Identification and screening of bioactive peptides against nephropathy derived from Mantidis Oötheca based on complement C3 inhibition

Shanshan Li , Peiling Liu , Tiantian Zhang , Shujun Jiang , Faren Xie , Yanliang Zhang

Chinese Journal of Natural Medicines ›› 2026, Vol. 24 ›› Issue (1) : 100 -111.

PDF (18344KB)
Chinese Journal of Natural Medicines ›› 2026, Vol. 24 ›› Issue (1) :100 -111. DOI: 10.1016/S1875-5364(26)61080-1
Original article
research-article

Identification and screening of bioactive peptides against nephropathy derived from Mantidis Oötheca based on complement C3 inhibition

Author information +
History +
PDF (18344KB)

Abstract

Insects represent emerging sources of bioactive peptides and functional materials. Mantidis Oötheca (Sang-Piao-Xiao in Chinese, SPX) serves as an insect-derived medicine for treating kidney disease. This study demonstrated that supernatant (SPX) improved kidney function in adriamycin (ADR)-induced nephropathy mice model. Transcriptomic analysis revealed that SPX inhibited complement activation by targeting the MASP1-C3/C3a receptor (C3aR) pathway. Peptidomic analysis identified 304 peptides from SPX, with 49 peptides selected for evaluation using prediction tools and molecular docking with complement core protein C3. Three peptides (PMGFPFDR, FNDPK, AAQFFNR) exhibiting docking scores below −8.0 were synthesized to verify complement inhibition and anti-fibrotic activities. The synthetic peptide AAQFFNR demonstrated complement inhibitory activity, with an inhibitory complement hemolytic 50% (ICH50) value of 24.54 μmol·L−1, and exhibited superior protective effects in ADR-induced HK-2 cells. Surface plasmon resonance (SPR) assay revealed direct interaction between AAQFFNR and complement C3 with Kd value of 16.8 μmol·L−1. The reno-protective effect of AAQFFNR was subsequently verified in ADR-induced mice. This research provides initial evidence that complement C3-inhibiting peptides from insects demonstrate potential in preventing nephropathy through in silico and in vivo validation approaches.

Keywords

Mantidis Oötheca / Nephropathy / Complement C3 / Peptide screening

Cite this article

Download citation ▾
Shanshan Li, Peiling Liu, Tiantian Zhang, Shujun Jiang, Faren Xie, Yanliang Zhang. Identification and screening of bioactive peptides against nephropathy derived from Mantidis Oötheca based on complement C3 inhibition. Chinese Journal of Natural Medicines, 2026, 24(1): 100-111 DOI:10.1016/S1875-5364(26)61080-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GBD Chronic Kidney Disease Collaboration.Global, regional, and national burden of chronic kidney disease, 1990- 2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020; 395(10225):709-733. https://doi.org/10.1016/s0140-6736(20)30045-3.

[2]

Eddy AA, Neilson EG.Chronic kidney disease progression. J Am Soc Nephrol. 2006; 17(11):2964-2966. https://doi.org/10.1681/ASN.2006070704.

[3]

Romagnani P, Remuzzi G, Glassock R, et al.Chronic kidney disease. Nat Rev Dis Primers. 2017;3:17088. https://doi.org/10.1038/nrdp.2017.88.

[4]

Fearn A, Sheerin NS. Complement activation in progressive renal disease. World J Nephrol. 2015; 4(1):31-40. https://doi.org/10.5527/wjn.v4.i1.31.

[5]

Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol. 2016; 12(7):383-401. https://doi.org/10.1038/nrneph.2016.70.

[6]

Chen Y, Lin L, Rao S, et al. Complement C3 mediates podocyte injury through TLR4/NFκB-P65 signaling during ischemia-reperfusion acute kidney injury and post-injury fibrosis. Eur J Med Res. 2023; 28(1):135. https://doi.org/10.1186/s40001-023-01054-1.

[7]

Gao S, Cui Z, Zhao MH. The complement C3a and C3a receptor pathway in kidney diseases. Front Immunol. 2020;11:1875. https://doi.org/10.3389/fimmu.2020.01875.

[8]

Ruseva MM, Peng T, Lasaro MA, et al. Efficacy of targeted complement inhibition in experimental C3 glomerulopathy. J Am Soc Nephrol. 2016; 27(2):405-416. https://doi.org/10.1681/ASN.2014121195.

[9]

Kiss MG, Papac-Miličević N, Porsch F, et al. Cell-autonomous regulation of complement C3 by factor H limits macrophage efferocytosis and exacerbates atherosclerosis. Immunity. 2023; 56(8):1809-1824.e10. https://doi.org/10.1016/j.immuni.2023.06.026.

[10]

Xu XD, Qu S, Zhang CM, et al.CD8 T cell-derived exosomal miR-186-5p elicits renal inflammation via activating tubular TLR7/8 signal axis. Adv Sci. 2023; 10(25):2301492. https://doi.org/10.1002/advs.202301492.

