Mechanism and research progress of improving cartilage injury based on the combination of active ingredients in traditional Chinese medicine and biomaterials

Jiali Li , Yuan Gao , Li Zhang , Quanjie Hou , Xinru Fu , Jipeng Song , Yiming Liu , Yunheng Shen , Xike Xu , Xia Ding , Yu Feng , Xin Chen , Xianpeng Zu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) : 100011 -100011.

PDF (17776KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) :100011 -100011. DOI: 10.1016/j.cjnm.2025.100011
Review
research-article

Mechanism and research progress of improving cartilage injury based on the combination of active ingredients in traditional Chinese medicine and biomaterials

Author information +
History +
PDF (17776KB)

Abstract

Cartilage injuries remain a significant therapeutic challenge due to cartilage’s limited capacity for self-repair. Traditional treatment approaches for cartilage injuries, including surgical interventions, microfracture and autologous chondrocyte implantation, may alleviate symptoms but frequently present limitations such as surgical trauma, uncertain efficacy, and adverse effects. Active ingredients derived from traditional Chinese medicine (TCM), which possess anti-inflammatory, anti-apoptotic, proliferation-promoting, and differentiation-inducing properties, have emerged as a promising research focus for treating cartilage damage. However, clinical applications of TCM have been constrained by factors including low bioavailability, insufficient stability, and limited targeting capabilities. The integration of TCM active ingredients with biomaterials offers novel solutions to these challenges. This article examines the pathological foundations of cartilage injury, the mechanisms through which TCM active ingredients such as polysaccharides, flavonoids, terpenoids, aldehydes, polyphenols, and saponins address cartilage injury, and the therapeutic applications of TCM active ingredients combined with biomaterials. These biomaterial delivery systems encompass gels, nanomaterials, microspheres, and tissue scaffolds. Additionally, this article analyzes the challenges and potential development trajectories for combining TCM active ingredients with biomaterials in cartilage injury treatment, offering new perspectives for therapeutic intervention.

Keywords

Active ingredients of TCM / Cartilage injury / Anti-inflammatory / Biomaterials / Gel / Nanomaterials

Cite this article

Download citation ▾
Jiali Li, Yuan Gao, Li Zhang, Quanjie Hou, Xinru Fu, Jipeng Song, Yiming Liu, Yunheng Shen, Xike Xu, Xia Ding, Yu Feng, Xin Chen, Xianpeng Zu. Mechanism and research progress of improving cartilage injury based on the combination of active ingredients in traditional Chinese medicine and biomaterials. Chinese Journal of Natural Medicines, 2025, 23(12): 100011-100011 DOI:10.1016/j.cjnm.2025.100011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Steinberg J, Southam L, Fontalis A, et al. Linking chondrocyte and synovial transcriptional profile to clinical phenotype in osteoarthritis. Ann Rheum Dis. 2021; 80(8):1070-1074. https://doi.org/10.1136/annrheumdis-2020-219760.

[2]

Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017; 23(6):775-781. https://doi.org/10.1038/nm.4324.

[3]

McAlindon TE, Bannuru RR, Sullivan MC, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil. 2014; 22(3):363-388. https://doi.org/10.1016/j.joca.2014.01.003.

[4]

Jiang S, Guo W, Tian G, et al. Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope. Stem Cells Int. 2020;2020:5690252. https://doi.org/10.1155/2020/5690252.

[5]

Khan M, Adili A, Winemaker M, et al. Management of osteoarthritis of the knee in younger patients. Can Med Assoc J. 2018; 190(3):E72-E79. https://doi.org/10.1503/cmaj.170696.

[6]

Sinatti P, Sánchez Romero EA, Martínez-Pozas O, et al. Effects of patient education on pain and function and its impact on conservative treatment in elderly patients with pain related to hip and knee osteoarthritis: a systematic review. Int J Environ Res Public Health. 2022; 19(10):6194. https://doi.org/10.3390/ijerph19106194.

[7]

Breivik H. NSAIDs relieve osteoarthritis (OA) pain, but cardiovascular safety in question even for diclofenac, ibuprofen, naproxen, and celecoxib: what are the alternatives? Scand J Pain. 2017; 16:148-149. https://doi.org/10.1016/j.sjpain.2017.05.009.

[8]

Kompel AJ, Roemer FW, Murakami AM, et al. Intra-articular corticosteroid injections in the hip and knee: perhaps not as safe as we thought? Radiology. 2019; 293(3):656-663. https://doi.org/10.1148/radiol.2019190341.

[9]

Liu MM, Guo JT, Zhao J, et al. Activation of NRF 2 by celastrol increases antioxidant functions and prevents the progression of osteoarthritis in mice. Chin J Nat Med. 2024; 22(2):137-145. https://doi.org/10.1016/S1875-5364(24)60586-8.

[10]

Xia B, Di-Chen, Zhang J, et al. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int. 2014; 95(6):495-505. https://doi.org/10.1007/s00223-014-9917-9.

[11]

Wei D, Yang H, Zhang Y, et al. Nano-traditional Chinese medicine: a promising strategy and its recent advances. J Mater Chem B. 2022; 10(16):2973-2994. https://doi.org/10.1039/D2TB00225F.

[12]

Szychlinska MA, D’Amora U, Ravalli S, et al. Functional biomolecule delivery systems and bioengineering in cartilage regeneration. Curr Pharm Biotechnol. 2019; 20(1):32-46. https://doi.org/10.2174/1389201020666190206202048.

[13]

Liao S, Meng H, Li J, et al. Potential and recent advances of microcarriers in repairing cartilage defects. J Orthop Translat. 2021; 27:101-109. https://doi.org/10.1016/j.jot.2020.10.005.

[14]

Becerra J, Andrades JA, Guerado E, et al.Articular cartilage: structure and regeneration. Tissue Eng Part B Rev. 2010; 16(6):617-627. https://doi.org/10.1089/ten.TEB.2010.0191.

