Xijiaqi Formula attenuates cognitive dysfunction by inhibiting neuroinflammation and promoting neuroplasticity in rats with chronic heart failure

Jie Chen , Xuefen Wu , Qian Zhang , Hongcai Shang , Wanting Li , Linnan Zhou , Xinyu Chu , Guiyang Xia , Huan Xia , Xiaohong Wei , Sheng Lin

Chinese Journal of Natural Medicines ›› 2026, Vol. 24 ›› Issue (1) : 73 -88.

PDF (13143KB)
Chinese Journal of Natural Medicines ›› 2026, Vol. 24 ›› Issue (1) :73 -88. DOI: 10.1016/S1875-5364(26)61078-3
Original article
research-article

Xijiaqi Formula attenuates cognitive dysfunction by inhibiting neuroinflammation and promoting neuroplasticity in rats with chronic heart failure

Author information +
History +
PDF (13143KB)

Abstract

;Chronic heart failure (CHF) impairs cognitive function. Xijiaqi Formula (XJQ), a traditional Chinese medicine (TCM) used clinically to treat CHF, demonstrates potential for improving cognition in CHF patients. However, its precise mechanism in treating post-CHF cognitive dysfunction remains unclear. This study systematically investigates XJQ’s effects on post-CHF cognitive dysfunction and the underlying mechanisms. The components of XJQ were identified through liquid chromatography-mass spectrometry. CHF was induced in rats via ligation of the left anterior descending coronary artery, followed by six weeks of XJQ treatment. Cardiac function was evaluated through echocardiography and hemodynamic parameters, while cognitive function was assessed using Morris water maze (MWM) and open field tests (OFT). XJQ treatment enhanced both cardiac and cognitive functions in CHF rats. Network pharmacology identified 12 core active components of XJQ and indicated its effect on cognitive dysfunction involved regulating synapses, inflammation, and phosphodiesterase 4 (PDE4)-dependent cyclic adenosine monophosphate (cAMP) signaling. XJQ inhibited microglial and astrocyte activation, decreased proinflammatory cytokines, and mitigated neuronal damage. Notably, XJQ promoted synaptic repair and dendritic growth by downregulating PDE4 and upregulating cAMP, protein kinase A (PKA), cAMP-response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), PSD95, and synapsin I levels. Molecular docking and Bio-layer interferometry assays confirmed direct binding of quercetin, kaempferol, isorhamnetin, and darutoside to PDE4. In conclusion, XJQ alleviates neuroinflammation and enhances synaptic plasticity to improve cognitive dysfunction in CHF rats via the PDE4/cAMP/PKA/CREB signaling pathway. These findings provide valuable insight into the heart-brain axis.

Keywords

Xijiaqi Formula / Cognitive dysfunction / Chronic heart failure / Synaptic plasticity / Neuroinflammation / PDE4

Cite this article

Download citation ▾
Jie Chen, Xuefen Wu, Qian Zhang, Hongcai Shang, Wanting Li, Linnan Zhou, Xinyu Chu, Guiyang Xia, Huan Xia, Xiaohong Wei, Sheng Lin. Xijiaqi Formula attenuates cognitive dysfunction by inhibiting neuroinflammation and promoting neuroplasticity in rats with chronic heart failure. Chinese Journal of Natural Medicines, 2026, 24(1): 73-88 DOI:10.1016/S1875-5364(26)61078-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Maroofi A, Moro T, Agrimi J, et al. Cognitive decline in heart failure: biomolecular mechanisms and benefits of exercise. Biochim Biophys Acta Mol Basis Dis. 2022; 1868(11): 166511. https://doi.org/10.1016/j.bbadis.2022.166511.

[2]

Doehner W, Čelutkienė J, Yilmaz MB, et al. Heart failure and the heart-brain axis. QJM. 2023; 116(11):897-902. https://doi.org/10.1093/qjmed/hcad179.

[3]

McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2022; 24(1):4-131. https://doi.org/10.1002/ejhf.2333.

[4]

Rigueira J, Agostinho JR, Aguiar-Ricardo I, et al. Heart and brain interactions in heart failure: cognition, depression, anxiety, and related outcomes. Rev Port Cardiol (Engl Ed). 2021; 40(8):547-555. https://doi.org/10.1016/j.repc.2020.09.009.

[5]

Ye S, Huynh Q, Potter EL. Cognitive dysfunction in heart failure: pathophysiology and implications for patient management. Curr Heart Fail Rep. 2022; 19(5):303-315. https://doi.org/10.1007/s11897-022-00564-z.