[11]

Chinese Pharmacopoeia (Part I). China: Medical Science Press. 2020.

[12]

Song JH, Cha JM, Moon BC, et al. Mantidis oötheca (mantis egg case) original species identification via morphological analysis and DNA barcoding. J Ethnopharmacol. 2020;252:112574. https://doi.org/10.1016/j.jep.2020.112574.

[13]

Ryu SM, Nam HH, Kim JS, et al. Chemical constituents of the egg cases of Tenodera angustipennis (Mantidis ootheca) with intracellular reactive oxygen species scavenging activity. Biomolecules. 2021; 11(4):556. https://doi.org/10.3390/biom11040556.

[14]

Zand AM, Saadati M, Zargan J. Active components of mantis eggs and their immunomodulatory effect in a mouse model. Biologia. 2019; 74(1):45-51. https://doi.org/10.2478/s11756-018-0111-9.

[15]

Walker AA, Weisman S, Kameda T, et al. Natural templates for coiled-coil biomaterials from praying mantis egg cases. Biomacromolecules. 2012; 13(12):4264-4272. https://doi.org/10.1021/bm301570v.

[16]

Wang J, Guo X, Zou Z, et al. Ootheca mantidis mitigates renal fibrosis in mice by the suppression of apoptosis via increasing the gut microbe Akkermansia muciniphila and modulating glutamine metabolism. Biomed Pharmacother. 2023;166:115434. https://doi.org/10.1016/j.biopha.2023.115434.

[17]

Hahn BS, Cho SY, Wu SJ, et al. Purification and characterization of a serine protease with fibrinolytic activity from Tenodera sinensis (praying mantis). Biochim Biophys Acta. 1999; 1430(2):376-386. https://doi.org/10.1016/s0167-4838(99)00024-2.

[18]

Hahn BS, Cho SY, Ahn MY, et al. Purification and characterization of a plasmin-like protease from Tenodera sinensis (Chinese mantis). Insect Biochem Mol Biol. 2001; 31(6-7):573-581. https://doi.org/10.1016/s0965-1748(00)00162-4.

[19]

Purohit K, Reddy N, Sunna A. Exploring the potential of bioactive peptides: from natural sources to therapeutics. Int J Mol Sci. 2024; 25(3):1391. https://doi.org/10.3390/ijms25031391.

[20]

Maes E, Oeyen E, Boonen K, et al. The challenges of peptidomics in complementing proteomics in a clinical context. Mass Spectrom Rev. 2019; 38(3):253-264. https://doi.org/10.1002/mas.21581.

[21]

Wang Y, Wang YP, Tay YC, et al. Progressive adriamycin nephropathy in mice: sequence of histologic and immunohistochemical events. Kidney Int. 2000; 58(4):1797-1804. https://doi.org/10.1046/j.1523-1755.2000.00342.x.

[22]

Zhang M, Zhu L, Zhang H, et al. Virtual screening of GLP-1-secreting peptides from Pea protein hydrolysates via peptide transporter 1 (PepT1) activation-based molecular docking. J Agric Food Chem. 2024; 72(24):13646-13653. https://doi.org/10.1021/acs.jafc.4c00999.

[23]

Tremblay TL, Hill JJ. Adding polyvinylpyrrolidone to low level protein samples significantly improves peptide recovery in FASP digests: an inexpensive and simple modification to the FASP protocol. J Proteomics. 2021;230:104000. https://doi.org/10.1016/j.jprot.2020.104000.

[24]

Di H, Zhang Y, Chen D. An anti-complementary polysaccharide from the roots of Bupleurum chinense. Int J Biol Macromol. 2013; 58:179-185. https://doi.org/10.1016/j.ijbiomac.2013.03.043.

[25]

Liu X, Tan S, Liu H, et al. Hepatocyte-derived MASP1-enriched small extracellular vesicles activate HSCs to promote liver fibrosis. Hepatology. 2023; 77(4):1181-1197. https://doi.org/10.1002/hep.32662.

[26]

Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et al. Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 2020; 16(5):269-288. https://doi.org/10.1038/s41581-019-0248-y.

[27]

Chevalier RL. Evolution, kidney development, and chronic kidney disease. Semin Cell Dev Biol. 2019; 91:119-131. https://doi.org/10.1016/j.semcdb.2018.05.024.

[28]

Perazella MA. Drug use and nephrotoxicity in the intensive care unit. Kidney Int. 2012; 81(12):1172-1178. https://doi.org/10.1038/ki.2010.475.

[29]

Muttenthaler M, King GF, Adams DJ, et al.Trends in peptide drug discovery. Nat Rev Drug Discov. 2021; 20(4):309-325. https://doi.org/10.1038/s41573-020-00135-8.

[30]

Craik DJ, Fairlie DP, Liras S, et al.The future of peptide-based drugs. Chem Biol Drug Des. 2013; 81(1):136-147. https://doi.org/10.1111/cbdd.12055.