[15]

Decker RS, Koyama E, Pacifici M. Articular cartilage: structural and developmental intricacies and questions. Curr Osteoporos Rep. 2015; 13(6):407-414. https://doi.org/10.1007/s11914-015-0290-z.

[16]

Lieberthal J, Sambamurthy N, Scanzello CR. Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis Cartilage. 2015; 23(11):1825-1834. https://doi.org/10.1016/j.joca.2015.08.015.

[17]

Haq I, Murphy E, Dacre J. Osteoarthritis. Postgrad Med J. 2003; 79(933):377-383. https://doi.org/10.1136/pmj.79.933.377.

[18]

Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther. 1998; 28(4):192-202. https://doi.org/10.2519/jospt.1998.28.4.192.

[19]

Murray IR, Benke MT, Mandelbaum BR. Management of knee articular cartilage injuries in athletes: chondroprotection, chondrofacilitation, and resurfacing. Knee Surg Phys Traumatol Arthrosc. 2016; 24(5):1617-1626. https://doi.org/10.1007/s00167-015-3509-8.

[20]

Farnham MS, Larson RE, Burris DL, et al. Effects of mechanical injury on the tribological rehydration and lubrication of articular cartilage. J Mech Behav Biomed Mater. 2020;101:103422. https://doi.org/10.1016/j.jmbbm.2019.103422.

[21]

Motta F, Barone E, Sica A, et al.Inflammaging and osteoarthritis. Clin Rev Allergy Immunol. 2023; 64(2):222-238. https://doi.org/10.1007/s12016-022-08941-1.

[22]

Levine B, Mizushima N, Virgin HW.Autophagy in immunity and inflammation. Nature. 2011; 469(7330):323-335. https://doi.org/10.1038/nature09782.

[23]

Sellards RA, Nho SJ, Cole BJ. Chondral injuries. Curr Opin Rheumatol. 2002; 14(2):134-141. https://doi.org/10.1097/00002281-200203000-00010.

[24]

Zhao X, Chen J, Sun H, et al. New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction. Cell Biosci. 2022; 12(1):117. https://doi.org/10.1186/s13578-022-00856-w.

[25]

Zheng L, Zhang Z, Sheng P, et al. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev. 2021;66:101249. https://doi.org/10.1016/j.arr.2020.101249.

[26]

Thomas CM, Fuller CJ, Whittles CE, et al. Chondrocyte death by apoptosis is associated with cartilage matrix degradation. Osteoarthritis Cartilage. 2007; 15(1):27-34. https://doi.org/10.1016/j.joca.2006.06.012.

[27]

Cao C, Shi Y, Zhang X, et al. Cholesterol-induced LRP 3 downregulation promotes cartilage degeneration in osteoarthritis by targeting Syndecan-4. Nat Commun. 2022; 13(1):7139. https://doi.org/10.1038/s41467-022-34830-4.

[28]

Zhang M, Mani SB, He Y, et al. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis. J Clin Invest. 2016; 126(8):2893-2902. https://doi.org/10.1172/JCI83676.

[29]

Mao L, Wu W, Wang M, et al. Targeted treatment for osteoarthritis: drugs and delivery system. Drug Deliv. 2021; 28(1):1861-1876. https://doi.org/10.1080/10717544.2021.1971798.

[30]

Luo ZW, Yin FC, Wang XB, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[31]

Buhrmann C, Honarvar A, Setayeshmehr M, et al. Herbal remedies as potential in cartilage tissue engineering: an overview of new therapeutic approaches and strategies. Molecules. 2020; 25(13):3075. https://doi.org/10.3390/molecules25133075.

[32]

Kuang S, Liu L, Hu Z, et al. A review focusing on the benefits of plant-derived polysaccharides for osteoarthritis. Int J Biol Macromol. 2023; 228:582-593. https://doi.org/10.1016/j.ijbiomac.2022.12.153.

[33]

Yuan D, Li C, Huang Q, et al. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Crit Rev Food Sci Nutr. 2023; 63(22):5890-5910. https://doi.org/10.1080/10408398.2022.2025535.

[34]

Peng Y, Ma F, Hu L, et al. Strontium based Astragalus polysaccharides promote osteoblasts differentiation and mineralization. Int J Biol Macromol. 2022; 205:761-771. https://doi.org/10.1016/j.ijbiomac.2022.03.088.

[35]

Xu J, Yu Y, Chen K, et al. Astragalus polysaccharides ameliorate osteoarthritis via inhibiting apoptosis by regulating ROS-mediated ASK1/p38 MAPK signaling pathway targeting on TXN. Int J Biol Macromol. 2024;258:129004. https://doi.org/10.1016/j.ijbiomac.2023.129004.

[36]

Yamada Y, Takano Y, Satrialdi, et al. Therapeutic strategies for regulating mitochondrial oxidative stress. Biomolecules. 2020; 10(1):83. https://doi.org/10.3390/biom10010083.

[37]

Vaamonde-García C, López-Armada MJ. Role of mitochondrial dysfunction on rheumatic diseases. Biochem Pharmacol. 2019; 165:181-195. https://doi.org/10.1016/j.bcp.2019.03.008.

[38]

Jayawardena TU, Wang L, Asanka Sanjeewa KK, et al. Antioxidant potential of sulfated polysaccharides from padina boryana; protective effect against oxidative stress in in vitro and in vivo zebrafish model. marine Drugs. 2020; 18(4):212. https://doi.org/10.3390/md18040212.

[39]

Vaamonde-García C, Flórez-Fernández N, Torres MD, et al. Study of fucoidans as natural biomolecules for therapeutical applications in osteoarthritis. Carbohydr Polym. 2021;258:117692. https://doi.org/10.1016/j.carbpol.2021.117692.

