An overview of the advantageous effects and underlying mechanisms of natural polysaccharides in inflammatory bowel disease

Yating Shao , Bo Li , Yongfang Wang , Chuanjie Zhou , Yunlong Qiao , Xinglishang He , Shengqiang Tong , Guiyuan Lv , Suhong Chen

Chinese Journal of Natural Medicines ›› 2026, Vol. 24 ›› Issue (1) : 45 -58.

PDF (9006KB)
Chinese Journal of Natural Medicines ›› 2026, Vol. 24 ›› Issue (1) :45 -58. DOI: 10.1016/S1875-5364(26)61076-X
Review
research-article

An overview of the advantageous effects and underlying mechanisms of natural polysaccharides in inflammatory bowel disease

Author information +
History +
PDF (9006KB)

Abstract

Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic inflammatory condition affecting the gastrointestinal tract. The global incidence and prevalence of IBD continue to increase. While multiple clinical treatments exist, conventional therapies frequently present limitations and adverse effects. Natural polysaccharides (PSs) have emerged as a significant focus of research interest due to their therapeutic potential and applications in functional foods and health products. This review synthesizes current understanding of IBD pathophysiology and the mechanisms by which natural PSs counter IBD, including their capacity to restore immune homeostasis and intestinal barrier function, modulate gut microbiota and metabolites, reduce oxidative stress, and address irregularities in autophagy and endoplasmic reticulum stress (ERS). The review examines the structure-activity relationships of PSs demonstrating anti-IBD effects and identifies promising therapeutic products. The discussion encompasses pharmacokinetics, safety evaluations, and clinical applications of these compounds. This comprehensive review establishes a theoretical foundation for developing natural PS-based therapeutic approaches for IBD management.

Keywords

Natural polysaccharides / Inflammatory bowel disease / Pathogenesis / Therapeutic effect / Research progress

Cite this article

Download citation ▾
Yating Shao, Bo Li, Yongfang Wang, Chuanjie Zhou, Yunlong Qiao, Xinglishang He, Shengqiang Tong, Guiyuan Lv, Suhong Chen. An overview of the advantageous effects and underlying mechanisms of natural polysaccharides in inflammatory bowel disease. Chinese Journal of Natural Medicines, 2026, 24(1): 45-58 DOI:10.1016/S1875-5364(26)61076-X

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res. 2019;2019:7247238. https://doi.org/10.1155/2019/7247238.

[2]

Yang W, Zhao P, Li X, et al. The potential roles of natural plant polysaccharides in inflammatory bowel disease: a review. Carbohydr Polym. 2022;277:118821. https://doi.org/10.1016/j.carbpol.2021.118821.

[3]

He Q, Li JD. Progress in epidemiologic study of inflammatory bowel disease. J Pract Med. 2019; 35(18):2962-2966. https://doi.org/10.3969/j.issn.1006-5725.2019.18.029.

[4]

Tian MM, Liu Q. Research progress of natural polysaccharides in immunomodulatory activity. Yunnan J Tradit Chin Med. 2018; 39(8):80-82. https://doi.org/10.16254/j.cnki.53-1120/r.2018.08.036.

[5]

Zhao Y, Yan B, Wang Z, et al.Natural polysaccharides with immunomodulatory activities. Mini Rev Med Chem. 2020; 20(2):96-106. https://doi.org/10.2174/1389557519666190913151632.

[6]

Wang TT, Chen TX, Xiao JY, et al. Advances in chemical structure and pharmacological activity of Ganoderma lucidum polysaccharides. Edible Fungi China. 2022; 41(1):7-16. https://doi.org/10.13629/j.cnki.53-1054.2022.01.002.

[7]

Li X, Zhang XY, Yang SP, et al. Progress in the study of the mechanism of Chinese herbal polysaccharides’ anti-aging effects. Chin J Exp Tradit Med Formulae. 2022; 28(4):271-282. https://doi.org/10.13422/j.cnki.syfjx.20220438.

[8]

Han X, Luo R, Ye N, et al. Research progress on natural β-glucan in intestinal diseases. Int J Biol Macromol. 2022; 219:1244-1260. https://doi.org/10.1016/j.ijbiomac.2022.08.173.

[9]

Yu W, Zeng D, Xiong Y, et al. Health benefits of functional plant polysaccharides in metabolic syndrome: an overview. J Funct Foods. 2022;95:105154. https://doi.org/10.1016/j.jff.2022.105154.

[10]

Kanwal S, Joseph TP, Aliya S, et al. Attenuation of DSS induced colitis by Dictyophora indusiata polysaccharide (DIP) via modulation of gut microbiota and inflammatory related signaling pathways. J Funct Foods. 2020;64:103641. https://doi.org/10.1016/j.jff.2019.103641.

[11]

Duan L, Cheng S, Li L, et al. Natural anti-inflammatory compounds as drug candidates for inflammatory bowel disease. Front Pharmacol. 2021;12:684486. https://doi.org/10.3389/fphar.2021.684486.

[12]

Tan YR, Shen SY, Shen HQ, et al. The role of endoplasmic reticulum stress in regulation of intestinal barrier and inflammatory bowel disease. Exp Cell Res. 2023; 424(1):113472. https://doi.org/10.1016/j.yexcr.2023.113472.

[13]

Wang YJ, Li QM, Zha XQ, et al. Intervention and potential mechanism of non-starch polysaccharides from natural resources on ulcerative colitis: a review. Int J Biol Macromol. 2022; 210:545-564. https://doi.org/10.1016/j.ijbiomac.2022.04.208.

[14]

Hu DJ, Zhang YF, Li BY, et al. Research progress on polysaccharides from medicine and food homology materials in functional foods. Chin J Nat Med. 2025; 23(9):1025-1035. https://doi.org/10.1016/S1875-5364(25)60829-6.

[15]

Sun YZ, Wang XN, Xin GZ, et al. Progress on the mechanism of action of natural polysaccharides to improve ulcerative colitis. J Tradit Chin Med. 2022; 50(5):92-100. https://doi.org/10.19664/j.cnki.1002-2392.220116.

[16]

Li J, Jiang CM. The role of intestinal flora and its metabolites in the intestinal barrier of inflammatory bowel disease. China Modern Doctor. 2022; 60(22):89-92. https://doi.org/10.3969/j.issn.1673-9701.2022.22.89.

[17]

Xie X, Geng C, Li X, et al. Roles of gastrointestinal polypeptides in intestinal barrier regulation. Peptides. 2022;151:170753. https://doi.org/10.1016/j.peptides.2022.170753.