[6]

Liu J, Xiao G, Liang Y, et al. Heart-brain interaction in cardiogenic dementia: pathophysiology and therapeutic potential. Front Cardiovasc Med. 2024;11:1304864. https://doi.org/10.3389/fcvm.2024.1304864.

[7]

Soleimani H, Nasrollahizadeh A, Hajiqasemi M, et al. Comparative analysis of treatment options for chronic heart failure and depression: a systematic review and Bayesian network meta-analysis. Heart Fail Rev. 2024; 29(4):841-852. https://doi.org/10.1007/s10741-024-10403-z.

[8]

Gilstrap L, Cohen A, Ouellet GM, et al. The association between beta-blockers and outcomes in patients with heart failure and concurrent Alzheimer’s disease and related dementias. J Am Geriatr Soc. 2023; 71(2):404-413. https://doi.org/10.1111/jgs.18086.

[9]

Luo Z, Yin F, Wang X, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[10]

Zhao D, Guo K, Zhang Q, et al. Mechanism of XiJiaQi in the treatment of chronic heart failure: integrated analysis by pharmacoinformatics, molecular dynamics simulation, and SPR validation. Comput Biol Med. 2023;166:107479. https://doi.org/10.1016/j.compbiomed.2023.107479.

[11]

Wei XH, Liu WJ, Jiang W, et al.XinLi Formula, a traditional Chinese decoction, alleviates chronic heart failure via regulating the interaction of AGTR1 and AQP1. Phytomedicine. 2023;113:154722. https://doi.org/10.1016/j.phymed.2023.154722.

[12]

Yang T, Lu Z, Wang L, et al. Dynamic changes in brain glucose metabolism and neuronal structure in rats with heart failure. Neuroscience. 2020; 424:34-44. https://doi.org/10.1016/j.neuroscience.2019.10.008.

[13]

Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008; 22(3):659-661. https://doi.org/10.1096/fj.07-9574LSF.

[14]

Feng J, Guo J, Yan J, et al. Luhong Formula and hydroxysafflor yellow A protect cardiomyocytes by inhibiting autophagy. Phytomedicine. 2023;110:154636. https://doi.org/10.1016/j.phymed.2022.154636.

[15]

Fei Q, Ma H, Zou J, et al. Metformin protects against ischaemic myocardial injury by alleviating autophagy-ROS-NLRP3-mediated inflammatory response in macrophages. J Mol Cell Cardiol. 2020; 145:1-13. https://doi.org/10.1016/j.yjmcc.2020.05.016.

[16]

Lu Z, Yang T, Wang L, et al. Comparison of different protocols of Morris water maze in cognitive impairment with heart failure. Brain Behav. 2020; 10(2):e01519. https://doi.org/10.1002/brb3.1519.

[17]

Sun N, Mei Y, Hu Z, et al. Ghrelin attenuates depressive-like behavior, heart failure, and neuroinflammation in postmyocardial infarction rat model. Eur J Pharmacol. 2021;901:174096. https://doi.org/10.1016/j.ejphar.2021.174096.

[18]

Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014; 6:13. https://doi.org/10.1186/1758-2946-6-13.

[19]

Zhu X, Liu J, Huang S, et al. Neuroprotective effects of isoliquiritigenin against cognitive impairment via suppression of synaptic dysfunction, neuronal injury, and neuroinflammation in rats with kainic acid-induced seizures. Int Immunopharmacol. 2019; 72:358-366. https://doi.org/10.1016/j.intimp.2019.04.028.

[20]

Li YS, Zhang J, Tian GH, et al. Kirenol, darutoside and hesperidin contribute to the anti-inflammatory and analgesic activities of Siegesbeckia pubescens Makino by inhibiting COX-2 expression and inflammatory cell infiltration. J Ethnopharmacol. 2021;268:113547. https://doi.org/10.1016/j.jep.2020.113547.

[21]

Sun XY, Li LJ, Dong QX, et al. Rutin prevents Tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2021; 18(1):131. https://doi.org/10.1186/s12974-021-02182-3.

[22]

Chu JMT, Abulimiti A, Wong BSH, et al. Sigesbeckia orientalis L. derived active fraction ameliorates perioperative neurocognitive disorders through alleviating hippocampal neuroinflammation. Front Pharmacol. 2022;13:846631. https://doi.org/10.3389/fphar.2022.846631.

