Discovery based on SPR drug chip that corilagin alleviates acute lung injury in mice by inhibiting necroptosis through targeting RIPK1/RIPK3/MLKL pathway

Jiezhou Ye , Yuanting Huang , Senquan Wu , Liangli Hong

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) : 100014 -100014.

PDF (19181KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) :100014 -100014. DOI: 10.1016/j.cjnm.2025.100014
Original article
research-article

Discovery based on SPR drug chip that corilagin alleviates acute lung injury in mice by inhibiting necroptosis through targeting RIPK1/RIPK3/MLKL pathway

Author information +
History +
PDF (19181KB)

Abstract

Necroptosis, a necrotic form of regulated cell death, plays a crucial role in various tissues and disorders, including sepsis. This process occurs primarily through a caspase-independent mechanism mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL). Necroptosis-related diseases frequently manifest with excessive inflammatory responses. Corilagin, a gallotannin exhibiting potent anti-inflammatory and anti-oxidant properties, has received increasing attention. However, its effects on necroptosis and associated disorders remain unexplored. In this study, we utilize a surface plasmon resonance-liquid chromatography-tandem mass spectrometry (SPR-LCMS/MS) screening approach to identify corilagin’s target proteins and demonstrate its binding to necroptosis-related proteins. In vitro, corilagin inhibits necroptosis induced by either tuberculosis, tumor necrosis factor-α (TNF-α), LCL-161, and inhibitor (IDN-6556) (TSI) (tumor necrosis TNF-α combined with LCL-161 (a Smac mimic) and pan-caspase inhibitor IDN-6556), or lipopolysaccharide (LPS) with IDN-6556. Additionally, it suppresses the phosphorylation of MLKL, RIPK1, and RIPK3, while preventing necrosome formation during necroptotic induction. Corilagin also mitigates the TSI-induced reduction in mitochondrial membrane potential, a characteristic of necroptosis-associated mitochondrial dysfunction and the generation of mitochondrial reactive oxygen species (mtROS). In a mouse model of sepsis associated with necroptosis, corilagin administration reduces the severity of LPS-induced acute lung injury, correlating with decreased MLKL phosphorylation in lung tissues. These results indicate that corilagin attenuates RIPK1/RIPK3/MLKL signaling, potentially through reducing mtROS production, thereby inhibiting necroptosis and offering protection against LPS-induced acute lung injury.

Keywords

SPR-LCMS/MS / Corilagin / Necroptosis / Necrosome / Mitochondrial reactive oxygen species / LPS-induced acute lung injury

Cite this article

Download citation ▾
Jiezhou Ye, Yuanting Huang, Senquan Wu, Liangli Hong. Discovery based on SPR drug chip that corilagin alleviates acute lung injury in mice by inhibiting necroptosis through targeting RIPK1/RIPK3/MLKL pathway. Chinese Journal of Natural Medicines, 2025, 23(12): 100014-100014 DOI:10.1016/j.cjnm.2025.100014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018; 25(3):486-541. https://doi.org/10.1038/s41418-017-0012-4.

[2]

Orzalli MH, Kagan JC. Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol. 2017; 27(11):800-809. https://doi.org/10.1016/j.tcb.2017.05.007.

[3]

Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015; 517(7534):311-320. https://doi.org/10.1038/nature14191.

[4]

Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014; 370(5):455-465. https://doi.org/10.1056/nejmra1310050.

[5]

Galluzzi L, Kepp O, Chan FK, et al. Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol Mech Dis. 2017; 12:103-130. https://doi.org/10.1146/annurev-pathol-052016-100247.

[6]

Weinlich R, Oberst A, Beere HM, et al. Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 2017; 18(2):127-136. https://doi.org/10.1038/nrm.2016.149.

[7]

Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation. 2018; 15(1):199. https://doi.org/10.1186/s12974-018-1235-0.

[8]

Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000; 1(6):489-495. https://doi.org/10.1038/82732.

