Advancing high-performance one-dimensional Si/carbon anodes: Current status and challenges
Xinyu Chen, Yongbiao Mu, Zifan Liao, Youqi Chu, Shaowei Kang, Bu-ke Wu, Ruixi Liao, Meisheng Han, Yiju Li, Lin Zeng
Advancing high-performance one-dimensional Si/carbon anodes: Current status and challenges
Silicon (Si) anodes, known for their high capacity, confront obstacles such as volume expansion, the solid-electrolyte interface (SEI) formation, and limited cyclability, driving ongoing research for innovative solutions to enhance their performance in next-generation lithium-ion batteries (LIBs). This comprehensive review explores the forefront of one-dimensional (1D) Si/carbon anodes for high-performance LIBs. This review delves into cutting-edge strategies for fabricating 1D Si/carbon structures, such as nanowires, nanotubes, and nanofibers, highlighting their advantages in mitigating volume expansion, enhancing electron/ion transport, and bolstering cycling stability. The review showcases remarkable achievements in 1D Si/carbon anode performance, including exceptional capacity retention, high-rate capability, and prolonged cycle life. Challenges regarding scalability, cost-effectiveness, and long-term stability are addressed, providing insights into the path to commercialization. Additionally, future directions and potential breakthroughs are outlined, guiding researchers and industries toward harnessing the potential of 1D Si/ carbon anodes in revolutionizing energy storage.
1D Si/carbon / high-performance / lithium-ion batteries / Si anodes / Si nanosizing
/
〈 | 〉 |