[23]

Sakuma S, Kawanishi S, Shoji J.Constituents of the Chinese crude drug “Wujiapi”. IX. Structure of glycoside H2 a potentiator of NGF-mediated nerve fiber outgrowth. Chem Pharm Bull (Tokyo). 1980; 28(1):163-168. https://doi.org/10.1248/cpb.28.163.

[24]

Santos RAS, Sampaio WO, Alzamora AC, et al. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1-7). Physiol Rev. 2018; 98(1):505-553. https://doi.org/10.1152/physrev.00023.2016.

[25]

Obradovic DM, Büttner P, Rommel KP, et al. Soluble ST 2 receptor: biomarker of left ventricular impairment and functional status in patients with inflammatory cardiomyopathy. Cells. 2022; 11(3):414. https://doi.org/10.3390/cells11030414.

[26]

Smith SW. Reticular and areticular Nissl bodies in sympathetic neurons of a lizard. J Biophys Biochem Cytol. 1959; 6(1):77-84. https://doi.org/10.1083/jcb.6.1.77.

[27]

Lei T, Li Y, Song Y, et al. ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling. J Cheminform. 2016;8:6. https://doi.org/10.1186/s13321-016-0117-7.

[28]

Costello A, Linning-Duffy K, Vandenbrook C, et al. Effects of bright light therapy on neuroinflammatory and neuroplasticity markers in a diurnal rodent model of seasonal affective disorder. Ann Med. 2023; 55(2):2249015. https://doi.org/10.1080/07853890.2023.2249015.

[29]

Zaccard CR, Gippo I, Song A, et al. Dendritic spinule-mediated structural synaptic plasticity: implications for development, aging, and psychiatric disease. Front Mol Neurosci. 2023;16:1059730. https://doi.org/10.3389/fnmol.2023.1059730.

[30]

Hsin KY, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One. 2013; 8(12):e83922. https://doi.org/10.1371/journal.pone.0083922.

[31]

Trasatti JP, Woo J, Ladiwala A, et al. Rational design of peptide affinity ligands for the purification of therapeutic enzymes. Biotechnol Prog. 2018; 34(4):987-998. https://doi.org/10.1002/btpr.2637.

[32]

Shin MS, An M, Kim S, et al. Concomitant diastolic dysfunction further interferes with cognitive performance in moderate to severe systolic heart failure. PLoS One. 2017; 12(10):e0184981. https://doi.org/10.1371/journal.pone.0184981.

[33]

Ovsenik A, Podbregar M, Fabjan A. Cerebral blood flow impairment and cognitive decline in heart failure. Brain Behav. 2021; 11(6):e02176. https://doi.org/10.1002/brb3.2176.

[34]

van Nieuwkerk AC, Delewi R, Wolters FJ, et al. Cognitive impairment in patients with cardiac disease: implications for clinical practice. Stroke. 2023; 54(8):2181-2191. https://doi.org/10.1161/STROKEAHA.123.040499.

[35]

Murphy SP, Kakkar R, McCarthy CP, et al. Inflammation in heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 75(11):1324-1340. https://doi.org/10.1016/j.jacc.2020.01.014.

[36]

Md Pisar M, Chee BJ, Long I, et al. Protective effects of Centella asiatica extract on spatial memory and learning deficits in animal model of systemic inflammation induced by lipopolysaccharide. Ann Med. 2023; 55(1):2224970. https://doi.org/10.1080/07853890.2023.2224970.

[37]

Ge Y, Xu W, Zhang L, et al. Ginkgolide B attenuates myocardial infarction-induced depression-like behaviors via repressing IL-1β in central nervous system. Int Immunopharmacol. 2020;85:106652. https://doi.org/10.1016/j.intimp.2020.106652.

[38]

Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science. 2018; 362(6411):181-185. https://doi.org/10.1126/science.aat0473.

[39]

Miyamoto A, Wake H, Ishikawa AW, et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun. 2016;7:12540. https://doi.org/10.1038/ncomms12540.

[40]

Bernardinelli Y, Randall J, Janett E, et al. Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr Biol. 2014; 24(15):1679-1688. https://doi.org/10.1016/j.cub.2014.06.025.

[41]

Panatier A, Theodosis DT, Mothet JP, et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell. 2006; 125(4):775-784. https://doi.org/10.1016/j.cell.2006.02.051.