[31]

Geng Q, Sun X, Gong T, et al. Peptide-drug conjugate linked via a disulfide bond for kidney targeted drug delivery. Bioconjug Chem. 2012; 23(6):1200-1210. https://doi.org/10.1021/bc300020f.

[32]

Lee VW, Harris DC. Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology (Carlton). 2011; 16(1):30-38. https://doi.org/10.1111/j.1440-1797.2010.01383.x.

[33]

Li S, Yang Q, Chen F, et al. The antifibrotic effect of pheretima protein is mediated by the TGF-β1/Smad2/3 pathway and attenuates inflammation in bleomycin-induced idiopathic pulmonary fibrosis. J Ethnopharmacol. 2022;286:114901. https://doi.org/10.1016/j.jep.2021.114901.

[34]

Ferenbach DA, Bonventre JV. Kidney tubules: intertubular, vascular, and glomerular cross-talk. Curr Opin Nephrol Hypertens. 2016; 25(3):194-202. https://doi.org/10.1097/MNH.0000000000000218.

[35]

Tan RJ, Li Y, Rush BM, et al.Tubular injury triggers podocyte dysfunction by β-catenin-driven release of MMP-7. JCI Insight. 2019; 4(24):e122399. https://doi.org/10.1172/jci.insight.122399.

[36]

He LY, Niu SQ, Yang CX, et al. Cordyceps proteins alleviate lupus nephritis through modulation of the STAT3/mTOR/NF-κB signaling pathway. J Ethnopharmacol. 2023;309:116284. https://doi.org/10.1016/j.jep.2023.116284.

[37]

Tao X, Li J, He J, et al.Pinellia ternata (Thunb.) Breit. attenuates the allergic airway inflammation of cold asthma via inhibiting the activation of TLR4-medicated NF-κB and NLRP3 signaling pathway. J Ethnopharmacol. 2023;315:116720. https://doi.org/10.1016/j.jep.2023.116720.

[38]

Zhang Y, Li Z, Wu H, et al. Esculetin alleviates murine lupus nephritis by inhibiting complement activation and enhancing Nrf2 signaling pathway. J Ethnopharmacol. 2022;288:115004. https://doi.org/10.1016/j.jep.2022.115004.

[39]

Gao S, Cui Z, Zhao MH. Complement C3a and C3a receptor activation mediates podocyte injuries in the mechanism of primary membranous nephropathy. J Am Soc Nephrol. 2022; 33(9):1742-1756. https://doi.org/10.1681/ASN.2021101384.

[40]

Vivarelli M, Barratt J, Beck LH, et al. The role of complement in kidney disease: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2024; 106(3):369-391. https://doi.org/10.1016/j.kint.2024.05.015.

[41]

Xu L, Xu H, Chen S, et al. Inhibition of complement C3 signaling ameliorates locomotor and visual dysfunction in autoimmune inflammatory diseases. Mol Ther. 2023; 31(9):2715-2733. https://doi.org/10.1016/j.ymthe.2023.07.017.

[42]

Zhang Q, Bin S, Budge K, et al. C3aR-initiated signaling is a critical mechanism of podocyte injury in membranous nephropathy. JCI Insight. 2024; 9(4):e172976. https://doi.org/10.1172/jci.insight.172976.

[43]

Sheerm NS, Risley P, Abe K, et al. Synthesis of complement protein C3 in the kidney is an important mediator of local tissue injury. FASEB J. 2008; 22(4):1065-1072. https://doi.org/10.1096/fj.07-8719com.

[44]

Adermann K, John H, Ständker L, et al. Exploiting natural peptide diversity: novel research tools and drug leads. Curr Opin Biotechnol. 2004; 15(6):599-606. https://doi.org/10.1016/j.copbio.2004.10.007.

[45]

Dallas DC, Guerrero A, Parker EA, et al. Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics. 2015; 15(5-6):1026-1038. https://doi.org/10.1002/pmic.201400310.

[46]

Noh S, Kim WJ, Cha JM, et al. Rapid diagnostic PCR assay method for species identification of Mantidis ootheca (Sangpiaoxiao) based on cytochrom C oxidase I (COI) barcode analysis. Int J Mol Sci. 2024; 25(18):10224. https://doi.org/10.3390/ijms251810224.

[47]

Forneris F, Ricklin D, Wu J, et al. Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science. 2010; 330(6012):1816-1820. https://doi.org/10.1126/science.1195821.

[48]

Janssen BJC, Huizinga EG, Raaijmakers HCA, et al. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature. 2005; 437(7058):505-511. https://doi.org/10.1038/nature04005.

[49]

Lamers C, Xue X, Smieško M, et al. Insight into mode-of-action and structural determinants of the compstatin family of clinical complement inhibitors. Nat Commun. 2022; 13(1):5519. https://doi.org/10.1038/s41467-022-33003-7.

PDF (18344KB)

209

Accesses

0

Citation

Detail

Sections
Recommended

/