Generation of halogenated angucyclinones with cytotoxicity activities against human cancer cell lines based on biosynthesis and chemical conversion

Hua Xiao , Guiyang Wang , Mengyuan Li , Huichun Zhao , Xinyi Qi , Jian Huang , Donghui Yang , Ming Ma

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) : 100013 -100013.

PDF (16482KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) :100013 -100013. DOI: 10.1016/j.cjnm.2025.100013
Original article
research-article

Generation of halogenated angucyclinones with cytotoxicity activities against human cancer cell lines based on biosynthesis and chemical conversion

Author information +
History +
PDF (16482KB)

Abstract

Halogen substituents play a crucial role in the structural diversity and biological activity of natural products, and the synthesis of halogenated molecules remains an area of significant research interest. This study describes the generation of 15 new halogenated angucyclinones through the incorporation of halogen-containing phenylamines into a biosynthetic C-ring-cleaved angucyclinone under mild conditions. The newly synthesized compounds feature halogen substituents encompassing all four halogen atoms (F, Cl, Br, I), with some compounds containing multiple halogen types. Structural elucidation was accomplished through ultraviolet (UV), infrared spectroscopy (IR), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopic analyses, expanding the structural diversity of angucyclinone-type polyketides. Cytotoxicity evaluations revealed that eight compounds demonstrated moderate cytotoxic activities against four human tumor cell lines, with half maximal inhibitory concentration (IC50) values ranging from 3.35 ± 0.37 to 16.02 ± 6.60 μmol·L−1. These findings highlight the significant potential of combining biosynthetic and chemical approaches in generating bioactive halogenated molecules.

Keywords

Angucyclinone / Cytotoxicity / Halogenation / Nonenzymatic conversion / Phenylamine

Cite this article

Download citation ▾
Hua Xiao, Guiyang Wang, Mengyuan Li, Huichun Zhao, Xinyi Qi, Jian Huang, Donghui Yang, Ming Ma. Generation of halogenated angucyclinones with cytotoxicity activities against human cancer cell lines based on biosynthesis and chemical conversion. Chinese Journal of Natural Medicines, 2025, 23(12): 100013-100013 DOI:10.1016/j.cjnm.2025.100013

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gribble GW. A survey of recently discovered naturally occurring organohalogen compounds. J Nat Prod. 2024; 87(4):1285-1305. https://doi.org/10.1021/acs.jnatprod.3c00803.

[2]

Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Update. Vienna: Springer Vienna, 2010. https://doi.org/10.1007/978-3-211-99323-1.

[3]

Neumann CS, Fujimori DG, Walsh CT. Halogenation strategies in natural product biosynthesis. Chem Biol. 2008; 15(2):99-109. https://doi.org/10.1016/j.chembiol.2008.01.006.

[4]

Fenical W, Jensen PR, Palladino MA, et al. Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg Med Chem. 2009; 17(6):2175-2180. https://doi.org/10.1016/j.bmc.2008.10.075.

[5]

Balbi HJ. Chloramphenicol: a review. Pediatr Rev. 2004; 25(8):284-288. https://doi.org/10.1542/pir.25-8-284.

[6]

Duggar BM. Aureomycin: a product of the continuing search for new antibiotics. Ann N Y Acad Sci. 1948; 51(2):177-181. https://doi.org/10.1111/j.1749-6632.1948.tb27262.x.

[7]

Prudhomme M.Rebeccamycin analogues as anti-cancer agents. Eur J Med Chem. 2003; 38(2):123-140. https://doi.org/10.1016/s0223-5234(03)00011-4.

[8]

Ma C, Xie J, Huang X, et al. Thyroxine alone or thyroxine plus triiodothyronine replacement therapy for hypothyroidism. Nucl Med Commun. 2009; 30(8):586-593. https://doi.org/10.1097/mnm.0b013e32832c79e0.

[9]

Watanabe S, Hirai H, Kato Y, et al. CJ-19, 784, a new antifungal agent from a fungus, acanthostigmella sp. J Antibiot. 2001; 54(12):1031-1035. https://doi.org/10.7164/antibiotics.54.1031.

