Ircinrimanes A−J: ten undescribed rearranged 4,9-friedodrimane merosesquiterpenoids with cytotoxic and anti-inflammatory activities from the marine sponge Ircinia sp.

Wenjie Zhang , Jinjin Ren , Xiao Zhu , Xiaobin Li , Xuli Tang , Xiao Han , Guoqiang Li

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) : 100012 -100012.

PDF (16984KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) :100012 -100012. DOI: 10.1016/j.cjnm.2025.100012
Original article
research-article

Ircinrimanes A−J: ten undescribed rearranged 4,9-friedodrimane merosesquiterpenoids with cytotoxic and anti-inflammatory activities from the marine sponge Ircinia sp.

Author information +
History +
PDF (16984KB)

Abstract

Ten previously undescribed rearranged 4,9-friedodrimane merosesquiterpenoids, designated ircinrimanes A−J (110), were isolated from the marine sponge Ircinia sp., collected from the South China Sea. Their structures and absolute configurations were definitively elucidated through a combination of spectroscopic data analysis, DP4+ probability assessments, electronic circular dichroism (ECD) calculations, and Mo2(OAc)4 experiment. Compounds 14 contained benzene rings, with compound 1 featuring an unusual 2-carbonyl morpholin ring, while compound 2 possessed a benzoxazole ring. Compounds 59 comprised sesquiterpenoid quinones with distinct amino side chains at C-20, and compound 10 incorporated an ethoxy side chain. Notably, compounds 110 demonstrated an unusual rearrangement of 4,9-friedodrimane sesquiterpenes. Compounds 2, 58 and 10 demonstrated cytotoxic activity, while compound 2 exhibited anti-inflammatory activity in zebrafish.

Keywords

Ircinia sp. / Rearranged 4,9-friedodrimane merosesquiterpenoids / Absolute configurations / Cytotoxic activity / Anti-inflammatory activity

Cite this article

Download citation ▾
Wenjie Zhang, Jinjin Ren, Xiao Zhu, Xiaobin Li, Xuli Tang, Xiao Han, Guoqiang Li. Ircinrimanes A−J: ten undescribed rearranged 4,9-friedodrimane merosesquiterpenoids with cytotoxic and anti-inflammatory activities from the marine sponge Ircinia sp.. Chinese Journal of Natural Medicines, 2025, 23(12): 100012-100012 DOI:10.1016/j.cjnm.2025.100012

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

El-Desoky AH, Eguchi K, Kagiyama I, et al. Aaptocarbamates A-G, chlorinated terpene carbamates with antiosteoclastogenic activities from the marine sponge Aaptos sp. Phytochemistry. 2023;216:113872. https://doi.org/10.1016/j.phytochem.2023.113872.

[2]

Fan DX, Luo XC, Ding YF, et al. Isolation and absolute configuration of alkylpyridine alkaloids from the marine sponge Hippospongia lachne. Phytochemistry. 2024;220:114017. https://doi.org/10.1016/j.phytochem.2024.114017.

[3]

Tang WZ, Zhao HM, Tian Y, et al. Merosesquiterpenes from the marine sponge Spongia pertusa Esper and their antifungal activities. Tetrahedron Lett. 2022;93:153690. https://doi.org/10.1016/j.tetlet.2022.153690.

[4]

Takahashi Y, Ushio M, Kubota T, et al. Nakijiquinones J-R, sesquiterpenoid quinones with an amine residue from Okinawan marine sponges. J Nat Prod. 2010; 73(3):467-471. https://doi.org/10.1021/np900470e.

[5]

Kobayashi J, Madono T, Shigemori H. Nakijiquinones C and D, new sesquiterpenoid quinones with a hydroxy amino acid residue from a marine sponge inhibiting c-erbB-2 kinase. Tetrahedron. 1995; 51(40):10867-10874. https://doi.org/10.1016/0040-4020(95)00661-q.