[18]

Liu Y, Yu Z, Zhu L, et al. Orchestration of MUC2: the key regulatory target of gut barrier and homeostasis: a review. Int J Biol Macromol. 2023;236:123862. https://doi.org/10.1016/j.ijbiomac.2023.123862.

[19]

Hou X, Meng H, Xue J, et al. Progress of research on the pathogenesis of inflammatory bowel disease. Chin J Comp Med. 2023; 33(9):138-148. https://doi.org/10.3969/j.issn.1671-7856.2023.09.016.

[20]

Van Der PS, Jabbar KS, Birchenough G, et al. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut. 2019; 68(12):2142-2151. https://doi.org/10.1136/gutjnl-2018-317571.

[21]

Parikh K, Antanaviciute A, Fawkner-Corbett D, et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. 2019; 567(7746):49-55. https://doi.org/10.1038/s41586-019-0992-y.

[22]

Bankole E, Read E, Curtis MA, et al. The relationship between mucins and ulcerative colitis: a systematic review. J Clin Med. 2021; 10(9):1935. https://doi.org/10.3390/jcm10091935.

[23]

Gomez-Bris R, Saez A, Herrero-Fernandez B, et al. CD4 T-cell subsets and the pathophysiology of inflammatory bowel disease. Int J Mol Sci. 2023; 24(3):2696. https://doi.org/10.3390/ijms24032696.

[24]

De Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016; 13(1):13-27. https://doi.org/10.1038/nrgastro.2015.186.

[25]

Li ZX, Xu CM, Luo YL, et al. Progress of rhubarb on intestinal barrier protection in severe acute pancreatitis. J Emerg Tradit Chin Med. 2020; 29(4):732-734. https://doi.org/10.3969/j.issn.1004-745X.2020.04.049.

[26]

Bharti S, Bharti M. The business of T cell subsets and cytokines in the immunopathogenesis of inflammatory bowel disease. Cureus. 2022; 14(7):e27290. https://doi.org/10.7759/cureus.27290.

[27]

Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity. 2009; 30(5):646-655. https://doi.org/10.1016/j.immuni.2009.05.001.

[28]

Huang Y, Chen Z. Inflammatory bowel disease related innate immunity and adaptive immunity. Am J Transl Res. 2016; 8(6):2490-2497. https://doi.org/10.1155/2016/5817426.

[29]

Ahluwalia B, Moraes L, Magnusson MK, et al. Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scand J Gastroenterol. 2018; 53(4):379-389. https://doi.org/10.1080/00365521.2018.1447597.

[30]

Kobayashi T, Okamoto S, Hisamatsu T, et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut. 2008; 57(12):1682-1689. https://doi.org/10.1136/gut.2007.135053.

[31]

Gerlach K, Hwang Y, Nikolaev A, et al. TH9 cells that express the transcription factor PU. 1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014; 15(7):676-686. https://doi.org/10.1038/ni.2920.

[32]

Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg-mediated T cell suppression. Front Immunol. 2012;3:51. https://doi.org/10.3389/fimmu.2012.00051.

[33]

Mittal SK, Cho KJ, Ishido S, et al. Interleukin 10 (IL-10)-mediated immunosuppression: MARCH-I induction regulates antigen presentation by macrophages but not dendritic cells. J Biol Chem. 2015; 290(45):27158-27167. https://doi.org/10.1074/jbc.M115.682708.

[34]

Park JH, Peyrin-Biroulet L, Eisenhut M, et al. IBD immunopathogenesis: a comprehensive review of inflammatory molecules. Autoimmun Rev. 2017; 16(4):416-426. https://doi.org/10.1016/j.autrev.2017.02.013.

[35]

Barnig C, Bezema T, Calder PC, et al. Activation of resolution pathways to prevent and fight chronic inflammation: lessons from asthma and inflammatory bowel disease. Front Immunol. 2019;10:1699. https://doi.org/10.3389/fimmu.2019.01699.

[36]

Chen S, Zhang Y, Niu X, et al. Coral-derived endophytic fungal product, butyrolactone-Ι alleviates Lps induced intestinal epithelial cell inflammatory response through TLR4/NF-κB and MAPK signaling pathways: an in vitro and in vivo studies. Front Nutr. 2021;8:748118. https://doi.org/10.3389/fnut.2021.748118.

[37]

Althagafy HS, Ali FEM, Hassanein EHM, et al. Canagliflozin ameliorates ulcerative colitis via regulation of TLR4/MAPK/NF-κB and Nrf2/PPAR-γ/SIRT1 signaling pathways. Eur J Pharmacol. 2023;960:176166. https://doi.org/10.1016/j.ejphar.2023.176166.

[38]

Zhang T, Zhao L, Xu M, et al. Moringin alleviates DSS-induced ulcerative colitis in mice by regulating Nrf2/NF-κB pathway and PI3K/AKT/mTOR pathway. Int Immunopharmacol. 2024;134:112241. https://doi.org/10.1016/j.intimp.2024.112241.

[39]

Khoramjoo SM, Kazemifard N, Baradaran GS, et al. Overview of three proliferation pathways (Wnt, Notch, and Hippo) in intestine and immune system and their role in inflammatory bowel diseases (IBDs). Front Med (Lausanne). 2022;9:865131. https://doi.org/10.3389/fmed.2022.865131.

[40]

Zhu Z, Liao L, Gao M, et al. Garlic-derived exosome-like nanovesicles alleviate dextran sulphate sodium-induced mouse colitis via the TLR4/MyD88/NF-κB pathway and gut microbiota modulation. Food Funct. 2023; 14(16):7520-7534. https://doi.org/10.1039/D3FO01094E.

[41]

Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019; 569(7758):655-662. https://doi.org/10.1038/s41586-019-1237-9.

[42]

Niu W, Yang F, Fu Z, et al. The role of enteric dysbacteriosis and modulation of gut microbiota in the treatment of inflammatory bowel disease. Microb Pathog. 2022;165:105381. https://doi.org/10.1016/j.micpath.2021.105381.

[43]

Ansari I, Raddatz G, Gutekunst J, et al. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nat Microbiol. 2020; 5(4):610-619. https://doi.org/10.1038/s41564-019-0659-3.

[44]

Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015; 17(5):662-671. https://doi.org/10.1016/j.chom.2015.03.005.

[45]

Zeng B, Shi S, Ashworth G, et al. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis. 2019; 10(4):315. https://doi.org/10.1038/s41419-019-1540-2.

