AMPK regulates the anti-pulmonary fibrosis effects of tracheloside

Siyuan Li , Rui Qian , Weixi Xie , Miao Lin , Xiaoting Huang , Lang Deng , Dayan Xiong , Wei Liu , Siyuan Tang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) : 100005 -100005.

PDF (21922KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (12) :100005 -100005. DOI: 10.1016/j.cjnm.2025.100005
Original article
research-article

AMPK regulates the anti-pulmonary fibrosis effects of tracheloside

Author information +
History +
PDF (21922KB)

Abstract

Idiopathic pulmonary fibrosis (IPF) presents limited therapeutic options that often involve severe side effects, making the development of innovative treatments essential. While tracheloside (TCL) demonstrates various medicinal properties, its mechanism of action remains incompletely understood. This study examines TCL’s effects and mechanisms on bleomycin (BLM)-induced pulmonary fibrosis in mice. A BLM-induced pulmonary fibrosis model was established in vivo to assess TCL’s anti-fibrotic and anti-oxidative properties. In vitro studies utilized transforming growth factor-β (TGF-β) and matrix stiffness-induced myofibroblast differentiation models to investigate TCL’s mechanism. The results demonstrated that TCL inhibited BLM-induced pulmonary fibrosis. In vitro experiments revealed that TCL activated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), suppressed TGF-β or matrix stiffness-induced myofibroblast differentiation, decreased nicotinamide adenine dinucleotide phosphate oxidase isoform 4 (NOX4) expression, enhanced antioxidant enzyme expression, and mitigated oxidative stress. Additionally, activated AMPK inhibited NOX4 expression and, notably, reduced NOX4 activation through competitive binding to p22 phox. The findings indicate that TCL alleviates TGF-β or matrix stiffness-induced myofibroblast differentiation and oxidative stress via the AMPK/NOX4 signaling pathway, thereby exhibiting anti-fibrotic and anti-oxidative effects. This research presents novel insights into AMPK’s regulation of NOX4.

Keywords

Tracheloside / AMPK / Oxidative stress / Pulmonary fibrosis / NOX4

Cite this article

Download citation ▾
Siyuan Li, Rui Qian, Weixi Xie, Miao Lin, Xiaoting Huang, Lang Deng, Dayan Xiong, Wei Liu, Siyuan Tang. AMPK regulates the anti-pulmonary fibrosis effects of tracheloside. Chinese Journal of Natural Medicines, 2025, 23(12): 100005-100005 DOI:10.1016/j.cjnm.2025.100005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wei P, Xie Y, Abel PW, et al. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis. 2019; 10(9):670. https://doi.org/10.1038/s41419-019-1873-x.

[2]

Upagupta C, Shimbori C, Alsilmi R, et al.Matrix abnormalities in pulmonary fibrosis. Eur Respir Rev. 2018; 27(148):180033. https://doi.org/10.1183/16000617.0033-2018.

[3]

Fierro-Fernández M, Miguel V, Lamas S.Role of redoximiRs in fibrogenesis. Redox Biol. 2016; 7:58-67. https://doi.org/10.1016/j.redox.2015.11.006.

[4]

Siani A, Tirelli N. Myofibroblast differentiation: main features, biomedical relevance, and the role of reactive oxygen species. Antioxid Redox Signal. 2014; 21(5):768-785. https://doi.org/10.1089/ars.2013.5724.

[5]

Liu RM, Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol. 2015; 6:565-577. https://doi.org/10.1016/j.redox.2015.09.009.

[6]

Yoon YS, Lee JH, Hwang SC, et al. TGF β1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells. Oncogene. 2005; 24(11):1895-1903. https://doi.org/10.1038/sj.onc.1208262.

[7]

Cucoranu I, Clempus R, Dikalova A, et al. NAD(P)H oxidase 4 mediates transforming growth factor-β1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res. 2005; 97(9):900-907. https://doi.org/10.1161/01.res.0000187457.24338.3d.

[8]

Isoyama T, Murayama A, Nomoto A, et al. Nuclear import of the yeast AP-1-like transcription factor Yap1p is mediated by transport receptor Pse1p, and this import step is not affected by oxidative stress. J Biol Chem. 2001; 276(24):21863-21869. https://doi.org/10.1074/jbc.m009258200.

[9]

Wood MJ, Andrade EC, Storz G. The redox domain of the Yap1p transcription factor contains two disulfide bonds. Biochemistry. 2003; 42(41):11982-11991. https://doi.org/10.1021/bi035003d.

[10]

Guo S, Bai X, Shi S, et al. Multi-target tracheloside and doxorubicin combined treatment of lung adenocarcinoma. Biomed Pharmacother. 2022;153:113392. https://doi.org/10.1016/j.biopha.2022.113392.