[9]

Degterev A, Huang Z, Boyce M, et al. Addendum: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2013; 9(3):192. https://doi.org/10.1038/nchembio711.

[10]

Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP 1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008; 4(5):313-321. https://doi.org/10.1038/nchembio.83.

[11]

He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell. 2009; 137(6):1100-1111. https://doi.org/10.1016/j.cell.2009.05.021.

[12]

Zhang DW, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009; 325(5938):332-336. https://doi.org/10.1126/science.1172308.

[13]

Cho Y, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009; 137(6):1112-1123. https://doi.org/10.1016/j.cell.2009.05.037.

[14]

Sun L, Wang H, Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012; 148(1-2):213-227. https://doi.org/10.1016/j.cell.2011.11.031.

[15]

Murphy JM, Czabotar PE, Hildebrand JM, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 2013; 39(3):443-453. https://doi.org/10.1016/j.immuni.2013.06.018.

[16]

Wang H, Sun L, Su L, et al.Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014; 54(1):133-146. https://doi.org/10.1016/j.molcel.2014.03.003.

[17]

Cai Z, Jitkaew S, Zhao J, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol. 2014; 16(1):55-65. https://doi.org/10.1038/ncb2883.

[18]

Zhao J, Jitkaew S, Cai Z, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A. 2012; 109(14):5322-5327. https://doi.org/10.1073/pnas.1200012109.

[19]

Wu XN, Yang ZH, Wang XK, et al.Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell Death Differ. 2014; 21(11):1709-1720. https://doi.org/10.1038/cdd.2014.77.

[20]

Choi ME, Price DR, Ryter SW, et al. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight. 2019; 4(15):e128834. https://doi.org/10.1172/jci.insight.128834.

[21]

Seo J, Nam YW, Kim S, et al. Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators. Exp Mol Med. 2021; 53(6):1007-1017. https://doi.org/10.1038/s12276-021-00634-7.

[22]

Zhang Y, Su SS, Zhao S, et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun. 2017;8:14329. https://doi.org/10.1038/ncomms14329.

[23]

Roca FJ, Whitworth LJ, Redmond S, et al. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial-lysosomal-endoplasmic reticulum circuit. Cell. 2019; 178(6):1344-1361.e11. https://doi.org/10.1016/j.cell.2019.08.004.

[24]

Roca FJ, Whitworth LJ, Prag HA, et al. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science. 2022; 376(6600):eabh2841. https://doi.org/10.1126/science.abh2841.

[25]

Ofengeim D, Mazzitelli S, Ito Y, et al. RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2017; 114(41):E8788. https://doi.org/10.1073/pnas.1714175114.

[26]

Ito Y, Ofengeim D, Najafov A, et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science. 2016; 353(6299):603-608. https://doi.org/10.1126/science.aaf6803.

[27]

Mifflin L, Hu Z, Dufort C, et al. A RIPK1-regulated inflammatory microglial state in amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2021; 118(13):e2025102118. https://doi.org/10.1073/pnas.2025102118.

[28]

Zelic M, Pontarelli F, Woodworth L, et al. RIPK1 activation mediates neuroinflammation and disease progression in multiple sclerosis. Cell Rep. 2021; 35(6):109112. https://doi.org/10.1016/j.celrep.2021.109112.

[29]

Chen H, Fang Y, Wu J, et al. RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD. Cell Death Dis. 2018; 9(9):878. https://doi.org/10.1038/s41419-018-0936-8.

[30]

Van Eeckhoutte HP, Donovan C, Kim RY, et al. RIPK 1 kinase-dependent inflammation and cell death contribute to the pathogenesis of COPD. Eur Respir J. 2023; 61(4):2201506. https://doi.org/10.1183/13993003.01506-2022.

[31]

Gautam A, Boyd DF, Nikhar S, et al. Necroptosis blockade prevents lung injury in severe influenza. Nature. 2024; 628(8009):835-843. https://doi.org/10.1038/s41586-024-07265-8.