[40]

Zhuang C, Wang Y, Zhang Y, et al. Oxidative stress in osteoarthritis and antioxidant effect of polysaccharide from angelica sinensis. Int J Biol Macromol. 2018; 115:281-286. https://doi.org/10.1016/j.ijbiomac.2018.04.083.

[41]

Xue X, Dai T, Chen J, et al. PPARγ activation suppresses chondrocyte ferroptosis through mitophagy in osteoarthritis. J Orthop Surg Res. 2023; 18(1):620. https://doi.org/10.1186/s13018-023-04092-x.

[42]

Zhu X, Chen F, Lu K, et al. PPARγ preservation via promoter demethylation alleviates osteoarthritis in mice. Ann Rheum Dis. 2019; 78(10):1420-1429. https://doi.org/10.1136/annrheumdis-2018-214940.

[43]

Feng Z, Huang Q, Zhang X, et al. PPAR-γ activation alleviates osteoarthritis through both the Nrf2/NLRP3 and PGC-1α/Δψm pathways by inhibiting pyroptosis. PPAR Res. 2023;2023:2523536. https://doi.org/10.1155/2023/2523536.

[44]

Ni S, Yi N, Yuan H, et al. Angelica sinensis polysaccharide improves mitochondrial metabolism of osteoarthritis chondrocytes through PPARγ/SOD2/ROS pathways. Phytother Res. 2023; 37(11):5394-5406. https://doi.org/10.1002/ptr.7979.

[45]

Li X, Feng K, Li J, et al. Curcumin inhibits apoptosis of chondrocytes through activation ERK1/2 signaling pathways induced autophagy. Nutrients. 2017; 9(4):414. https://doi.org/10.3390/nu9040414.

[46]

Xu C, Ni S, Zhuang C, et al. Polysaccharide from Angelica sinensis attenuates SNP-induced apoptosis in osteoarthritis chondrocytes by inducing autophagy via the ERK1/2 pathway. Arthritis Res Ther. 2021; 23(1):47. https://doi.org/10.1186/s13075-020-02409-3.

[47]

Wen K, Fang X, Yang J, et al. Recent research on flavonoids and their biomedical applications. Curr Med Chem. 2021; 28(5):1042-1066. https://doi.org/10.2174/0929867327666200713184138.

[48]

Feng G, Yang Y, Zeng J, et al. Highly sensitive electrochemical determination of rutin based on the synergistic effect of 3D porous carbon and cobalt tungstate nanosheets. J Pharm Anal. 2022; 12(3):453-459. https://doi.org/10.1016/j.jpha.2021.09.007.

[49]

Xu Z, Han X, Ou D, et al. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol. 2020; 104(2):575-587. https://doi.org/10.1007/s00253-019-10257-8.

[50]

Sun K, Luo J, Guo J, et al. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthritis Cartilage. 2020; 28(4):400-409. https://doi.org/10.1016/j.joca.2020.02.027.

[51]

Tang Y, Li Y, Xin D, et al. Icariin alleviates osteoarthritis by regulating autophagy of chondrocytes by mediating PI3K/AKT/mTOR signaling. Bioengineered. 2021; 12(1):2984-2999. https://doi.org/10.1080/21655979.2021.1943602.

[52]

Li S, Yuan Q, Yang M, et al. Enhanced cartilage regeneration by icariin and mesenchymal stem cell-derived extracellular vesicles combined in alginate-hyaluronic acid hydrogel. Nanomed-Nanotechnol Biol Med. 2024;55:102723. https://doi.org/10.1016/j.nano.2023.102723.

[53]

Yamaura K, Nelson AL, Nishimura H, et al. Therapeutic potential of senolytic agent quercetin in osteoarthritis: a systematic review and meta-analysis of preclinical studies. Ageing Res Rev. 2023;90:101989. https://doi.org/10.1016/j.arr.2023.101989.

[54]

Guo H, Yin W, Zou Z, et al. Quercitrin alleviates cartilage extracellular matrix degradation and delays ACLT rat osteoarthritis development: an in vivo and in vitro study. J Adv Res. 2021; 28:255-267. https://doi.org/10.1016/j.jare.2020.06.020.

[55]

Dong S, Xu G, Li X, et al. Exosomes derived from quercetin-treated bone marrow derived mesenchymal stem cells inhibit the progression of osteoarthritis through delivering miR-124-3p to chondrocytes. DNA Cell Biol. 2024; 43(2):85-94. https://doi.org/10.1089/dna.2023.0341.

[56]

Hu Y, Liu HX, Xu D, et al. The anti-inflammatory effect of miR-140-3p in BMSCs-exosomes on osteoarthritis. Acta Chir Orthop Traumatol Cech. 2023; 90(4):267-276. https://doi.org/10.55095/achot2023/032.

[57]

Xing YQ, Li A, Yang Y, et al. The regulation of FOXO1 and its role in disease progression. Life Sci. 2018; 193:124-131. https://doi.org/10.1016/j.lfs.2017.11.030.

[58]

Wei Q, Yu Z, Yang P, et al.Baicalin maintains articular cartilage homeostasis and alleviates osteoarthritis by activating FOXO1. J Med Food. 2024; 27(4):301-311. https://doi.org/10.1089/jmf.2023.K.0206.

[59]

Tholl D. Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol. 2015; 148:63-106. https://doi.org/10.1007/10_2014_295.

[60]

Li J, Jiang M, Yu Z, et al. Artemisinin relieves osteoarthritis by activating mitochondrial autophagy through reducing TNFSF11 expression and inhibiting PI3K/AKT/mTOR signaling in cartilage. Cell Mol Biol Lett. 2022; 27(1):62. https://doi.org/10.1186/s11658-022-00365-1.

