Discovery based on SPR drug chip that corilagin alleviates acute lung injury in mice by inhibiting necroptosis through targeting RIPK1/RIPK3/MLKL pathway
Jiezhou Ye , Yuanting Huang , Senquan Wu , Liangli Hong
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) : 100014 -100014.
Discovery based on SPR drug chip that corilagin alleviates acute lung injury in mice by inhibiting necroptosis through targeting RIPK1/RIPK3/MLKL pathway
Necroptosis, a necrotic form of regulated cell death, plays a crucial role in various tissues and disorders, including sepsis. This process occurs primarily through a caspase-independent mechanism mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL). Necroptosis-related diseases frequently manifest with excessive inflammatory responses. Corilagin, a gallotannin exhibiting potent anti-inflammatory and anti-oxidant properties, has received increasing attention. However, its effects on necroptosis and associated disorders remain unexplored. In this study, we utilize a surface plasmon resonance-liquid chromatography-tandem mass spectrometry (SPR-LCMS/MS) screening approach to identify corilagin’s target proteins and demonstrate its binding to necroptosis-related proteins. In vitro, corilagin inhibits necroptosis induced by either tuberculosis, tumor necrosis factor-α (TNF-α), LCL-161, and inhibitor (IDN-6556) (TSI) (tumor necrosis TNF-α combined with LCL-161 (a Smac mimic) and pan-caspase inhibitor IDN-6556), or lipopolysaccharide (LPS) with IDN-6556. Additionally, it suppresses the phosphorylation of MLKL, RIPK1, and RIPK3, while preventing necrosome formation during necroptotic induction. Corilagin also mitigates the TSI-induced reduction in mitochondrial membrane potential, a characteristic of necroptosis-associated mitochondrial dysfunction and the generation of mitochondrial reactive oxygen species (mtROS). In a mouse model of sepsis associated with necroptosis, corilagin administration reduces the severity of LPS-induced acute lung injury, correlating with decreased MLKL phosphorylation in lung tissues. These results indicate that corilagin attenuates RIPK1/RIPK3/MLKL signaling, potentially through reducing mtROS production, thereby inhibiting necroptosis and offering protection against LPS-induced acute lung injury.
SPR-LCMS/MS / Corilagin / Necroptosis / Necrosome / Mitochondrial reactive oxygen species / LPS-induced acute lung injury
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
Van Eeckhoutte HP, |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
/
| 〈 |
|
〉 |