[32]

Shi Y, Li P, Zhou J, et al. Targeting necroptosis prevents viral-induced lung damage. Cell Death Differ. 2024; 31(5):541-543. https://doi.org/10.1038/s41418-024-01299-1.

[33]

Najafov A, Chen H, Yuan J. Necroptosis and cancer. Trends Cancer. 2017; 3(4):294-301. https://doi.org/10.1016/j.trecan.2017.03.002.

[34]

Hu S, Huang M, Mao S, et al. Serinc2 deficiency exacerbates sepsis-induced cardiomyopathy by enhancing necroptosis and apoptosis. Biochem Pharmacol. 2023;218:115903. https://doi.org/10.1016/j.bcp.2023.115903.

[35]

Wang X, Chai Y, Guo Z, et al. A new perspective on the potential application of Ripk1 in the treatment of sepsis. Immunotherapy. 2023; 15(1):43-56. https://doi.org/10.2217/imt-2022-0219.

[36]

Chen H, Li Y, Wu J, et al. RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis. Cell Death Differ. 2020; 27(9):2568-2585. https://doi.org/10.1038/s41418-020-0524-1.

[37]

Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016; 315(8):801. https://doi.org/10.1001/jama.2016.0287.

[38]

Liu D, Huang SY, Sun JH, et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res. 2022; 9(1):56. https://doi.org/10.1186/s40779-022-00422-y.

[39]

Napolitano LM. Sepsis 2018: definitions and guideline changes. Surg Infect. 2018; 19(2):117-125. https://doi.org/10.1089/sur.2017.278.

[40]

Font MD, Thyagarajan B, Khanna AK. Sepsis and Septic Shock-Basics of diagnosis, pathophysiology and clinical decision making. Med Clin N Am. 2020; 104(4):573-585. https://doi.org/10.1016/j.mcna.2020.02.011.

[41]

Rudd KE, Johnson SC, Agesa KM, et al.Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet.2020; 395(10219):200-211. https://doi.org/10.1016/s0140-6736(19)32989-7.

[42]

Qu M, Wang Y, Qiu Z, et al. Necroptosis, pyroptosis, ferroptosis in sepsis and treatment. Shock. 2022; 57(6):161-171. https://doi.org/10.1097/shk.0000000000001936.

[43]

Cheng Z, Abrams ST, Toh J, et al. The critical roles and mechanisms of immune cell death in sepsis. Front Immunol. 2020;11:1918. https://doi.org/10.3389/fimmu.2020.01918.

[44]

Liu J, Song K, Lin B, et al. The suppression of HSPA8 attenuates NLRP3 ubiquitination through SKP2 to promote pyroptosis in sepsis-induced lung injury. Cell Biosci. 2024; 14(1):56. https://doi.org/10.1186/s13578-024-01239-z.

[45]

Liu J, Qin X, Ma W, et al. Corilagin induces apoptosis and autophagy in NRF2-addicted U251 glioma cell line. Mol Med Rep. 2021; 23(5):320. https://doi.org/10.3892/mmr.2021.11959.

[46]

Lv H, Hong L, Tian Y, et al. Corilagin alleviates acetaminophen-induced hepatotoxicity via enhancing the AMPK/GSK3β-Nrf2 signaling pathway. Cell Commun Signal. 2019; 17(1):2. https://doi.org/10.1186/s12964-018-0314-2.

[47]

Li HR, Liu J, Zhang SL, et al. Corilagin ameliorates the extreme inflammatory status in sepsis through TLR4 signaling pathways. BMC Complementary Altern Med. 2017; 17(1):18. https://doi.org/10.1186/s12906-016-1533-y.

[48]

Yan F, Cheng D, Wang H, et al. Corilagin ameliorates con A-induced hepatic injury by restricting M1 macrophage polarization. Front Immunol. 2022;12:807509. https://doi.org/10.3389/fimmu.2021.807509.