[11]

Li XL, Zhang HZ, Zhang P, et al.Chemical components of Trachelospelmun jasminoides (Lindl.) Lem. var. heterophyllum Tsiang. Chin J Chin Mat Med. 1994; 19(4): 231-232, 256-237.

[12]

Wang XT, Liu HL, Yu X, et al. Chinese medicine Yu-Ping-Feng-San attenuates allergic inflammation by regulating epithelial derived pro-allergic cytokines. Chin J Nat Med. 2019; 17(7):525-534. https://doi.org/10.1016/S1875-5364(19)30074-3.

[13]

Shin MK, Jeon YD, Hong SH, et al. In vivo and in vitro effects of tracheloside on colorectal cancer cell proliferation and metastasis. Antioxidants. 2021; 10(4):513. https://doi.org/10.3390/antiox10040513.

[14]

Yoo HH, Park JH, Kwon SW. An anti-estrogenic lignan glycoside, tracheloside, from seeds of Carthamus tinctorius. Biosci Biotechnol Biochem. 2006; 70(11):2783-2785. https://doi.org/10.1271/bbb.60290.

[15]

Yang XY, Wu DD, Zhuang CC, et al. Anti-osteoporosis effects of mammalian lignans and their precursors from flaxseed and safflower seed using zebrafish model. J Food Sci. 2023; 88(12):5278-5290. https://doi.org/10.1111/1750-3841.16816.

[16]

Kolb P, Upagupta C, Vierhout M, et al. The importance of interventional timing in the bleomycin model of pulmonary fibrosis. Eur Respir J. 2020; 55(6):1901105. https://doi.org/10.1183/13993003.01105-2019.

[17]

Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018; 19(2):121-135. https://doi.org/10.1038/nrm.2017.95.

[18]

Rangarajan S, Bone NB, Zmijewska AA, et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018; 24(8):1121-1127. https://doi.org/10.1038/s41591-018-0087-6.

[19]

Della Latta V, Cecchettini A, Del Ry S, et al. Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions. Pharmacol Res. 2015; 97:122-130. https://doi.org/10.1016/j.phrs.2015.04.012.

[20]

Larson-Casey JL, He C, Carter AB. Mitochondrial quality control in pulmonary fibrosis. Redox Biol. 2020;33:101426. https://doi.org/10.1016/j.redox.2020.101426.

[21]

Ornatowski W, Lu Q, Yegambaram M, et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol. 2020;36:101679. https://doi.org/10.1016/j.redox.2020.101679.

[22]

Otoupalova E, Smith S, Cheng G, et al.Oxidative stress in pulmonary fibrosis. Compr Physiol. 2020; 10(2):509-547. https://doi.org/10.1002/j.2040-4603.2020.tb00120.x.

[23]

Choi SM, Lee PH, An MH, et al. N-acetylcysteine decreases lung inflammation and fibrosis by modulating ROS and Nrf2 in mice model exposed to particulate matter. Immunopharmacol Immunotoxicol. 2022; 44(6):832-837. https://doi.org/10.1080/08923973.2022.2086138.

[24]

Zhao Y, Hu X, Liu Y, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017; 16(1):79. https://doi.org/10.1186/s12943-017-0648-1.

[25]

Kheirollahi V, Wasnick RM, Biasin V, et al. Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nat Commun. 2019;10:2987. https://doi.org/10.1038/s41467-019-10839-0.

[26]

Zheng L, Fang S, Chen A, et al. Piperlongumine synergistically enhances the antitumour activity of sorafenib by mediating ROS-AMPK activation and targeting CPSF7 in liver cancer. Pharmacol Res. 2022;177:106140. https://doi.org/10.1016/j.phrs.2022.106140.

[27]

Chen Y, Ge Z, Huang S, et al. Delphinidin attenuates pathological cardiac hypertrophy via the AMPK/NOX/MAPK signaling pathway. Aging. 2020; 12(6):5362-5383. https://doi.org/10.18632/aging.102956.

[28]

Li W, Cheng F, Songyang YY, et al. CTRP1 attenuates UUO-induced renal fibrosis via AMPK/NOX4 pathway in mice. Curr Med Sci. 2020; 40(1):48-54. https://doi.org/10.1007/s11596-020-2145-9.

[29]

Wang X, Chen X, Zhou W, et al. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B. 2022; 12(2):708-722. https://doi.org/10.1016/j.apsb.2021.10.005.

[30]

Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017; 66(6):789-800. https://doi.org/10.1016/j.molcel.2017.05.032.

PDF (21922KB)

121

Accesses

0

Citation

Detail

Sections
Recommended

/