[6]

Pérez-García E, Zubía E, Ortega MJ, et al. Merosesquiterpenes from two sponges of the genus Dysidea. J Nat Prod. 2005; 68(5):653-658. https://doi.org/10.1021/np040237z.

[7]

Giannini C, Debitus C, Lucas R, et al. New sesquiterpene derivatives from the sponge Dysidea species with a selective inhibitor profile against human phospholipase A2 and other leukocyte functions. J Nat Prod. 2001; 64(5):612-615. https://doi.org/10.1021/np000637w.

[8]

Suna H, Arai M, Tsubotani Y, et al. Dysideamine, a new sesquiterpene aminoquinone, protects hippocampal neuronal cells against iodoacetic acid-induced cell death. Bioorg Med Chem. 2009; 17(11):3968-3972. https://doi.org/10.1016/j.bmc.2009.04.025.

[9]

Wahab H, Pham N, Muhammad T, et al. Merosesquiterpene congeners from the Australian sponge hyrtios digitatus as potential drug leads for atherosclerosis disease. Mar Drugs. 2017; 15(1):6. https://doi.org/10.3390/md15010006.

[10]

Wang J, Mu FR, Jiao WH, et al. Meroterpenoids with protein tyrosine phosphatase 1B inhibitory activity from a Hyrtios sp. marine sponge. J Nat Prod. 2017; 80(9):2509-2514. https://doi.org/10.1021/acs.jnatprod.7b00435.

[11]

Thu VK, Trang DT, Hang DTT, et al. New merosesquiterpenes from the Vietnamese sponge Hippospongia fistulosa and their cytotoxic activity. Phytochem Lett. 2021; 44:115-119. https://doi.org/10.1016/j.phytol.2021.06.015.

[12]

Yu XL, Han X, Cui YP, et al. Pseudoceranoids A-J, sesquiterpene-based meroterpenoids with cytotoxicity from the Sponge Pseudoceratina purpurea. J Nat Prod. 2023; 86(12):2710-2717. https://doi.org/10.1021/acs.jnatprod.3c00877.

[13]

Yu X, Han X, Mi Y, et al. Anti-inflammatory and cytotoxicity nitrogenous merosesquiterpenoids from the sponge Pseudoceratina purpurea. Phytochemistry. 2024;226:114220. https://doi.org/10.1016/j.phytochem.2024.114220.

[14]

Tian XH, Hong LL, Jiao WH, et al. Natural sesquiterpene quinone/quinols: chemistry, biological activity, and synthesis. Nat Prod Rep. 2023; 40(3):718-749. https://doi.org/10.1039/D2NP00045H.

[15]

Balansa W, Mettal U, Wuisan ZG, et al. A new sesquiterpenoid aminoquinone from an Indonesian marine sponge. Mar Drugs. 2019; 17(3):158. https://doi.org/10.3390/md17030158.

[16]

Nguyen HM, Ito T, Kurimoto SI, et al. New merosesquiterpenes from a Vietnamese marine sponge of Spongia spp. and their biological activities. Bioorg Med Chem Lett. 2017; 27(14):3043-3047. https://doi.org/10.1016/j.bmcl.2017.05.060.

[17]

Carrasco E, Álvarez PJ, Melguizo C, et al. Novel merosesquiterpene exerts a potent antitumor activity against breast cancer cells in vitro and in vivo. Eur J Med Chem. 2014; 79:1-12. https://doi.org/10.1016/j.ejmech.2014.03.071.

[18]

Gui YH, Liu L, Wu W, et al. Discovery of nitrogenous sesquiterpene quinone derivatives from sponge Dysidea septosa with anti-inflammatory activity in vivo zebrafish model. Bioorg Chem. 2020;94:103435. https://doi.org/10.1016/j.bioorg.2019.103435.

