Protective mechanisms of Qingda Granule in hypertensive kidney injury: focus on ERK/RSK1-mediated mitochondrial protection

Shan Lin , Meiling Wang , Enqi Su , Lin Yao , Qihang Ding , Jiankang Zhang , Peizhi Jia , Dawei Lian , Ling Zhang , Qiaoyan Cai , Chunyu Zhao , Yaoyao Xu , Daxin Chen , Jianfeng Chu , Jun Peng

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) : 100008 -100008.

PDF (22439KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) :100008 -100008. DOI: 10.1016/j.cjnm.2025.100008
Original article
research-article

Protective mechanisms of Qingda Granule in hypertensive kidney injury: focus on ERK/RSK1-mediated mitochondrial protection

Author information +
History +
PDF (22439KB)

Abstract

Hypertension represents a significant chronic non-infectious disease in China, where Qingda Granule (QDG) has traditionally been employed for its management. However, the mechanisms underlying QDG’s kidney protective effects remain incompletely understood. This study investigates QDG’s role in ameliorating hypertensive kidney injury (KI) and elucidates the associated mechanisms. Network analysis identified potential therapeutic targets related to mitochondrial function and the extracellular signal-regulated kinase (ERK) cascade. Ribonucleic acid (RNA) sequencing revealed differentially expressed genes (DEGs) in hypertensive mouse kidneys, which were enriched in mitochondrial-related functions and normalized by QDG treatment. QDG attenuated angiotensin II (Ang II)-induced blood pressure elevation and enhanced renal artery flow. Both cellular and animal experiments demonstrated that QDG inhibits the ERK/ribosomal S6 kinase 1 (RSK1) signaling axis, thereby preventing Ang II-induced mitochondrial damage and renal cell apoptosis. ERK pathway inhibitors confirmed QDG’s mechanism of action through the ERK/RSK1 pathway. These findings indicate that QDG ameliorates hypertensive KI by preserving mitochondrial function through modulation of the ERK/RSK1 network, presenting a novel therapeutic approach for managing hypertensive KI in clinical practice.

Keywords

Qingda Granule / Hypertensive kidney injury / Network pharmacology / Mitochondrial damage / ERK/RSK1 pathway

Cite this article

Download citation ▾
Shan Lin, Meiling Wang, Enqi Su, Lin Yao, Qihang Ding, Jiankang Zhang, Peizhi Jia, Dawei Lian, Ling Zhang, Qiaoyan Cai, Chunyu Zhao, Yaoyao Xu, Daxin Chen, Jianfeng Chu, Jun Peng. Protective mechanisms of Qingda Granule in hypertensive kidney injury: focus on ERK/RSK1-mediated mitochondrial protection. Chinese Journal of Natural Medicines, 2025, 23(12): 100008-100008 DOI:10.1016/j.cjnm.2025.100008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Piskorz D. Hypertensive mediated organ damage and hypertension management. How to assess beneficial effects of antihypertensive treatments?. High Blood Press Cardiovasc Prev. 2020; 27(1):9-17. https://doi.org/10.1007/s40292-020-00361-6.

[2]

Wang Z, Ma L, Liu M, et al. Summary of the 2022 report on cardiovascular health and diseases in China. Chin Med J. 2023; 136(24):2899-2908. https://doi.org/10.1097/cm9.0000000000002927.

[3]

Santos ISR, Martin-Pastor M, Tavares AG Jr, et al. Metabolomic profile and its correlation with the plasmatic levels of losartan, EXP3174 and blood pressure control in hypertensive and chronic kidney disease patients. Int J Mol Sci. 2023; 24(12):9832. https://doi.org/10.3390/ijms24129832.

[4]

Hao HF, Liu LM, Pan CS, et al. Rhynchophylline ameliorates endothelial dysfunction via src-PI3K/Akt-eNOS cascade in the cultured intrarenal arteries of spontaneous hypertensive rats. Front Physiol. 2017;8:928. https://doi.org/10.3389/fphys.2017.00928.

[5]

Li J. Traditional Chinese medicine in treating hypertension. Circ Cardiovasc Qual Outcomes. 2022; 15(3):e008723. https://doi.org/10.1161/circoutcomes.121.008723.

