö. Can, Composites, Part B 2014, 61, 191.

[154]

H. L. Wu, Y. F. Wang, L. Yu, X. R. Li, J. Comp. Const. 2009, 13, 125.

[155]

H. Bian, K. Hannawi, M. Takarli, L. Molez, W. Prince, J. Mater. Sci. 2016, 51, 10066.

[156]

E. Cosenza, G. Manfredi, R. Realfonzo, J. Compo. Const. 1997, 1, 40.

[157]

J. P. Won, D. H. Lim, C. G. Park, Mag. Concr. Res. 2006, 58, 401.

[158]

E. Mohseni, R. Saadati, N. Kordbacheh, Z. S. Parpinchi, W. Tang, J. Clean. Prod. 2017, 168, 605.

[159]

C. Pellegrino, C. Modena, J. Comp. Const. 2002, 6, 104.

[160]

S. P. Shah, C. Ouyang, J. Am. Ceram. Soc. 1991, 74, 2727.

[161]

A. E. Naaman, 1972.

[162]

P. S. Mangat, R. N. Swamy, C. V. S. K. Rao, ACI Symp. Publicat. 1974, 44, 1.

[163]

H. G. Allen, J. Phys. Appl. Phys. 1972, 5, 331.

[164]

P. S. Chua, M. R. Piggott, Compos. Sci. Technol. 1985, 22, 33.

[165]

P. S. Chua, M. R. Piggott, Compos. Sci. Technol. 1985, 22, 107.

[166]

R. N. A. Mydin M A O, S. Ganesan, Adv. Environm. Biol. 2015, 6, 407.

[167]

S. K. A Zaidi, T. Sm, M. Bhati, S. Ram, Tren. Civil Engin. Arch. 2018, 2, 129.

[168]

M. Zhan, R. P. Wool, Polym. Compos. 2011, 32, 937.

[169]

M. A. Dalhat, S. A. Osman, A. A. A. Alhuraish, F. K. Almarshad, S. A. Qarwan, A. Y. Adesina, Constr. Build. Mater. 2020, 239, 117849.

[170]

S. Hamoush, M. El-Hawary, Conc. Int. 1994, 16, 33.

[171]

Acda M. N, Philipp. J. Sci. 2010, 139, 161.

[172]

C. R. G. Manginsay G P, Mindanao J. Sci. Technol. 2015, 13, 109.

[173]

X. Wu, G. Ji, J. Wang, G. Zhou, Z. Liang, Adv. Mater. 2023, 35, 2301540.

[174]

S. A. K, Int. J. Adv. Engin. Scient. Res. 2016, 3, 35.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (3264KB)

212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/