[46]

Skelly AN, Sato Y, Kearney S, et al. Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol. 2019; 19(5):305-323. https://doi.org/10.1038/s41577-019-0144-5.

[47]

Guo C, Wang Y, Zhang S, et al. Crataegus pinnatifida polysaccharide alleviates colitis via modulation of gut microbiota and SCFAs metabolism. Int J Biol Macromol. 2021; 181:357-368. https://doi.org/10.1016/j.ijbiomac.2021.03.137.

[48]

Deleu S, Machiels K, Raes J, et al. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? EBioMedicine. 2021;66:103293. https://doi.org/10.1016/j.ebiom.2021.103293.

[49]

Ding X, Bin P, Wu W, et al. Tryptophan metabolism, regulatory T cells, and inflammatory bowel disease: a mini review. Mediators Inflamm. 2020;2020:9706140. https://doi.org/10.1155/2020/9706140.

[50]

Mascanfroni ID, Takenaka MC, Yeste A, et al. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat Med. 2015; 21(6):638-646. https://doi.org/10.1038/nm.3868.

[51]

Ala M. Tryptophan metabolites modulate inflammatory bowel disease and colorectal cancer by affecting immune system. Int Rev Immunol. 2022; 41(3):326-345. https://doi.org/10.1080/08830185.2021.1954638.

[52]

Sofia MA, Ciodba MA, Meckel K, et al. Tryptophan metabolism through the kynurenine pathway is associated with endoscopic inflammation in ulcerative colitis. Inflamm Bowel Dis. 2018; 24(7):1471-1480. https://doi.org/10.1093/ibd/izy103.

[53]

Fiorucci S, Carino A, Baldoni M, et al. Bile acid signaling in inflammatory bowel diseases. Dig Dis Sci. 2021; 66(3):674-693. https://doi.org/10.1007/s10620-020-06715-3.

[54]

Yang M, Gu Y, Li L, et al. Bile acid-gut microbiota axis in inflammatory bowel disease: from bench to bedside. Nutrients. 2021; 13(9):3143. https://doi.org/10.3390/nu13093143.

[55]

Staudinger JL, Goodwin B, Jones SA, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A. 2001; 98(6):3369-3374. https://doi.org/10.1073/pnas.051551698.

[56]

Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002; 296(5571):1313-1316. https://doi.org/10.1126/science.1070477.

[57]

Nagahashi M, Takabe K, Liu R, et al. Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology. 2015; 61(4):1216-1226. https://doi.org/10.1002/hep.27592.

[58]

Guo C, Xie S, Chi Z, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity. 2016; 45(4):802-816. https://doi.org/10.1016/j.immuni.2016.09.008.

[59]

Zhao S, Gong Z, Du X, et al. Deoxycholic acid-mediated sphingosine-1-phosphate receptor 2 signaling exacerbates DSS-induced colitis through promoting cathepsin B release. J Immunol Res. 2018;2018:2481418. https://doi.org/10.1155/2018/2481418.

[60]

Liu M, Rao H, Liu J, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 2021;43:102004. https://doi.org/10.1016/j.redox.2021.102004.

[61]

Tian T, Wang Z, Zhang J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev. 2017;2017:4535194. https://doi.org/10.1155/2017/4535194.

[62]

Rodrigues JJI, VasconceLos JKG, Xavier L, et al. Antioxidant therapy in inflammatory bowel disease: a systematic review and a meta-analysis of randomized clinical trials. Pharmaceuticals (Basel). 2023; 16(10):1444. https://doi.org/10.3390/ph16101444.

[63]

Hu S, Zhao M, Li W, et al. Preclinical evidence for quercetin against inflammatory bowel disease: a meta-analysis and systematic review. Inflammopharmacology. 2022; 30(6):2035-2050. https://doi.org/10.1007/s10787-022-01079-8.

[64]

Zhou GX, Liu ZJ. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J Dig Dis. 2017; 18(9):495-503. https://doi.org/10.1111/1751-2980.12540.

[65]

Galluzzi L, Baehrecke EH, Ballabio A, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017; 36(13):1811-1836. https://doi.org/10.15252/embj.201796697.

[66]

Reggiori F, Ungermann C.Autophagosome maturation and fusion. J Mol Biol. 2017; 429(4):486-496. https://doi.org/10.1016/j.jmb.2017.01.002.

[67]

Foerster EG, Mukherjee T, Cabral-Fernandes L, et al. How autophagy controls the intestinal epithelial barrier. Autophagy. 2022; 18(1):86-103. https://doi.org/10.1080/15548627.2021.1909406.

[68]

Fan Q, Zheng X, Wang S, et al. Autophagy abnormality in inflammatory bowel disease and the progress of Chinese medicine intervention research. Chin J Clin Pharmacol Ther. 2019; 24(4):471-480. https://doi.org/10.12092/j.issn.1009-2501.2019.04.017.

[69]

Huang SN, Li FF, Jin D. Progress on the mechanism of autophagy in inflammatory bowel disease. Cell Mol Immunol. 2022; 38(6):559-564. https://doi.org/10.1038/s41423-021-00774-9.

[70]

Zhang C, Wang JZ, Shen YJ. Effect of autophagy inducer pp242 on tumor necrosis factor-α-induced intestinal barrier damage. Gastroenterology. 2017; 22(6):337-340. https://doi.org/10.3969/j.issn.1008-7125.2017.06.003.

[71]

Zhang H, Zheng L, Mcgovern DP, et al. Myeloid ATG16L1 facilitates host-bacteria interactions in maintaining intestinal homeostasis. J Immunol. 2017; 198(5):2133-2146. https://doi.org/10.4049/jimmunol.1601293.

[72]

Luo K, Cao SS. Endoplasmic reticulum stress in intestinal epithelial cell function and inflammatory bowel disease. Gastroenterol Res Pract. 2015;2015:328791. https://doi.org/10.1155/2015/328791.

[73]

Wang Q, Li Z, Liu K, et al. Activation of the G protein-coupled estrogen receptor prevented the development of acute colitis by protecting the crypt cell. J Pharmacol Exp Ther. 2021; 376(2):281-293. https://doi.org/10.1124/jpet.120.000216.

[74]

Windsor JW, Kaplan GG.Evolving epidemiology of IBD. Curr Gastroenterol Rep. 2019; 21(8):40. https://doi.org/10.1007/s11894-019-0705-6.

[75]

Mak WY, Zhao M, Ng SC, et al. The epidemiology of inflammatory bowel disease: east meets west. J Gastroenterol Hepatol. 2020; 35(3):380-389. https://doi.org/10.1111/jgh.14872.