[49]

Meng D, Deng X, Wu Y, et al. Corilagin ameliorates macrophages inflammation in atherosclerosis through TLR4-NFκB/MAPK pathway. Heliyon. 2023; 9(6):e16960. https://doi.org/10.1016/j.heliyon.2023.e16960.

[50]

Li Y, Wang Y, Chen Y, et al. Corilagin ameliorates atherosclerosis in peripheral artery disease via the toll-like receptor-4 signaling pathway in vitro and in vivo. Front Immunol. 2020;11:1611. https://doi.org/10.3389/fimmu.2020.01611.

[51]

Shen Y, Teng L, Qu Y, et al. Anti-proliferation and anti-inflammation effects of corilagin in rheumatoid arthritis by downregulating NF-κB and MAPK signaling pathways. J Ethnopharmacol. 2022;284:114791. https://doi.org/10.1016/j.jep.2021.114791.

[52]

Gu C, Yin Z, Nie H, et al.Identification of berberine as a novel drug for the treatment of multiple myeloma via targeting UHRF1. BMC Biol. 2020; 18(1):33. https://doi.org/10.1186/s12915-020-00766-8.

[53]

Yin Z, Huang G, Gu C, et al. Discovery of berberine that targetedly induces autophagic degradation of both BCR-ABL and BCR-ABL T315I through recruiting LRSAM1 for overcoming imatinib resistance. Clin Cancer Res. 2020; 26(15):4040-4053. https://doi.org/10.1158/1078-0432.ccr-19-2460.

[54]

Gao CL, Hou GG, Liu J, et al. Synthesis and target identification of benzoxepane derivatives as potential anti-neuroinflammatory agents for ischemic stroke. Angew Chem Int Ed. 2020; 59(6):2429-2439. https://doi.org/10.1002/anie.201912489.

[55]

Wu S, Liao J, Hu G, et al. Corilagin alleviates LPS-induced sepsis through inhibiting pyroptosis via targeting TIR domain of MyD88 and binding CARD of ASC in macrophages. Biochem Pharmacol. 2023;217:115806. https://doi.org/10.1016/j.bcp.2023.115806.

[56]

Shi FL, Yuan LS, Wong TS, et al. Dimethyl fumarate inhibits necroptosis and alleviates systemic inflammatory response syndrome by blocking the RIPK1-RIPK3-MLKL axis. Pharmacol Res. 2023;189:106697. https://doi.org/10.1016/j.phrs.2023.106697.

[57]

Liang QQ, Shi ZJ, Yuan T, et al. Celastrol inhibits necroptosis by attenuating the RIPK1/RIPK3/MLKL pathway and confers protection against acute pancreatitis in mice. Int Immunopharmacol. 2023;117:109974. https://doi.org/10.1016/j.intimp.2023.109974.

[58]

Deng H, Wu L, Liu M, et al. Bone marrow mesenchymal stem cell-derived exosomes attenuate LPS-induced ARDS by modulating macrophage polarization through inhibiting glycolysis in macrophages. Shock. 2020; 54(6):828-843. https://doi.org/10.1097/shk.0000000000001549.

[59]

Ye J, Zeng B, Zhong M, et al. Scutellarin inhibits caspase-11 activation and pyroptosis in macrophages via regulating PKA signaling. Acta Pharm Sin B. 2021; 11(1):112-126. https://doi.org/10.1016/j.apsb.2020.07.014.

[60]

Shi W, Dong Y, Liu S, et al. Corilagin alleviates ferroptosis in diabetic retinopathy by activating the Nrf2 signaling pathway. Biomed Pharmacother. 2024;179:117409. https://doi.org/10.1016/j.biopha.2024.117409.

[61]

Liu S, Liu H, Johnston A, et al. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proc Natl Acad Sci U S A. 2017; 114(36):201707531. https://doi.org/10.1073/pnas.1707531114.

[62]

Petrie EJ, Birkinshaw RW, Koide A, et al. Identification of MLKL membrane translocation as a checkpoint in necroptotic cell death using Monobodies. Proc Natl Acad Sci U S A. 2020; 117(15):8468-8475. https://doi.org/10.1073/pnas.1919960117.