[61]

Zhou Y, Wang T, Hamilton JL, et al. Wnt/β-catenin signaling in osteoarthritis and in other forms of arthritis. Curr Rheumatol Rep. 2017; 19(9):53. https://doi.org/10.1007/s11926-017-0679-z.

[62]

Zhong G, Liang R, Yao J, et al. Artemisinin ameliorates osteoarthritis by inhibiting the Wnt/β-catenin signaling pathway. Cell Physiol Biochem. 2018; 51(6):2575-2590. https://doi.org/10.1159/000495926.

[63]

Choi MC, Jo J, Park J, et al. NF-κB signaling pathways in osteoarthritic cartilage destruction. Cells. 2019; 8(7):734. https://doi.org/10.3390/cells8070734.

[64]

Yu H, Yao S, Zhou C, et al. Morroniside attenuates apoptosis and pyroptosis of chondrocytes and ameliorates osteoarthritic development by inhibiting NF-κB signaling. J Ethnopharmacol. 2021;266:113447. https://doi.org/10.1016/j.jep.2020.113447.

[65]

Luo X, Liao H, Peng J, et al. Salidroside protects chondrocytes against IL-1β-induced injury and alleviates osteoarthritis progression by activating the Nrf2 pathway. Discov Med. 2024; 36(181):266-277. https://doi.org/10.24976/Discov.Med.202436181.25.

[66]

Gao H, Peng L, Li C, et al. Salidroside alleviates cartilage degeneration through NF-κB pathway in osteoarthritis rats. Drug Des Devel Ther. 2020; 14:1445-1454. https://doi.org/10.2147/DDDT.S242862.

[67]

Bhambhani S, Kondhare KR, Giri AP. Diversity in chemical structures and biological properties of plant alkaloids. Molecules. 2021; 26(11):3374. https://doi.org/10.3390/molecules26113374.

[68]

Li C, Wu Z, Yuan G, et al. Vx-11e protects against titanium-particle-induced osteolysis and osteoclastogenesis by supressing ERK activity. Biochem Biophys Res Commun. 2019; 514(4):1244-1250. https://doi.org/10.1016/j.bbrc.2019.05.054.

[69]

Ouyang Z, Zhai Z, Li H, et al. Hypericin suppresses osteoclast formation and wear particle-induced osteolysis via modulating ERK signalling pathway. Biochem Pharmacol. 2014; 90(3):276-287. https://doi.org/10.1016/j.bcp.2014.06.009.

[70]

Zhu M, Shan J, Xu H, et al. Glaucocalyxin A suppresses osteoclastogenesis induced by RANKL and osteoporosis induced by ovariectomy by inhibiting the NF-κB and Akt pathways. J Ethnopharmacol. 2021;276:114176. https://doi.org/10.1016/j.jep.2021.114176.

[71]

Shi Y, Hu X, Cheng J, et al. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat Commun. 2019; 10(1):1914. https://doi.org/10.1038/s41467-019-09839-x.

[72]

Zhu M, Xu Q, Yang X, et al. Vindoline attenuates osteoarthritis progression through suppressing the NF-κB and ERK pathways in both chondrocytes and subchondral osteoclasts. Front Pharmacol. 2021;12:764598. https://doi.org/10.3389/fphar.2021.764598.

[73]

Morgos DT, Stefani C, Miricescu D, et al. Targeting PI3K/AKT/mTOR and MAPK signaling pathways in gastric cancer. Int J Mol Sci. 2024; 25(3):1848. https://doi.org/10.3390/ijms25031848.

[74]

Li X, He P, Hou Y, et al. Berberine inhibits the interleukin-1 beta-induced inflammatory response via MAPK downregulation in rat articular chondrocytes. Drug Dev Res. 2019; 80(5):637-645. https://doi.org/10.1002/ddr.21541.

[75]

Chu X, Yu T, Huang X, et al. Tomatidine suppresses inflammation in primary articular chondrocytes and attenuates cartilage degradation in osteoarthritic rats. Aging. 2020; 12(13):12799-12811. https://doi.org/10.18632/aging.103222.

[76]

Liu HY, Chang CF, Lu CC, et al.The role of mitochondrial metabolism, AMPK-SIRT mediated pathway, LncRNA and microRNA in osteoarthritis. Biomedicines. 2022; 10(7):1477. https://doi.org/10.3390/biomedicines10071477.

[77]

Liu D, Cai ZJ, Yang YT, et al. Mitochondrial quality control in cartilage damage and osteoarthritis: new insights and potential therapeutic targets. Osteoarthritis Cartilage. 2022; 30(3):395-405. https://doi.org/10.1016/j.joca.2021.10.009.

[78]

Kong X, Ning C, Liang Z, et al. Koumine inhibits IL-1β-induced chondrocyte inflammation and ameliorates extracellular matrix degradation in osteoarthritic cartilage through activation of PINK1/Parkin-mediated mitochondrial autophagy. Biomedecine Pharmacother. 2024;173:116273. https://doi.org/10.1016/j.biopha.2024.116273.

[79]

Yagi H, Ulici V, Tuan RS. Polyphenols suppress inducible oxidative stress in human osteoarthritic and bovine chondrocytes. Osteoarthr Cartil Open. 2020; 2(3):100064. https://doi.org/10.1016/j.ocarto.2020.100064.

[80]

Sung S, Kwon D, Um E, et al. Could polyphenols help in the control of rheumatoid arthritis? Molecules. 2019; 24(8):1589. https://doi.org/10.3390/molecules24081589.

[81]

Hsiao AF, Lien YC, Tzeng IS, et al. The efficacy of high- and low-dose curcumin in knee osteoarthritis: a systematic review and meta-analysis. Complement Ther Med. 2021;63:102775. https://doi.org/10.1016/j.ctim.2021.102775.