[6]

Huang W, Liu W, Chu J. Clinical observation of Qingda Granule on hypertension 1 of liver-fire exuberance syndrome. Shanxi J TCM. 2020; 36(10):14-17.

[7]

Long L, Zhang X, Wen Y, et al. Qingda Granule attenuates angiotensin II-induced renal apoptosis and activation of the p53 pathway. Front Pharmacol. 2022;12:770863. https://doi.org/10.3389/fphar.2021.770863.

[8]

Yang M, Zhou X, Peng M et al. Study on the action of Qingda Granule to alleviate Ang II induced renal damage in hypertensive mice. J Trad Chin Med. 2019(18):65-69.

[9]

Cheng CY, Kao ST, Lee YC. Angelica sinensis extract protects against ischemia-reperfusion injury in the hippocampus by activating p38 MAPK-mediated p90RSK/p-Bad and p90RSK/CREB/BDNF signaling after transient global cerebral ischemia in rats. J Ethnopharmacol. 2020;252:112612. https://doi.org/10.1016/j.jep.2020.112612.

[10]

Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene. 2007; 26(22):3100-3112. https://doi.org/10.1038/sj.onc.1210392.

[11]

Koh PO. Ferulic acid attenuates the down-regulation of MEK/ERK/p90RSK signaling pathway in focal cerebral ischemic injury. Neurosci Lett. 2015; 588:18-23. https://doi.org/10.1016/j.neulet.2014.12.047.

[12]

Liu TT, Hao Q, Zhang Y, et al. Effects of microRNA-133b on retinal vascular endothelial cell proliferation and apoptosis through angiotensinogen-mediated angiotensin II- extracellular signal-regulated kinase 1/2 signalling pathway in rats with diabetic retinopathy. Acta Ophthalmol. 2018; 96(5):e626-e635. https://doi.org/10.1111/aos.13715.

[13]

Eirin A, Lerman A, Lerman LO. Mitochondria: a pathogenic paradigm in hypertensive renal disease. Hypertension. 2015; 65(2):264-270. https://doi.org/10.1161/hypertensionaha.114.04598.

[14]

Ho HJ, Shirakawa H. Oxidative stress and mitochondrial dysfunction in chronic kidney disease. Cells. 2023; 12(1):88. https://doi.org/10.3390/cells12010088.

[15]

Chen D, Long L, Lin S, et al. Qingda granule alleviate angiotensin ⅱ-induced hypertensive renal injury by suppressing oxidative stress and inflammation through NOX1 and NF-κB pathways. Biomed Pharmacother. 2022;153:113407. https://doi.org/10.1016/j.biopha.2022.113407.

[16]

Kim SJ, Mesquita FCP, Hochman-Mendez C.New biomarkers for cardiovascular disease. Tex Heart Inst J. 2023; 50(5):e238178. https://doi.org/10.14503/thij-23-8178.

[17]

Yan MT, Chao CT, Lin SH. Chronic kidney disease: strategies to retard progression. Int J Mol Sci. 2021; 22(18):10084. https://doi.org/10.3390/ijms221810084.

[18]

Bi Q, Kuang Z, EH, et al. Research on early warning of renal damage in hypertensive patients based on the stacking strategy. BMC Med Inform Decis Mak. 2022; 22(1):212. https://doi.org/10.1186/s12911-022-01889-4.

[19]

Hao P, Jiang F, Cheng J, et al. Traditional Chinese medicine for cardiovascular disease. J Am Coll Cardiol. 2017; 69(24):2952-2966. https://doi.org/10.1016/j.jacc.2017.04.041.

[20]

Wu X, Shen A, Bao L, et al. Qingda granules attenuate hypertensive cardiac remodeling and inflammation in spontaneously hypertensive rats. Biomed Pharmacother. 2020;129:110367. https://doi.org/10.1016/j.biopha.2020.110367.

[21]

Bonegio R, Lieberthal W. Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens. 2002; 11(3):301-308. https://doi.org/10.1097/00041552-200205000-00006.

[22]

Zou YR, Zhang J, Wang J, et al. Erythropoietin receptor activation protects the kidney from ischemia/reperfusion-induced apoptosis by activating ERK/p53 signal pathway. Transplant Proc. 2016; 48(1):217-221. https://doi.org/10.1016/j.transproceed.2016.01.009.