[42]

Althammer F, Ferreira-Neto HC, Rubaharan M, et al. Three-dimensional morphometric analysis reveals time-dependent structural changes in microglia and astrocytes in the central amygdala and hypothalamic paraventricular nucleus of heart failure rats. J Neuroinflammation. 2020; 17(1):221. https://doi.org/10.1186/s12974-020-01892-4.

[43]

Liu M, Li J, Dai P, et al. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction. Stress. 2015; 18(1):96-106. https://doi.org/10.3109/10253890.2014.995085.

[44]

Riazi K, Galic MA, Kentner AC, et al. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci. 2015; 35(12):4942-4952. https://doi.org/10.1523/JNEUROSCI.4485-14.2015.

[45]

Zipp F, Bittner S, Schafer DP. Cytokines as emerging regulators of central nervous system synapses. Immunity. 2023; 56(5):914-925. https://doi.org/10.1016/j.immuni.2023.04.011.

[46]

Richter W, Menniti FS, Zhang HT, et al. PDE4 as a target for cognition enhancement. Expert Opin Ther Targets. 2013; 17(9):1011-1027. https://doi.org/10.1517/14728222.2013.818656.

[47]

Burgin AB, Magnusson OT, Singh J, et al. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol. 2010; 28(1):63-70. https://doi.org/10.1038/nbt.1598.

[48]

Bruno O, Fedele E, Prickaerts J, et al. GEBR-7b, a novel PDE4D selective inhibitor that improves memory in rodents at non-emetic doses. Br J Pharmacol. 2011; 164(8):2054-2063. https://doi.org/10.1111/j.1476-5381.2011.01524.x.

[49]

Titus DJ, Sakurai A, Kang Y, et al. Phosphodiesterase inhibition rescues chronic cognitive deficits induced by traumatic brain injury. J Neurosci. 2013; 33(12):5216-5226. https://doi.org/10.1523/JNEUROSCI.5133-12.2013.

[50]

Jie F, Yang X, Yang B, et al. Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation. Biomed Pharmacother. 2022;153:113317. https://doi.org/10.1016/j.biopha.2022.113317.

[51]

Chen F, Yang D, Cheng XY, et al. Astragaloside IV ameliorates cognitive impairment and neuroinflammation in an oligomeric Aβ induced alzheimer’s disease mouse model via inhibition of microglial activation and NADPH oxidase expression. Biol Pharm Bull. 2021; 44(11):1688-1696. https://doi.org/10.1248/bpb.b21-00381.

[52]

Yao H, Gu LJ, Guo JY. Study on effect of Astragali Radix polysaccharides in improving learning and memory functions in aged rats and its mechanism. Chin J Chin Mater Med. 2014; 39(11):2071-2075. https://doi.org/10.4268/cjcmm20141125.

[53]

Yang X, Li MY, Yan CY, et al. Research progress on chemical composition and pharmacological effects of Periplocae Cortex and predictive analysis on Q-marker. Chin J Chin Mater Med. 2020; 45(12):2772-2783. https://doi.org/10.19540/j.cnki.cjcmm.20200327.202.

[54]

Liang S, Deng F, Xing H, et al. P-glycoprotein- and organic anion-transporting polypeptide-mediated transport of periplocin may lead to drug-herb/drug-drug interactions. Drug Des Devel Ther. 2014; 8:475-483. https://doi.org/10.2147/DDDT.S61024.

[55]

Townsend EA, Emala CW.Quercetin acutely relaxes airway smooth muscle and potentiates β-agonist-induced relaxation via dual phosphodiesterase inhibition of PLCβ and PDE4. Am J Physiol Lung Cell Mol Physiol. 2013; 305(5):L396-403. https://doi.org/10.1152/ajplung.00125.2013.

[56]

Du Q, Zhang S, Li A, et al. Astragaloside IV inhibits adipose lipolysis and reduces hepatic glucose production via Akt dependent PDE3B expression in HFD-Fed mice. Front Physiol. 2018;9:15. https://doi.org/10.3389/fphys.2018.00015.

[57]

Ye Q, Su L, Chen D, et al.Astragaloside IV induced miR-134 expression reduces EMT and increases chemotherapeutic sensitivity by suppressing CREB 1 signaling in colorectal cancer cell line SW-480. Cell Physiol Biochem. 2017; 43(4):1617-1626. https://doi.org/10.1159/000482025.

PDF (13143KB)

152

Accesses

0

Citation

Detail

Sections
Recommended

/