[76]

Jans D, Cleynen I.The genetics of non-monogenic IBD. Hum Genet. 2023; 142(5):669-682. https://doi.org/10.1007/s00439-023-02521-9.

[77]

Chen SL, Li CM, Li W, et al. How autophagy, a potential therapeutic target, regulates intestinal inflammation. Front Immunol. 2023;14:1087677. https://doi.org/10.3389/fimmu.2023.1087677.

[78]

Barkhodari A, Lee KE, Shen M, et al. Inflammatory bowel disease: focus on enteropathic arthritis and therapy. Rheumatol Immunol Res. 2022; 3(2):69-76. https://doi.org/10.2478/rir-2022-0012.

[79]

Keir M, Yi Y, Lu T, et al. The role of IL-22 in intestinal health and disease. J Exp Med. 2020; 217(3):e20192195. https://doi.org/10.1084/jem.20192195.

[80]

Mackos AR, Galley JD, Eubank TD, et al.Social stress-enhanced severity of Citrobacter rodentium-induced colitis is CCL2-dependent and attenuated by probiotic Lactobacillus reuteri. Mucosal Immunol. 2016; 9(2):515-526. https://doi.org/10.1038/mi.2015.81.

[81]

Dos Santos RA, Viana GCS, De Macedo BM, et al. Neutrophil extracellular traps in inflammatory bowel diseases: implications in pathogenesis and therapeutic targets. Pharmacol Res. 2021;171:105779. https://doi.org/10.1016/j.phrs.2021.105779.

[82]

Wang X, Zhou G, Zhou W, et al. Exosomes as a new delivery vehicle in inflammatory bowel disease. Pharmaceutics. 2021; 13(10):1644. https://doi.org/10.3390/pharmaceutics13101644.

[83]

Chen L, Ou Q, Kou X. Extracellular vesicles and their indispensable roles in pathogenesis and treatment of inflammatory bowel disease: a comprehensive review. Life Sci. 2023;327:121830. https://doi.org/10.1016/j.lfs.2023.121830.

[84]

Wu Y, Ran L, Yang Y, et al. Deferasirox alleviates DSS-induced ulcerative colitis in mice by inhibiting ferroptosis and improving intestinal microbiota. Life Sci. 2023;314:121312. https://doi.org/10.1016/j.lfs.2022.121312.

[85]

Saiz-Gonzalo G, Hanrahan N, Rossini V, et al. Regulation of CEACAM family members by IBD-associated triggers in intestinal epithelial cells, their correlation to inflammation and relevance to IBD pathogenesis. Front Immunol. 2021;12:655960. https://doi.org/10.3389/fimmu.2021.655960.

[86]

Drury B, Hardisty G, Gray RD, et al. Neutrophil extracellular traps in inflammatory bowel disease: pathogenic mechanisms and clinical translation. Cell Mol Gastroenterol Hepatol. 2021; 12(1):321-333. https://doi.org/10.1016/j.jcmgh.2021.03.002.

[87]

Zhang H, Wang L, Li C, et al. Exosome-induced regulation in inflammatory bowel disease. Front Immunol. 2019;10:1464. https://doi.org/10.3389/fimmu.2019.01464.

[88]

Li DF, Yang MF, Xu J, et al. Extracellular vesicles: the next generation theranostic nanomedicine for inflammatory bowel disease. Int J Nanomedicine. 2022; 17:3893-3911. https://doi.org/10.2147/IJN.S370784.

[89]

Chen Q, Peng LF, Xu R, et al. Research progress of ferroptosis in ulcerative colitis. Acta Acad Med Sin. 2024; 46(4):619-624. https://doi.org/10.3881/j.issn.1000-503X.15918.

[90]

Huang Y, Chen H, Zhang K, et al. Extraction, purification, structural characterization, and gut microbiota relationship of polysaccharides: a review. Int J Biol Macromol. 2022; 213:967-986. https://doi.org/10.1016/j.ijbiomac.2022.06.049.

[91]

Liang J, Chen S, Chen J, et al. Therapeutic roles of polysaccharides from Dendrobium Officinaleon colitis and its underlying mechanisms. Carbohydr Polym. 2018; 185:159-168. https://doi.org/10.1016/j.carbpol.2018.01.013.

[92]

Sun Y, Huo J, Zhong S, et al. Chemical structure and anti-inflammatory activity of a branched polysaccharide isolated from Phellinus baumii. Carbohydr Polym. 2021;268:118214. https://doi.org/10.1016/j.carbpol.2021.118214.

[93]

Hui H, Wang Z, Zhao X, et al.Gut microbiome-based thiamine metabolism contributes to the protective effect of one acidic polysaccharide from Selaginella uncinata (Desv.) Spring against inflammatory bowel disease. J Pharm Anal. 2024; 14(2):177-195. https://doi.org/10.1016/j.jpha.2023.08.003.

[94]

Ye R, Guo Q, Huang J, et al. Eucommia ulmoides polysaccharide modified nano-selenium effectively alleviated DSS-induced colitis through enhancing intestinal mucosal barrier function and antioxidant capacity. J Nanobiotechnol. 2023; 21(1):222. https://doi.org/10.1186/s12951-023-01965-5.

[95]

Liu X, Yu X, Xu X, et al. The protective effects of Poria cocos-derived polysaccharide CMP33 against IBD in mice and its molecular mechanism. Food Funct. 2018; 9(11):5936-5949. https://doi.org/10.1039/C8FO01604F.

[96]

Chen J, Gao Y, Zhang Y, et al. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct. 2024; 15(11):5680-5702. https://doi.org/10.1039/D3FO04919A.

[97]

Li Y, Ye H, Wang T, et al. Characterization of low molecular weight sulfate ulva polysaccharide and its protective effect against IBD in mice. Mar Drugs. 2020; 18(10):578. https://doi.org/10.3390/md18100578.

[98]

Żyla E, Dziendzikowska K, Gajewska M, et al. Beneficial effects of oat β-glucan dietary supplementation in colitis depend on its molecular weight. Molecules. 2019; 24(19):3522. https://doi.org/10.3390/molecules24193522.

[99]

Pan X. Extraction and purification of sarsaparilla polysaccharides, structural characterization and mechanism of its antiulcerative colitis activity. Huazhong Univ Sci Technol. 2022:1-185. https://doi.org/10.27157/d.cnki.ghzku.2022.001179.