[23]

Patel S, Rauf A, Khan H, et al. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother. 2017; 94:317-325. https://doi.org/10.1016/j.biopha.2017.07.091.

[24]

Mennuni S, Rubattu S, Pierelli G, et al. Hypertension and kidneys: unraveling complex molecular mechanisms underlying hypertensive renal damage. J Hum Hypertens. 2014; 28(2):74-79. https://doi.org/10.1038/jhh.2013.55.

[25]

Al Raisi SI, Pouliopoulos J, Swinnen J, et al. Renal artery denervation in resistant hypertension: the good, the bad and the future. Heart Lung Circ. 2020; 29(1):94-101. https://doi.org/10.1016/j.hlc.2019.06.723.

[26]

Liao X, Han Y, He Y, et al. Natural compounds targeting mitochondrial dysfunction: emerging therapeutics for target organ damage in hypertension. Front Pharmacol. 2023;14:1209890. https://doi.org/10.3389/fphar.2023.1209890.

[27]

Vringer E, Tait SWG.Mitochondria and cell death-associated inflammation. Cell Death Differ. 2023; 30(2):304-312. https://doi.org/10.1038/s41418-022-01094-w.

[28]

Quadri MM, Fatima SS, Che RC, et al. Mitochondria and renal fibrosis. Renal Fibrosis: Mechanisms and Therapies. Singapore: Springer Singapore, 2019:501-524. https://doi.org/10.1007/978-981-13-8871-2_25.

[29]

Liu T, Han Y, Zhou T, et al. Mechanisms of ROS-induced mitochondria-dependent apoptosis underlying liquid storage of goat spermatozoa. Aging. 2019; 11(18):7880-7898. https://doi.org/10.18632/aging.102295.

[30]

Li C, Matavelli LC, Akhtar S, et al. (Pro)renin receptor contributes to renal mitochondria dysfunction, apoptosis and fibrosis in diabetic mice. Sci Rep. 2019;9:11667. https://doi.org/10.1038/s41598-019-47055-1.

[31]

Peng J, Peng C, Wang L, et al. Endoplasmic reticulum-mitochondria coupling attenuates vanadium-induced apoptosis via IP3R in duck renal tubular epithelial cells. J Inorg Biochem. 2022;232:111809. https://doi.org/10.1016/j.jinorgbio.2022.111809.

[32]

Hafeez S, Urooj M, Saleem S, et al. BAD, a proapoptotic protein, escapes ERK/RSK phosphorylation in deguelin and siRNA-treated HeLa cells. PLoS One. 2016; 11(1):e0145780. https://doi.org/10.1371/journal.pone.0145780.

[33]

Zhuang S, Kinsey GR, Yan Y, et al. Extracellular signal-regulated kinase activation mediates mitochondrial dysfunction and necrosis induced by hydrogen peroxide in renal proximal tubular cells. J Pharmacol Exp Ther. 2008; 325(3):732-740. https://doi.org/10.1124/jpet.108.136358.

[34]

Chang CY, Shen CY, Kang CK, et al. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways. Toxicol Appl Pharmacol. 2014; 279(3):351-363. https://doi.org/10.1016/j.taap.2014.06.029.

[35]

Wu Q, Li W, Zhao J, et al. Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother. 2021;137:111308. https://doi.org/10.1016/j.biopha.2021.111308.

[36]

Dehan E, Bassermann F, Guardavaccaro D, et al. βTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis. Mol Cell. 2009; 33(1):109-116. https://doi.org/10.1016/j.molcel.2008.12.020.

[37]

Yu X, Tao W, Jiang F, et al.Celastrol attenuates hypertension-induced inflammation and oxidative stress in vascular smooth muscle cells via induction of heme oxygenase-1. Am J Hypertens. 2010; 23(8):895-903. https://doi.org/10.1038/ajh.2010.75.

[38]

Wang Z, Bao X, Song L, et al. Role of miR-106-mediated mitogen-activated protein kinase signaling pathway in oxidative stress injury and inflammatory infiltration in the liver of the mouse with gestational hypertension. J Cell Biochem. 2021; 122(9):958-968. https://doi.org/10.1002/jcb.29552.

PDF (22439KB)

111

Accesses

0

Citation

Detail

Sections
Recommended

/