[63]

Chen X, Li W, Ren J, et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 2014; 24(1):105-121. https://doi.org/10.1038/cr.2013.171.

[64]

Huang YT, Liang QQ, Zhang HR, et al. Baicalin inhibits necroptosis by decreasing oligomerization of phosphorylated MLKL and mitigates caerulein-induced acute pancreatitis in mice. Int Immunopharmacol. 2022;108:108885. https://doi.org/10.1016/j.intimp.2022.108885.

[65]

Liu FC, Yu HP, Liao CC, et al. Corilagin inhibits neutrophil extracellular trap formation and protects against hydrochloric acid/lipopolysaccharide-induced acute lung injury in mice by suppressing the STAT3 and NOX2 signaling pathways. Antioxidants. 2024; 13(4):491. https://doi.org/10.3390/antiox13040491.

[66]

Liu FC, Liao CC, Lee HC, et al. Effects of corilagin on lipopolysaccharide-induced acute lung injury via regulation of NADPH oxidase 2 and ERK/NF-κB signaling pathways in a mouse model. Biology. 2022; 11(7):1058. https://doi.org/10.3390/biology11071058.

[67]

Luo T, Zhou X, Qin M, et al. Corilagin restrains NLRP3 inflammasome activation and pyroptosis through the ROS/TXNIP/NLRP3 pathway to prevent inflammation. Oxid Med Cell Longev. 2022;2022:1652244. https://doi.org/10.1155/2022/1652244.

[68]

Dai W, Zheng P, Wu J, et al. Integrated analysis of single-cell RNA-seq and chipset data unravels PANoptosis-related genes in sepsis. Front Immunol. 2023;14:1247131. https://doi.org/10.3389/fimmu.2023.1247131.

[69]

Yang Z, Kao X, Huang N, et al. Identification and analysis of PANoptosis-related genes in sepsis-induced lung injury by bioinformatics and experimental verification. J Inflamm Res. 2024; 17:1941-1956. https://doi.org/10.2147/jir.s452608.

[70]

You YP, Yan L, Ke HY, et al. Baicalin inhibits PANoptosis by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly in macrophages. Acta Pharmacol Sin. 2025; 46(2):430-447. https://doi.org/10.1038/s41401-024-01376-8.

[71]

Shi FL, Li Q, Xu R, et al. Blocking reverse electron transfer-mediated mitochondrial DNA oxidation rescues cells from PANoptosis. Acta Pharmacol Sin. 2024; 45(3):594-608. https://doi.org/10.1038/s41401-023-01182-8.

[72]

Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity. 2018; 49(4):740-753.e7. https://doi.org/10.1016/j.immuni.2018.08.016.

[73]

Wang L, Zhu Y, Zhang L, et al. Mechanisms of PANoptosis and relevant small-molecule compounds for fighting diseases. Cell Death Dis. 2023; 14(12):851. https://doi.org/10.1038/s41419-023-06370-2.

[74]

Christgen S, Zheng M, Kesavardhana S, et al. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:237. https://doi.org/10.3389/fcimb.2020.00237.

[75]

Yang Q, Song W, Reheman H, et al. PANoptosis, an indicator of COVID-19 severity and outcomes. Brief Bioinform. 2024; 25(3):bbae124. https://doi.org/10.1093/bib/bbae124.

[76]

Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. 2021; 184(1):149-168.e17. https://doi.org/10.1016/j.cell.2020.11.025.

[77]

Zheng M, Kanneganti TD. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev. 2020; 297(1):26-38. https://doi.org/10.1111/imr.12909.

[78]

Yang LJ, Chen RH, Hamdoun S, et al. Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding. Phytomedicine. 2021;87:153591. https://doi.org/10.1016/j.phymed.2021.153591.

PDF (19181KB)

77

Accesses

0

Citation

Detail

Sections
Recommended

/