[100]

Wei C, Yao L, Zhang Y, et al. Structural characterization of peach gum polysaccharide and its effects on the regulation of DSS-induced acute colitis. Int J Biol Macromol. 2023; 225:1224-1234. https://doi.org/10.1016/j.ijbiomac.2022.11.183.

[101]

Chuang L. Isolation, purification and structural characterization of black jujube polysaccharide and its anti-inflammatory activity. Shandong Agric Univ. 2024:1-73. https://doi.org/10.27277/d.cnki.gsdnu.2023.000746.

[102]

You S, Liu X, Xu G, et al. Identification of bioactive polysaccharide from Pseudostellaria heterophylla with its anti-inflammatory effects. J Funct Foods. 2021;78:104354. https://doi.org/10.1016/j.jff.2021.104354.

[103]

Zhang R, Yuan S, Ye J, et al. Polysaccharide from Flammuliana velutipes improves colitis via regulation of colonic microbial dysbiosis and inflammatory responses. Int J Biol Macromol. 2020; 149:1252-1261. https://doi.org/10.1016/j.ijbiomac.2020.02.044.

[104]

Ren Y, Geng Y, Du Y, et al. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota. J Nutr Biochem. 2018; 57:67-76. https://doi.org/10.1016/j.jnutbio.2018.03.005.

[105]

Bai Y, Jia X, Huang F, et al. Structural elucidation, anti-inflammatory activity and intestinal barrier protection of longan pulp polysaccharide LPIIa. Carbohydr Polym. 2020;246:116532. https://doi.org/10.1016/j.carbpol.2020.116532.

[106]

Wang J, Zhang C, Guo C, et al. Chitosan ameliorates DSS-induced ulcerative colitis mice by enhancing intestinal barrier function and improving microflora. Int J Mol Sci. 2019; 20(22):5746. https://doi.org/10.3390/ijms20225746.

[107]

Jin M, Zhu Y, Shao D, et al. Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats. Int J Biol Macromol. 2017; 94(Pt A):1-9. https://doi.org/10.1016/j.ijbiomac.2016.10.084.

[108]

Guo X, Liu L, Zhao W, et al.The protective effect of Schisandra chinensis (Turcz.) Baill. polysaccharide on DSS-induced ulcerative colitis in mice via the modulation of gut microbiota and inhibition of NF-κB activation. J Sci Food Agric. 2024; 104(1):196-206. https://doi.org/10.1002/jsfa.12905.

[109]

Kuang LX. Preparation, structural characterization and modulation of DSS-induced intestinal mucosal barrier damage by Atractylodes macrocephala polysaccharides. Zhejiang Univ. 2022:1-113. https://doi.org/10.27461/d.cnki.gzjdx.2021.001808.

[110]

Sun Y, Fan L, Mian W, et al. Modified apple polysaccharide influences MUC-1 expression to prevent ICR mice from colitis-associated carcinogenesis. Int J Biol Macromol. 2018; 120(Pt B):1387-1395. https://doi.org/10.1016/j.ijbiomac.2018.08.150.

[111]

Yu Y, Shen M, Song Q, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym. 2018; 183:91-101. https://doi.org/10.1016/j.carbpol.2017.12.009.

[112]

Liu Y, Zhao J, Zhao Y, et al. Therapeutic effects of lentinan on inflammatory bowel disease and colitis-associated cancer. J Cell Mol Med. 2019; 23(2):750-760. https://doi.org/10.1111/jcmm.13897.

[113]

Wang Y, Ji X, Yan M, et al. Protective effect and mechanism of polysaccharide from Dictyophora indusiata on dextran sodium sulfate-induced colitis in C57BL/6 mice. Int J Biol Macromol. 2019; 140:973-984. https://doi.org/10.1016/j.ijbiomac.2019.08.198.

[114]

Xie Z, Jiang N, Lin M, et al. The mechanisms of polysaccharides from tonic Chinese herbal medicine on the enhancement immune function: a review. Molecules. 2023; 28(21):7345. https://doi.org/10.3390/molecules28217345.

[115]

Xiong H, Han X, Cai L, et al. Natural polysaccharides exert anti-tumor effects as dendritic cell immune enhancers. Front Oncol. 2023;13:1274048. https://doi.org/10.3389/fonc.2023.1274048.

[116]

Xu L, Kwak M, Zhang W, et al. Rehmannia glutinosa polysaccharide induces toll-like receptor 4 dependent spleen dendritic cell maturation and anti-cancer immunity. Oncoimmunology. 2017; 6(7):e1325981. https://doi.org/10.1080/2162402X.2017.1325981.

[117]

Zhao HM, Wang Y, Huang XY, et al. Astragalus polysaccharide attenuates rat experimental colitis by inducing regulatory T cells in intestinal Peyer’s patches. World J Gastroenterol. 2016; 22(11):3175-3185. https://doi.org/10.3748/wjg.v22.i11.3175.

[118]

Lu SY, Liu Y, Tang S, et al. Gracilaria lemaneiformis polysaccharides alleviate colitis by modulating the gut microbiota and intestinal barrier in mice. Food Chem X. 2022;13:100197. https://doi.org/10.1016/j.fochx.2021.100197.

[119]

Lv H, Jia H, Cai W, et al. Rehmannia glutinosa polysaccharides attenuates colitis via reshaping gut microbiota and short-chain fatty acid production. J Sci Food Agric. 2023; 103(8):3926-3938. https://doi.org/10.1002/jsfa.12326.

[120]

Wang F, Bao YF, Si JJ, et al. The beneficial effects of a polysaccharide from Moringa oleifera leaf on gut microecology in mice. J Med Food. 2019; 22(9):907-918. https://doi.org/10.1089/jmf.2018.4382.

[121]

Feng W, Liu J, Tan Y, et al. Polysaccharides from Atractylodes macrocephala Koidz. ameliorate ulcerative colitis via extensive modification of gut microbiota and host metabolism. Food Res Int. 2020;138:109704. https://doi.org/10.1016/j.foodres.2020.109704.

[122]

Naito Y, Takagi T, Yoshikawa T. Molecular fingerprints of neutrophil-dependent oxidative stress in inflammatory bowel disease. J Gastroenterol. 2007; 42(10):787-798. https://doi.org/10.1007/s00535-007-2096-y.

[123]

Bourgonje AR, Feelisch M, Faber KN, et al. Oxidative stress and redox-modulating therapeutics in inflammatory bowel disease. Trends Mol Med. 2020; 26(11):1034-1046. https://doi.org/10.1016/j.molmed.2020.06.006.