[10]

Xu Z, Yang Z, Liu Y, et al. Halogen bond: its role beyond drug-target binding affinity for drug discovery and development. J Chem Inf Model. 2014; 54(1):69-78. https://doi.org/10.1021/ci400539q.

[11]

Jeschke P. The unique role of halogen substituents in the design of modern agrochemicals. Pest Manag Sci. 2010; 66(1):10-27. https://doi.org/10.1002/ps.1829.

[12]

Chue P, Chue J.A review of paliperidone palmitate. Expert Rev Neurother. 2012; 12(12):1383-1397. https://doi.org/10.1586/ern.12.137.

[13]

Schneckmann R, Döring M, Gerfer S, et al. Rivaroxaban attenuates neutrophil maturation in the bone marrow niche. Basic Res Cardiol. 2023; 118(1):31. https://doi.org/10.1007/s00395-023-01001-5.

[14]

Patel T, McKeage K.Macitentan: first global approval. Drugs. 2014; 74(1):127-133. https://doi.org/10.1007/s40265-013-0156-6.

[15]

Martin DF, England RE, Rösch T, et al. Diagnostic quality in endoscopic retrograde cholangiopancreatography: comparison between iodixanol and iopromide. Endoscopy. 2000; 32(10):783-787. https://doi.org/10.1055/s-2000-7707.

[16]

Kaziem AE, Gao B, Li L, et al. Enantioselective bioactivity, toxicity, and degradation in different environmental mediums of chiral fungicide epoxiconazole. J Hazard Mater. 2020;386:121951. https://doi.org/10.1016/j.jhazmat.2019.121951.

[17]

Wang W, Song S, Jiao N. Late-stage halogenation of complex substrates with readily available halogenating reagents. Acc Chem Res. 2024; 57(21):3161-3181. https://doi.org/10.1021/acs.accounts.4c00501.

[18]

D’Alterio MC, Casals-Cruañas È, Tzouras NV, et al. Mechanistic aspects of the palladium-catalyzed suzuki-miyaura cross-coupling reaction. Chemistry A European J. 2021; 27(54):13481-13493. https://doi.org/10.1002/chem.202101880.

[19]

Petrone DA, Ye J, Lautens M.Modern transition-metal-catalyzed carbon-halogen bond formation. Chem Rev. 2016; 116(14):8003-8104. https://doi.org/10.1021/acs.chemrev.6b00089.

[20]

Crowe C, Molyneux S, Sharma SV, et al. Halogenases: a palette of emerging opportunities for synthetic biology-synthetic chemistry and C-H functionalisation. Chem Soc Rev. 2021; 50(17):9443-9481. https://doi.org/10.1039/D0CS01551B.

[21]

Schnepel C, Sewald N. Enzymatic halogenation: a timely strategy for regioselective C-H activation. Chem-Eur J. 2017; 23(50):12064-12086. https://doi.org/10.1002/chem.201701209.

[22]

Agarwal V, Miles ZD, Winter JM, et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem Rev. 2017; 117(8):5619-5674. https://doi.org/10.1021/acs.chemrev.6b00571.

[23]

O’Hagan D, Schaffrath C, Cobb SL, et al.Biosynthesis of an organofluorine molecule. Nature. 2002; 416(6878):279. https://doi.org/10.1038/416279a.

[24]

Liu T, Jin J, Yang X, et al. Discovery of a phenylamine-incorporated angucyclinone from marine Streptomyces sp. PKU-MA00218 and generation of derivatives with phenylamine analogues. Org Lett. 2019; 21(8):2813-2817. https://doi.org/10.1021/acs.orglett.9b00800.

[25]

Xiao H, Wang G, Wang Z, et al. Generation of unusual aromatic polyketides by incorporation of phenylamine analogues into a C-ring-cleaved angucyclinone. Molecules. 2021; 26(7):1959. https://doi.org/10.3390/molecules26071959.

PDF (16482KB)

75

Accesses

0

Citation

Detail

Sections
Recommended

/