[19]

McNamara CE, Larsen L, Perry NB, et al. Anti-inflammatory sesquiterpene-quinones from the New Zealand sponge Dysidea Cf. cristagalli. J Nat Prod. 2005; 68(9):1431-1433. https://doi.org/10.1021/np050171n.

[20]

Jiao WH, Shi GH, Xu TT, et al. Dysiherbols A-C and dysideanone E, cytotoxic and NF-κB inhibitory tetracyclic meroterpenes from a Dysidea sp. marine sponge. J Nat Prod. 2016; 79(2):406-411. https://doi.org/10.1021/acs.jnatprod.5b01079.

[21]

Ding ZG, Zhao JY, Ding JH, et al. A novel phenylspirodrimane dimer from cultures of the fungus Stachybotrys chartarum. Nat Prod Res. 2018; 32(19):2370-2374. https://doi.org/10.1080/14786419.2017.1413565.

[22]

Chianese G, Silber J, Luciano P, et al. Antiprotozoal linear furanosesterterpenoids from the marine sponge Ircinia oros. J Nat Prod. 2017; 80(9):2566-2571. https://doi.org/10.1021/acs.jnatprod.7b00543.

[23]

Abdjul DB, Yamazaki H, Kanno SI, et al.Furanoterpenes, new types of protein tyrosine phosphatase 1B inhibitors, from two Indonesian marine sponges, Ircinia and Spongia spp. Bioorg Med Chem Lett. 2017; 27(5):1159-1161. https://doi.org/10.1016/j.bmcl.2017.01.071.

[24]

Lai YY, Lu MC, Wang LH, et al. New scalarane sesterterpenoids from the Formosan sponge ircinia felix. Mar Drugs. 2015; 13(7):4296-4309. https://doi.org/10.3390/md13074296.

[25]

Hahn D, Chin J, Kim H, et al. Sesquiterpenoids with PPARδ agonistic effect from a Korean marine sponge Ircinia sp. Tetrahedron Lett. 2014; 55(34):4716-4719. https://doi.org/10.1016/j.tetlet.2014.07.019.

[26]

Frelek J, Ikekawa N, Takatsuto S, et al. Application of [ Mo2(OAc)4] for determination of absolute configuration of brassinosteroid vic-diols by circular dichroism. Chirality. 1997; 9(56):578-582. https://doi.org/10.1002/(sici)1520-636x(1997)9:5/6578::aid-chir27>3.3.co;2-k. doi:10.1002/(sici)1520-636x(1997)9:5/6578::aid-chir27>3.3.co;2-k

[27]

Zhao HY, Su BJ, Zhou WJ, et al. Diterpenoids and triterpenoids from Triadica rotundifolia and their effects on microglial nitric oxide production. Bioorg Chem. 2020;105:104332. https://doi.org/10.1016/j.bioorg.2020.104332.

[28]

Trang DT, Hang DTT, Dung DT, et al. Rhabdastrenones A-D from the sponge rhabdastrella globostellata. RSC Adv. 2022; 12(17):10646-10652. https://doi.org/10.1039/D2RA01674E.

[29]

Salmoun M, Devijver C, Daloze D, et al. New sesquiterpene/quinones from two sponges of the genus Hyrtios. J Nat Prod. 2000; 63(4):452-456. https://doi.org/10.1021/np9903346.

[30]

Suramitr S, Piriyagagoon A, Wolschann P, et al. Theoretical study on the structures and electronic properties of oligo(p-phenylenevinylene) carboxylic acid and its derivatives: effects of spacer and anchor groups. Theor Chem Acc. 2012; 131(4):1209. https://doi.org/10.1007/s00214-012-1209-8.

[31]

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Meth. 1983; 65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-4.

[32]

Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI J Natl Cancer Inst. 1990; 82(13):1107-1112. https://doi.org/10.1093/jnci/82.13.1107.

PDF (16984KB)

82

Accesses

0

Citation

Detail

Sections
Recommended

/