[124]

Sahoo DK, Heilmann RM, Paital B, et al. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol (Lausanne). 2023;14:1217165. https://doi.org/10.3389/fendo.2023.1217165.

[125]

Cheong KL, Liu K, Chen W, et al. Recent progress in Porphyra haitanensis polysaccharides: extraction, purification, structural insights, and their impact on gastrointestinal health and oxidative stress management. Food Chem X. 2024;22:101414. https://doi.org/10.1016/j.fochx.2024.101414.

[126]

Huang K, Li Y, Tao S, et al. Purification, characterization and biological activity of polysaccharides from Dendrobium officinale. Molecules. 2016; 21(6):788. https://doi.org/10.3390/molecules21060788.

[127]

Wu W, Lin Y, Farag MA, et al. Dendrobium as a new natural source of bioactive for the prevention and treatment of digestive tract diseases: a comprehensive review with future perspectives. Phytomedicine. 2023;114:154784. https://doi.org/10.1016/j.phymed.2023.154784.

[128]

Tan H, Chen W, Liu Q, et al. Pectin oligosaccharides ameliorate colon cancer by regulating oxidative stress- and inflammation-activated signaling pathways. Front Immunol. 2018;9:1504. https://doi.org/10.3389/fimmu.2018.01504.

[129]

Liu C, Wang J, Yang Y, et al. Ginsenoside Rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice. Biochem Pharmacol. 2018; 155:366-379. https://doi.org/10.1016/j.bcp.2018.07.010.

[130]

Kabat AM, Harrison OJ, Riffelmacher T, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. eLife. 2016;5:e12444. https://doi.org/10.7554/eLife.12444.

[131]

Zhou M, Zhi J, Zhi J, et al. Polysaccharide from Strongylocentrotus nudus eggs regulates intestinal epithelial autophagy through CD36/PI3K-Akt pathway to ameliorate inflammatory bowel disease. Int J Biol Macromol. 2023;244:125373. https://doi.org/10.1016/j.ijbiomac.2023.125373.

[132]

Li M, Luo T, Huang Y, et al. Polysaccharide from Pycnoporus sanguineus ameliorates dextran sulfate sodium-induced colitis via helper T cells repertoire modulation and autophagy suppression. Phytother Res. 2020; 34(10):2649-2664. https://doi.org/10.1002/ptr.6695.

[133]

Dong F, Hao F, Murray IA, et al. Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity. Gut Microbes. 2020; 12(1):1-24. https://doi.org/10.1080/19490976.2020.1766777.

[134]

Ying Y, Song LY, Pang WL, et al. Astragalus polysaccharide protects experimental colitis through an aryl hydrocarbon receptor-dependent autophagy mechanism. Br J Pharmacol. 2024; 181(5):681-697. https://doi.org/10.1111/bph.16229.

[135]

Rees WD, Stahl M, Jacobson K, et al. Enteroids derived from inflammatory bowel disease patients display dysregulated endoplasmic reticulum stress pathways, leading to differential inflammatory responses and dendritic cell maturation. J Crohns Colitis. 2020; 14(7):948-961. https://doi.org/10.1093/ecco-jcc/jjz194.

[136]

Yin S, Li L, Tao Y, et al. The inhibitory effect of artesunate on excessive endoplasmic reticulum stress alleviates experimental colitis in mice. Front Pharmacol. 2021;12:629798. https://doi.org/10.3389/fphar.2021.629798.

[137]

Zhang S, Wang S, Fan YY, et al. Preparation of a new resource food-arabinogalactan and its protective effect against enterotoxicity in IEC-6 cells by inhibiting endoplasmic reticulum stress. Int J Biol Macromol. 2023;249:126124. https://doi.org/10.1016/j.ijbiomac.2023.126124.

[138]

Huang C, Yao R, Zhu Z, et al. A pectic polysaccharide from water decoction of Xinjiang Lycium barbarum fruit protects against intestinal endoplasmic reticulum stress. Int J Biol Macromol. 2019; 130:508-514. https://doi.org/10.1016/j.ijbiomac.2019.02.157.

[139]

Wen A, Zaige X, Yang B, et al. Effects of Poria cocos polysaccharides on intestinal barrier function impairment and inflammatory response in type 2 diabetic mice based on endoplasmic reticulum stress-autophagy pathway. Chin J Pathophysiol. 2022; 38(5):829-838. https://doi.org/10.3969/j.issn.1000-4718.2022.05.007.

[140]

Corrie L, Gulati M, Awasthi A, et al. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: as therapeutics and polymers for drug delivery. Chem Biol Interact. 2022;368:110238. https://doi.org/10.1016/j.cbi.2022.110238.

[141]

Juan S, Le Y, Qi L, et al. Advances in the study of natural pectin. Chin Hemp Sci. 2023; 45(4):183-192. https://doi.org/10.16213/j.cnki.scjas.2023.04.005.

[142]

Donadio JLS, Fabi JP, Sztein MB, et al. Dietary fiber pectin: challenges and potential anti-inflammatory benefits for preterms and newborns. Front Nutr. 2023;10:1286138. https://doi.org/10.3389/fnut.2023.1286138.

[143]

Wu D, Chen S, Ye X, et al. Protective effects of six different pectic polysaccharides on DSS-induced IBD in mice. Food Hydrocoll. 2022;127:107471. https://doi.org/10.1016/j.foodhyd.2022.107471.

[144]

He JL. Characterization of the extraction of green plum pectin and its protective effect against intestinal inflammation. Nanjing Univ Financ Econ. 2022. https://doi.org/10.27705/d.cnki.gnjcj.2022.000290.

[145]

Fan GN. Characterization of partially hydrolyzed guar gum and its application prospects in enteral nutrition. J Food Saf. 2020; 30:142-145. https://doi.org/10.16043/j.cnki.cfs.2020.30.104.

[146]

Zhou TX, Wang HL, Han Q, et al. Progress of guar gum and its derivatives. Cereals Oils. 2023; 36(11):1-5. https://doi.org/10.16429/j.1009-7848.2023.11.001.

[147]

Carlson J, Gould T, Slavin J. In vitro analysis of partially hydrolyzed guar gum fermentation on identified gut microbiota. Anaerobe. 2016; 42:60-66. https://doi.org/10.1016/j.anaerobe.2016.08.006.

[148]

Takagi T, Naito Y, Higashimura Y, et al. Partially hydrolysed guar gum ameliorates murine intestinal inflammation in association with modulating luminal microbiota and SCFA. Br J Nutr. 2016; 116(7):1199-1205. https://doi.org/10.1017/S0007114516003068.