[82]

Paultre K, Cade W, Hernandez D, et al. Therapeutic effects of turmeric or curcumin extract on pain and function for individuals with knee osteoarthritis: a systematic review. BMJ Open Sport Exerc Med. 2021; 7(1):e000935. https://doi.org/10.1136/bmjsem-2020-000935.

[83]

Imberechts D, Kinnart I, Wauters F, et al. DJ-1 is an essential downstream mediator in PINK1/parkin-dependent mitophagy. Brain. 2022; 145(12):4368-4384. https://doi.org/10.1093/brain/awac313.

[84]

Jin Z, Chang B, Wei Y, et al. Curcumin exerts chondroprotective effects against osteoarthritis by promoting AMPK/PINK1/Parkin-mediated mitophagy. Biomedecine Pharmacother. 2022;151:113092. https://doi.org/10.1016/j.biopha.2022.113092.

[85]

Klionsky DJ, Petroni G, Amaravadi RK, et al.Autophagy in major human diseases. EMBO J. 2021; 40(19):e108863. https://doi.org/10.15252/embj.2021108863.

[86]

Chen T, Zhou R, Chen Y, et al. Curcumin ameliorates IL-1β-induced apoptosis by activating autophagy and inhibiting the NF-κB signaling pathway in rat primary articular chondrocytes. Cell Biol Int. 2021; 45(5):976-988. https://doi.org/10.1002/cbin.11541.

[87]

Yang S, Sun M, Zhang X. Protective effect of resveratrol on knee osteoarthritis and its molecular mechanisms: a recent review in preclinical and clinical trials. Front Pharmacol. 2022;13:921003. https://doi.org/10.3389/fphar.2022.921003.

[88]

Deng Z, Li Y, Liu H, et al. The role of sirtuin 1 and its activator, resveratrol in osteoarthritis. Biosci Rep. 2019; 39(5):BSR20190189. https://doi.org/10.1042/BSR20190189.

[89]

Calnan DR, Brunet A. The FoxO code. Oncogene. 2008; 27(16):2276-2288. https://doi.org/10.1038/onc.2008.21.

[90]

Liang C, Xing H, Wang C, et al. Resveratrol protection against IL-1β-induced chondrocyte damage via the SIRT1/FOXO1 signaling pathway. J Orthop Surg Res. 2022; 17(1):406. https://doi.org/10.1186/s13018-022-03306-y.

[91]

Güçlü-Ustündağ O, Mazza G.Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 2007; 47(3):231-258. https://doi.org/10.1080/10408390600698197.

[92]

Rajput ZI, Hu SH, Xiao CW, et al. Adjuvant effects of saponins on animal immune responses. J Zhejiang Univ Sci B. 2007; 8(3):153-161. https://doi.org/10.1631/jzus.2007.B0153.

[93]

Zhang Y, Cai W, Han G, et al. Panax notoginseng saponins prevent senescence and inhibit apoptosis by regulating the PI3K-AKT-mTOR pathway in osteoarthritic chondrocytes. Int J Mol Med. 2020; 45(4):1225-1236. https://doi.org/10.3892/ijmm.2020.4491.

[94]

Ding Q, Zhang R, Sheng G, et al. Dioscin alleviates the progression of osteoarthritis: an in vitro and in vivo study. J Inflamm (Lond). 2023; 20(1):14. https://doi.org/10.1186/s12950-023-00339-w.

[95]

Shao Q, Xue S, Jiang Y, et al. Esculentoside A protects against osteoarthritis by ameliorating inflammation and repressing osteoclastogenesis. Int Immunopharmacol. 2020;82:106376. https://doi.org/10.1016/j.intimp.2020.106376.

[96]

Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review. Life Sci. 2019;234:116786. https://doi.org/10.1016/j.lfs.2019.116786.

[97]

Han SJ, Lim MJ, Lee KM, et al. Safflower seed extract attenuates the development of osteoarthritis by blocking NF-κB signaling. Pharmaceuticals (Basel). 2021; 14(3):258. https://doi.org/10.3390/ph14030258.

[98]

Jiang NX, Wang J, Wang Q, et al. Advances in the mechanism of action of schisandra chinensis in bone remodeling. Chin J Stomatol. 2020; 55(12):1011-1015. https://doi.org/10.3760/cma.j.cn112144-20200315-00150.

[99]

Han SJ, Lee H, Nam J, et al. Schisandra extract ameliorates arthritis pathogenesis by suppressing the NF-κB and MAPK signalling pathways. J Cell Mol Med. 2023; 27(14):2071-2081. https://doi.org/10.1111/jcmm.17814.

[100]

Bartels YL, van Lent PLEM, van der Kraan PM, et al. Inhibition of TLR4 signalling to dampen joint inflammation in osteoarthritis. Rheumatology (Oxford). 2024; 63(3):608-618. https://doi.org/10.1093/rheumatology/kead493.

[101]

Song BF, Xu LZ, Jiang K, et al.miR-124-3p inhibits tumor progression in prostate cancer by targeting EZH2. Funct Integr Genomics. 2023; 23(2):80. https://doi.org/10.1007/s10142-023-00991-8.

[102]

Lin J, Huang Y, Lin X, et al. Bauhinia championii alleviates extracellular matrix degradation in IL-1β induced chondrocytes via miRNA-145-5p/TLR4/NF-κB axis. Heliyon. 2023; 9(8):e19138. https://doi.org/10.1016/j.heliyon.2023.e19138.

[103]

Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015; 11(1):21-34. https://doi.org/10.1038/nrrheum.2014.157.

[104]

Ge W, Gao Y, He L, et al. Developing Chinese herbal-based functional biomaterials for tissue engineering. Heliyon. 2024; 10(6):e27451. https://doi.org/10.1016/j.heliyon.2024.e27451.

[105]

Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev. 2011; 17(4):281-299. https://doi.org/10.1089/ten.TEB.2011.0077.

[106]

Vega SL, Kwon MY, Burdick JA. Recent advances in hydrogels for cartilage tissue engineering. Eur Cell Mater. 2017; 33:59-75. https://doi.org/10.22203/eCM.v033a05.

[107]

Yuan X, Wan J, Yang Y, et al. Thermosensitive hydrogel for cartilage regeneration via synergistic delivery of SDF-1α like polypeptides and kartogenin. Carbohydr Polym. 2023;304:120492. https://doi.org/10.1016/j.carbpol.2022.120492.

[108]

Zhang Y, Yu J, Ren K, et al. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules. 2019; 20(4):1478-1492. https://doi.org/10.1021/acs.biomac.9b00043.

[109]

Mok SW, Fu SC, Cheuk YC, et al. Intra-articular delivery of quercetin using thermosensitive hydrogel attenuate cartilage degradation in an osteoarthritis rat model. Cartilage. 2020; 11(4):490-499. https://doi.org/10.1177/1947603518796550.

[110]

Rey-Rico A, Madry H, Cucchiarini M. Hydrogel-based controlled delivery systems for articular cartilage repair. Biomed Res Int. 2016;2016:1215263. https://doi.org/10.1155/2016/1215263.

[111]

Jin Y, Koh RH, Kim SH, et al. Injectable anti-inflammatory hyaluronic acid hydrogel for osteoarthritic cartilage repair. Mater Sci Eng C Mater Biol Appl. 2020;115:111096. https://doi.org/10.1016/j.msec.2020.111096.

[112]

Ding C, Tian M, Feng R, et al. Novel self-healing hydrogel with injectable, pH-responsive, strain-sensitive, promoting wound-healing, and hemostatic properties based on collagen and chitosan. ACS Biomater Sci Eng. 2020; 6(7):3855-3867. https://doi.org/10.1021/acsbiomaterials.0c00588.

[113]

Huang D, Li Y, Ma Z, et al. Collagen hydrogel viscoelasticity regulates MSC chondrogenesis in a ROCK-dependent manner. Sci Adv. 2023; 9(6):eade9497. https://doi.org/10.1126/sciadv.ade9497.

[114]

Yang J, Liu Y, He L, et al. Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration. Acta Biomater. 2018; 74:156-167. https://doi.org/10.1016/j.actbio.2018.05.005.

[115]

Bom S, Ribeiro R, Ribeiro HM, et al. On the progress of hydrogel-based 3D printing: Correlating rheological properties with printing behaviour. Int J Pharm. 2022;615:121506. https://doi.org/10.1016/j.ijpharm.2022.121506.

[116]

Gao J, Li M, Cheng J, et al. 3D-printed GelMA/PEGDA/F127DA scaffolds for bone regeneration. J Funct Biomater. 2023; 14(2):96. https://doi.org/10.3390/jfb14020096.

[117]

Zhu S, Chen P, Chen Y, et al. 3D-printed extracellular matrix/polyethylene glycol diacrylate hydrogel incorporating the anti-inflammatory phytomolecule honokiol for regeneration of osteochondral defects. Am J Sports Med. 2020; 48(11):2808-2818. https://doi.org/10.1177/0363546520941842.

[118]

Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015; 73:254-271. https://doi.org/10.1016/j.biomaterials.2015.08.045.

[119]

Chen P, Xia C, Mei S, et al. Intra-articular delivery of sinomenium encapsulated by chitosan microspheres and photo-crosslinked GelMA hydrogel ameliorates osteoarthritis by effectively regulating autophagy. Biomaterials. 2016; 81:1-13. https://doi.org/10.1016/j.biomaterials.2015.12.006.

[120]

Xia C, Chen P, Mei S, et al. Photo-crosslinked HAMA hydrogel with cordycepin encapsulated chitosan microspheres for osteoarthritis treatment. Oncotarget. 2017; 8(2):2835-2849. https://doi.org/10.18632/oncotarget.13748.

[121]

Lee HH, Kim SO, Kim GY, et al. Involvement of autophagy in cordycepin-induced apoptosis in human prostate carcinoma LNCaP cells. Environ Toxicol Pharmacol. 2014; 38(1):239-250. https://doi.org/10.1016/j.etap.2014.06.003.

[122]

Pan BS, Wang YK, Lai MS, et al. Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways. Sci Rep. 2015;5:13372. https://doi.org/10.1038/srep13372.

[123]

Ulker Z, Erkey C. An emerging platform for drug delivery: Aerogel based systems. J Control Release. 2014; 177:51-63. https://doi.org/10.1016/j.jconrel.2013.12.033.

[124]

Cordeiro R, Alvites RD, Sousa AC, et al. Cellulose-based scaffolds: a comparative study for potential application in articular cartilage. Polymers. 2023; 15(3):781. https://doi.org/10.3390/polym15030781.

[125]

Qin L, Zhao X, He Y, et al. Preparation, characterization, and in vitro evaluation of resveratrol-loaded cellulose aerogel. Materials (Basel). 2020; 13(7):1624. https://doi.org/10.3390/ma13071624.

[126]

Cui N, Xu Z, Zhao X, et al. In vivo effect of resveratrol-cellulose aerogel drug delivery system to relieve inflammation on sports osteoarthritis. Gels. 2022; 8(9):544. https://doi.org/10.3390/gels8090544.

[127]

Veres P, López-Periago AM, Lázár I, et al. Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Int J Pharm. 2015; 496(2):360-370. https://doi.org/10.1016/j.ijpharm.2015.10.045.

[128]

Qin L, He Y, Zhao X, et al. Preparation, characterization, and in vitro sustained release profile of resveratrol-loaded silica aerogel. Molecules. 2020; 25(12):2752. https://doi.org/10.3390/molecules25122752.