[149]

Horii Y, Uchiyama K, Toyokawa Y, et al.Partially hydrolyzed guar gum enhances colonic epithelial wound healing via activation of RhoA and ERK1/2. Food Funct. 2016; 7(7):3176-3183. https://doi.org/10.1039/C6FO00177G.

[150]

Ting ST, Jie ZM, Feng LT, et al. Advances in the study of inulin in higher plants. Strait Pharm J. 2019; 31(11):1-5. https://doi.org/10.13728/j.1673-6427.2019.11.001.

[151]

Liu ZL, Li KW, Wang JB, et al. Physicochemical properties, physiological efficacy of oligofructose and its application. China Food Addit. 2016; 10:211-215. https://doi.org/10.3969/j.issn.1006-2513.2016.10.033.

[152]

Zhou J, Wang J, Li D, et al. An inulin-type fructan CP-A from Codonopsis pilosula alleviates TNBS-induced ulcerative colitis based on serum-untargeted metabolomics. Am J Physiol Gastrointest Liver Physiol. 2024; 326(3):G216-227. https://doi.org/10.1152/ajpgi.00214.2023.

[153]

Ma Q, Zhang X, Xu X, et al. Long-term oral administration of burdock fructooligosaccharide alleviates DSS-induced colitis in mice by mediating anti-inflammatory effects and protection of intestinal barrier function. Immun Inflamm Dis. 2023; 11(11):e1092. https://doi.org/10.1002/iid3.1092.

[154]

Wu RL, Liu T, Wang Z, et al. Regulatory effects of chrysanthemum powder on the intestinal flora of mice with inflammatory bowel disease. Mod Food Sci Technol. 2020; 36(12):13-21. https://doi.org/10.13982/j.mfst.1673-9078.2020.12.0598.

[155]

Li XM, Ji CF, Ji YB. Study on sulfated seaweed polysaccharide and its biological activity. J Harbin Univ Commerce (Nat Sci Ed). 2017; 33(1):11-14. https://doi.org/10.19492/j.cnki.1672-0946.2017.01.004.

[156]

Ahmad T, Ishaq M, Karpiniec S, et al. Oral Macrocystis pyrifera fucoidan administration exhibits anti-inflammatory and antioxidant properties and improves DSS-induced colitis in C57BL/6J mice. Pharmaceutics. 2022; 14(11):3067. https://doi.org/10.3390/pharmaceutics14113067.

[157]

Ye Z, Li SC, Li M, et al. Advances in the preparation of sodium alginate microspheres. Biochemistry. 2021; 7(1):131-133. https://doi.org/10.12203/j.biochem.202109002.

[158]

Huang J, Huang J, Li Y, et al. Sodium alginate modulates immunity, intestinal mucosal barrier function, and gut microbiota in cyclophosphamide-induced immunosuppressed BALB/c mice. J Agric Food Chem. 2021; 69(25):7064-7073. https://doi.org/10.1021/acs.jafc.1c02294.

[159]

Chen Y, Wang J, Li J, et al. Astragalus polysaccharide prevents ferroptosis in a murine model of experimental colitis and human Caco-2 cells via inhibiting NRF2/HO-1 pathway. Eur J Pharmacol. 2021;911:174518. https://doi.org/10.1016/j.ejphar.2021.174518.

[160]

Wang Y, Zhang N, Kan J, et al. Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice. Carbohydr Polym. 2019; 213:89-99. https://doi.org/10.1016/j.carbpol.2019.02.090.

[161]

Liu H, Liang J, Zhong Y, et al. Dendrobium officinale polysaccharide alleviates intestinal inflammation by promoting small extracellular vesicle packaging of miR-433-3p. J Agric Food Chem. 2021; 69(45):13510-13523. https://doi.org/10.1021/acs.jafc.1c05134.

[162]

Liu J, Wang J, Li S, et al. Progress in the study of structure and function of chitosan and its application in agriculture. J Packaging. 2023; 15(4):21-28. https://doi.org/10.19554/j.cnki.1001-3563.2023.04.003.

[163]

Hadji H, Bouchemal K. Advances in the treatment of inflammatory bowel disease: focus on polysaccharide nanoparticulate drug delivery systems. Adv Drug Deliv Rev. 2022;181:114101. https://doi.org/10.1016/j.addr.2021.114101.

[164]

Chen SQ, Song YQ, Wang C, et al. Chitosan-modified lipid nanodrug delivery system for the targeted and responsive treatment of ulcerative colitis. Carbohydr Polym. 2020;230:115613. https://doi.org/10.1016/j.carbpol.2019.115613.

[165]

Wang Y, Wen R, Liu D, et al. Exploring effects of chitosan oligosaccharides on the DSS-induced intestinal barrier impairment in vitro and in vivo. Molecules. 2021; 26(8):2199. https://doi.org/10.3390/molecules26082199.

[166]

Wang J, Zhang C, Guo C, et al. Chitosan ameliorates DSS-induced ulcerative colitis mice by enhancing intestinal barrier function and improving microflora. Int J Mol Sci. 2019; 20(22):5678. https://doi.org/10.3390/ijms20225678.

[167]

Li JS, Gan QY, Zhu LY, et al. Progress of hyaluronic acid for wound dressing. Chem Fibre Text Technol. 2022; 51(7):18-21. https://doi.org/10.19507/j.cnki.1673-0356.2022.07.006.

[168]

Zhao Y, Chen LP, Xie BP. Application of hyaluronic acid in drug discovery. J Gannan Med Univ. 2021; 41(12):1277-1281. https://doi.org/10.3969/j.issn.1001-5779.2021.12.017.

[169]

Lee Y, Sugihara K, Gillilland MG, et al. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater. 2020; 19(1):118-126. https://doi.org/10.1038/s41563-019-0462-9.

[170]

Yu T, Lian XJ. Advances in the mechanism of anti-tumor effects of polysaccharides from medicinal fungi. Contemp Med Ser. 2020; 18(3):27-29. https://doi.org/10.3969/j.issn.2095-7629.2020.03.016.

[171]

Hua H, Pan C, Chen X, et al. Probiotic lactic acid bacteria alleviate pediatric IBD and remodel gut microbiota by modulating macrophage polarization and suppressing epithelial apoptosis. Front Microbiol. 2023;14:1168924. https://doi.org/10.3389/fmicb.2023.1168924.

[172]

Li Z, Wang L, Lin X, et al. Drug delivery for bioactive polysaccharides to improve their drug-like properties and curative efficacy. Drug Deliv. 2017; 24(sup1):70-80. https://doi.org/10.1080/10717544.2017.1310747.

[173]

Ye D, Zhao Q, Ding D, et al. Preclinical pharmacokinetics-related pharmacological effects of orally administered polysaccharides from traditional Chinese medicines: a review. Int J Biol Macromol. 2023;252:126484. https://doi.org/10.1016/j.ijbiomac.2023.126484.

[174]

Zheng Z, Pan X, Xu J, et al. Advances in tracking of polysaccharides in vivo: labeling strategies, potential factors and applications based on pharmacokinetic characteristics. Int J Biol Macromol. 2020; 163:1403-1420. https://doi.org/10.1016/j.ijbiomac.2020.07.210.

[175]

Wijesekara T, Xu B. New insights into sources, bioavailability, health-promoting effects, and applications of chitin and chitosan. J Agric Food Chem. 2024; 72(31):17138-17152. https://doi.org/10.1021/acs.jafc.4c02162.

[176]

Zhang X, Zhang L, Xu X. Morphologies and conformation transition of lentinan in aqueous NaOH solution. Biopolymers. 2004; 75(2):187-195. https://doi.org/10.1002/bip.20112.

[177]

Miura NN, Ohno N, Adachi Y, et al. Comparison of the blood clearance of triple- and single-helical schizophyllan in mice. Biol Pharm Bull. 1995; 18(1):185-189. https://doi.org/10.1248/bpb.18.185.

[178]

Xu S, Ping Z, Xu X, et al. Changes in shape and size of the stiff branched β-glucan in dimethlysulfoxide/water solutions. Carbohydr Polym. 2016; 138:86-93. https://doi.org/10.1016/j.carbpol.2015.11.049.

[179]

Zheng Y, Xie Q, Wang H, et al. Recent advances in plant polysaccharide-mediated nano drug delivery systems. Int J Biol Macromol. 2020; 165(Pt B):2668-2683. https://doi.org/10.1016/j.ijbiomac.2020.08.193.

[180]

Zeng Y, Xiang Y, Sheng R, et al. Polysaccharide-based nanomedicines for cancer immunotherapy: a review. Bioact Mater. 2021; 6(10):3358-3382. https://doi.org/10.1016/j.bioactmat.2021.05.015.

[181]

Gu P, Zhang Y, Cai G, et al. Administration routes of polyethylenimine-coated PLGA nanoparticles encapsulating Angelica sinensis polysaccharide vaccine delivery system affect immune responses. Mol Pharm. 2021; 18(6):2274-2284. https://doi.org/10.1021/acs.molpharmaceut.1c00090.

[182]

Hwang J, Zhang W, Dhananjay Y, et al. Astragalus membranaceus polysaccharides potentiate the growth-inhibitory activity of immune checkpoint inhibitors against pulmonary metastatic melanoma in mice. Int J Biol Macromol. 2021; 182:1292-1300. https://doi.org/10.1016/j.ijbiomac.2021.05.073.

[183]

Song H, Chen F, Cao Y, et al. Innovative applications of pectin in lipid management: mechanisms, modifications, synergies, nanocarrier systems, and safety considerations. J Agric Food Chem. 2024; 72(37):20261-20272. https://doi.org/10.1021/acs.jafc.4c06586.

[184]

Tao A, Zhang Y, Gan Z, et al. Isolation, structural features, and bioactivities of polysaccharides from Panax notoginseng: a review. Int J Biol Macromol. 2024; 280(Pt 1):135765. https://doi.org/10.1016/j.ijbiomac.2024.135765.

[185]

Wang L, Li F, Zhang HW, et al. Immunomodulatory function and safety evaluation of Ganoderma lucidum polysaccharide-containing compound preparation. Sci Technol Food Ind. 2024; 45(21):1-20. https://doi.org/10.13386/j.issn1002-0306.2023100046.

[186]

Zhao R, Ni R, He J, et al.Safety study of Astragalus polysaccharide. J Food Sci. 2009; 30(19):309-313. https://doi.org/10.13386/j.issn1002-0306.2009.19.082.

[187]

Hou S, Liu Y, Feng F, et al. Polysaccharide-peptide cryogels for multidrug-resistant-bacteria infected wound healing and hemostasis. Adv Healthc Mater. 2020; 9(3):e1901041. https://doi.org/10.1002/adhm.201901041.

[188]

Hachim D, Zhao J, Bhankharia J, et al. Polysaccharide-polyplex nanofilm coatings enhance nanoneedle-based gene delivery and transfection efficiency. Small. 2022; 18(36):e2202303. https://doi.org/10.1002/smll.202202303.

[189]

Wan X, Yin Y, Zhou C, et al. Polysaccharides derived from Chinese medicinal herbs: a promising choice of vaccine adjuvants. Carbohydr Polym. 2022;276:118739. https://doi.org/10.1016/j.carbpol.2021.118739.

[190]

Zhang M, Zhang Y, Zhang L, et al. Mushroom polysaccharide lentinan for treating different types of cancers: a review of 12 years clinical studies in China. Prog Mol Biol Transl Sci. 2019; 163:297-328. https://doi.org/10.1016/bs.pmbts.2019.03.005.

[191]

Zhao YL. Study on the therapeutic role of mushroom polysaccharides in inflammatory bowel disease-inflammatory cancer transformation. Nankai Univ. 2016:1-63.

[192]

Li X, He Y, Zeng P, et al. Molecular basis for Poria cocos mushroom polysaccharide used as an antitumour drug in China. J Cell Mol Med. 2019; 23(1):4-20. https://doi.org/10.1111/jcmm.13564.

[193]

Zhong Y, Wang Z, Zhang L. Progress of natural small molecules protecting intestinal epithelial tight junction barrier in inflammatory bowel disease. Chin Pharmacol Bull. 2023; 39(12):2205-2210. https://doi.org/10.12360/CPB202312001.

[194]

Wang J. Protective effects of ginseng polysaccharides on DSS-induced inflammatory bowel disease in mice. Jilin Univ. 2023. https://doi.org/10.27162/d.cnki.gjlin.2022.003272.

[195]

Zhao Q, Bai L, Zhu D, et al. Clinical efficacy and potential mechanism of ginseng polysaccharides in the treatment of non-small cell lung cancer based on meta-analysis associated with network pharmacology. Heliyon. 2024; 10(6):e27152. https://doi.org/10.1016/j.heliyon.2024.e27152.

PDF (9006KB)

142

Accesses

0

Citation

Detail

Sections
Recommended

/