[129]

Feng Q, Li D, Li Q, et al. Microgel assembly: Fabrication, characteristics and application in tissue engineering and regenerative medicine. Bioact Mater. 2022; 9:105-119. https://doi.org/10.1016/j.bioactmat.2021.07.020.

[130]

Mohanty C, Sahoo SK. Curcumin and its topical formulations for wound healing applications. Drug Discov Today. 2017; 22(10):1582-1592. https://doi.org/10.1016/j.drudis.2017.07.001.

[131]

Sun Q, Yin W, Ru X, et al. Dual role of injectable curcumin-loaded microgels for efficient repair of osteoarthritic cartilage injury. Front Bioeng Biotechnol. 2022;10:994816. https://doi.org/10.3389/fbioe.2022.994816.

[132]

Li X, Dai B, Guo J, et al. Nanoparticle-cartilage interaction: pathology-based intra-articular drug delivery for osteoarthritis therapy. Nano Micro Lett. 2021; 13(1):149. https://doi.org/10.1007/s40820-021-00670-y.

[133]

Liu Y, Yang G, Jin S, et al.Development of high-drug-loading nanoparticles. Chempluschem. 2020; 85(9):2143-2157. https://doi.org/10.1002/cplu.202000496.

[134]

Koenig KM, Ong KL, Lau EC, et al. The use of hyaluronic acid and corticosteroid injections among medicare patients with knee osteoarthritis. J Arthroplasty. 2016; 31(2):351-355. https://doi.org/10.1016/j.arth.2015.08.024.

[135]

Yu H, Nguyen MH, Hadinoto K. Effects of chitosan molecular weight on the physical and dissolution characteristics of amorphous curcumin-chitosan nanoparticle complex. Drug Dev Ind Pharm. 2018; 44(1):82-88. https://doi.org/10.1080/03639045.2017.1373802.

[136]

Wang J, Wang X, Cao Y, et al. Therapeutic potential of hyaluronic acid/chitosan nanoparticles for the delivery of curcuminoid in knee osteoarthritis and an in vitro evaluation in chondrocytes. Int J Mol Med. 2018; 42(5):2604-2614. https://doi.org/10.3892/ijmm.2018.3817.

[137]

Li H, Zhuo H, Yin D, et al. Intra-articular injection of a nanosuspension of tetramethylpyrazine dihydroxynaphthalenate for stronger and longer-lasting effects against osteoarthritis. J Biomed Nanotechnol. 2021; 17(6):1199-1207. https://doi.org/10.1166/jbn.2021.3094.

[138]

Zheng Y, Xiao L, Yu C, et al. Enhanced antiarthritic efficacy by nanoparticles of (-)-epigallocatechin gallate-glucosamine-casein. J Agric Food Chem. 2019; 67(23):6476-6486. https://doi.org/10.1021/acs.jafc.9b02075.

[139]

Landewé RB, van der Heijde D. Comment on: ‘comparison of Tripterygium wilfordii Hook F with methotrexate in the treatment of active rheumatoid arthritis (TRIFRA): a randomised, controlled clinical trial’ by Qian-Wen et al. Ann Rheum Dis. 2014; 73(10):e62. https://doi.org/10.1136/annrheumdis-2014-206124.

[140]

Li J, Shen F, Guan C, et al. Activation of Nrf 2 protects against triptolide-induced hepatotoxicity. PLoS One. 2014; 9(7):e100685. https://doi.org/10.1371/journal.pone.0100685.

[141]

Li Y, Li S, Xue X, et al. Integrating systematic pharmacology-based strategy and experimental validation to explore mechanism of Tripterygium glycoside on cholangiocyte-related liver injury. Chin Herb Med. 2022; 14(4):563-575. https://doi.org/10.1016/j.chmed.2022.02.006.

[142]

Zhang L, Chang J, Zhao Y, et al. Fabrication of a triptolide-loaded and poly-γ-glutamic acid-based amphiphilic nanoparticle for the treatment of rheumatoid arthritis. Int J Nanomed. 2018; 13:2051-2064. https://doi.org/10.2147/IJN.S151233.

[143]

Chen M, He X, Wang K, et al. A pH-responsive polymer/mesoporous silica nano-container linked through an acid cleavable linker for intracellular controlled release and tumor therapy in vivo. J Mater Chem B. 2014; 2(4):428-436. https://doi.org/10.1039/C3TB21268H.

[144]

He M, Qin Z, Liang X, et al. A pH-responsive mesoporous silica nanoparticles-based drug delivery system with controlled release of andrographolide for OA treatment. Regen Biomater. 2021; 8(4):rbab020. https://doi.org/10.1093/rb/rbab020.

[145]

Pham DT, Tiyaboonchai W. Fibroin nanoparticles: a promising drug delivery system. Drug Deliv. 2020; 27(1):431-448. https://doi.org/10.1080/10717544.2020.1736208.

[146]

Crivelli B, Bari E, Perteghella S, et al. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur J Pharm Biopharm. 2019; 137:37-45. https://doi.org/10.1016/j.ejpb.2019.02.008.

[147]

Purohit D, Jalwal P, Manchanda D, et al. Nanocapsules: an emerging drug delivery system. Recent Pat Nanotechnol. 2023; 17(3):190-207. https://doi.org/10.2174/1872210516666220210113256.

[148]

Coradini K, Friedrich RB, Fonseca FN, et al. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: in vivo studies. Eur J Pharm Sci. 2015; 78:163-170. https://doi.org/10.1016/j.ejps.2015.07.012.

[149]

Andhariya JV, Burgess DJ. Recent advances in testing of microsphere drug delivery systems. Expert Opin Drug Deliv. 2016; 13(4):593-608. https://doi.org/10.1517/17425247.2016.1134484.

[150]

Wang M, Wang S, Zhang C, et al. Microstructure formation and characterization of long-acting injectable microspheres: the gateway to fully controlled drug release pattern. Int J Nanomed. 2024; 19:1571-1595. https://doi.org/10.2147/ijn.s445269.

[151]

Zhang X, Shi Y, Zhang Z, et al. Intra-articular delivery of tetramethylpyrazine microspheres with enhanced articular cavity retention for treating osteoarthritis. Asian J Pharm Sci. 2018; 13(3):229-238. https://doi.org/10.1016/j.ajps.2017.12.007.

[152]

Zhou Y, Liu SQ, Yu L, et al. Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling. Apoptosis. 2015; 20(9):1187-1199. https://doi.org/10.1007/s10495-015-1152-y.

[153]

Francis Suh JK, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000; 21(24):2589-2598. https://doi.org/10.1016/s0142-9612(00)00126-5.

[154]

Zhou Y, Liu S, Ming J, et al. Sustained release effects of berberine-loaded chitosan microspheres on in vitr ochondrocyte culture. Drug Dev Ind Pharm. 2017; 43(10):1703-1714. https://doi.org/10.1080/03639045.2017.1339076.

[155]

Ye J, Guan M, Lu Y, et al. Arbutin attenuates LPS-induced lung injury via Sirt1/Nrf2/NF-κBp65 pathway. Pulm Pharmacol Ther. 2019; 54:53-59. https://doi.org/10.1016/j.pupt.2018.12.001.

[156]

Ma C zhang D, Ma Q, et al.Arbutin inhibits inflammation and apoptosis by enhancing autophagy via SIRT1. Adv Clin Exp Med. 2021; 30(5):535-544. https://doi.org/10.17219/acem/133493.

[157]

Jin J, Liu Y, Jiang C, et al. Arbutin-modified microspheres prevent osteoarthritis progression by mobilizing local anti-inflammatory and antioxidant responses. Mater Today Bio. 2022;16:100370. https://doi.org/10.1016/j.mtbio.2022.100370.

[158]

Zhou Z, Cui J, Wu S, et al. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics. 2022; 12(11):5103-5124. https://doi.org/10.7150/thno.74548.

[159]

Tu P, Pan Y, Wu C, et al. Cartilage repair using clematis triterpenoid saponin delivery microcarrier, cultured in a microgravity bioreactor prior to application in rabbit model. ACS Biomater Sci Eng. 2022; 8(2):753-764. https://doi.org/10.1021/acsbiomaterials.1c01101.

[160]

Ratanavaraporn J, Soontornvipart K, Shuangshoti S, et al. Localized delivery of curcumin from injectable gelatin/Thai silk fibroin microspheres for anti-inflammatory treatment of osteoarthritis in a rat model. Inflammopharmacology. 2017; 25(2):211-221. https://doi.org/10.1007/s10787-017-0318-3.

[161]

Sarigol-Calamak E, Hascicek C. Tissue scaffolds as a local drug delivery system for bone regeneration. Cutting-Edge Enabling Technologies for Regenerative Medicine. Singapore: Springer Singapore, 2018:475-493. https://doi.org/10.1007/978-981-13-0950-2_25.

[162]

Mu P, Feng J, Hu Y, et al. Botanical drug extracts combined with biomaterial carriers for osteoarthritis cartilage degeneration treatment: a review of 10 years of research. Front Pharmacol. 2022;12:789311. https://doi.org/10.3389/fphar.2021.789311.

[163]

Li M, Yuan Z, Yu F, et al. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect. Artif Cells Nanomed Biotechnol. 2018; 46(sup1):336-346. https://doi.org/10.1080/21691401.2017.1423498.

[164]

Yu F, Li M, Yuan Z, et al. Mechanism research on a bioactive resveratrol-PLA-gelatin porous nano-scaffold in promoting the repair of cartilage defect. Int J Nanomed. 2018; 13:7845-7858. https://doi.org/10.2147/ijn.s181855.

[165]

Yan W, Xu X, Xu Q, et al. An injectable hydrogel scaffold with kartogenin-encapsulated nanoparticles for porcine cartilage regeneration: a 12-month follow-up study. Am J Sports Med. 2020; 48(13):3233-3244. https://doi.org/10.1177/0363546520957346.

[166]

Shi D, Xu X, Ye Y, et al. Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration. ACS Nano. 2016; 10(1):1292-1299. https://doi.org/10.1021/acsnano.5b06663.

[167]

Zheng L, Li D, Wang W, et al. Bilayered scaffold prepared from a kartogenin-loaded hydrogel and BMP-2-derived peptide-loaded porous nanofibrous scaffold for osteochondral defect repair. ACS Biomater Sci Eng. 2019; 5(9):4564-4573. https://doi.org/10.1021/acsbiomaterials.9b00513.

[168]

Aulin C, Bergman K, Jensen-Waern M, et al. In situ cross-linkable hyaluronan hydrogel enhances chondrogenesis. J Tissue Eng Regen Med. 2011; 5(8):e188-e196. https://doi.org/10.1002/term.415.

[169]

Zimmermann H, Shirley SG, Zimmermann U. Alginate-based encapsulation of cells: Past, present, and future. Curr Diabetes Rep. 2007; 7(4):314-320. https://doi.org/10.1007/s11892-007-0051-1.

[170]

Chen P, Xia C, Mo J, et al. Interpenetrating polymer network scaffold of sodium hyaluronate and sodium alginate combined with berberine for osteochondral defect regeneration. Mater Sci Eng C. 2018; 91:190-200. https://doi.org/10.1016/j.msec.2018.05.034.

[171]

Wang Y, Chen S, Du K, et al. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis. J Ethnopharmacol. 2021;279:114368. https://doi.org/10.1016/j.jep.2021.114368.

PDF (17776KB)

98

Accesses

0

Citation

Detail

Sections
Recommended

/