Protective role of natural products in pulmonary fibrosis through immuneregulation

Yijia Su , Xianhua Che , Yonghu Chen , Xilin Wu , Jiamin Wang , Zhe Jiang , Xuezheng Li

Chinese Journal of Natural Medicines ›› 2026, Vol. 24 ›› Issue (1) : 23 -32.

PDF (8694KB)
Chinese Journal of Natural Medicines ›› 2026, Vol. 24 ›› Issue (1) :23 -32. DOI: 10.1016/S1875-5364(26)61074-6
Review
research-article

Protective role of natural products in pulmonary fibrosis through immuneregulation

Author information +
History +
PDF (8694KB)

Abstract

Pulmonary fibrosis (PF) is a progressive, fatal fibrotic disease caused by respiratory conditions. The condition can ultimately lead to severe organ failure and mortality, and is associated with multiple risk factors. Growing evidence highlights the immune system’s role in PF, with various immune components participating in inflammatory and fibrotic processes. Different immune cells, including neutrophils, lymphocytes, and macrophages, demonstrate distinct effects on PF progression and development. Furthermore, key immune system cytokines, including the interleukin (IL) family, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, transforming growth factor (TGF)-β, and connective tissue growth factor (CTGF), contribute to PF initiation and progression through independent mechanisms and mutual regulation. Currently, limited effective treatments exist for PF, with several treatments causing severe adverse reactions. Natural products, characterized by multi-target effects, holistic regulation, and low toxicity, have emerged as a research focus. This review compiles the mechanisms, therapeutic potential, and active components of various natural products. These compounds can ameliorate pulmonary inflammation, epithelial-mesenchymal transition, and collagen deposition through diverse immune mechanisms, acting at specific stages or throughout the fibrotic process, thereby supporting PF management. This review examines current scientific understanding of natural products’ immunological effects in PF, which is crucial for developing future anti-PF therapeutics.

Keywords

Pulmonary fibrosis / Natural products / Immune cell / Cytokines

Cite this article

Download citation ▾
Yijia Su, Xianhua Che, Yonghu Chen, Xilin Wu, Jiamin Wang, Zhe Jiang, Xuezheng Li. Protective role of natural products in pulmonary fibrosis through immuneregulation. Chinese Journal of Natural Medicines, 2026, 24(1): 23-32 DOI:10.1016/S1875-5364(26)61074-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu GY, Scott BGR, Dematte JE. Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis. BMJ. 2022;377:e066354. https://doi.org/10.1136/bmj-2021-066354.

[2]

Casal A, Suárez-Antelo J, Riveiro V, et al. Smoking-related interstitial lung disease: a narrative review. Chron Respir Dis. 2024;21:14799731241291538. https://doi.org/10.1177/14799731241291538.

[3]

Yatera K, Nishida C. Contemporary concise review 2023: environmental and occupational lung diseases. Respirology. 2024; 29(7):574-587. https://doi.org/10.1111/resp.14761.

[4]

Cheng X, Jiang S, Pan B, et al. Ectopic and visceral fat deposition in aging, obesity, and idiopathic pulmonary fibrosis: an interconnected role. Lipds Health Dis. 2023; 22(1):201. https://doi.org/10.1186/s12944-023-01964-3.

[5]

Heukels P, Moor CC, et al.von der Thüsen JH, Inflammation and immunity in IPF pathogenesis and treatment. Respir Med. 2019; 147:79-91. https://doi.org/10.1016/j.rmed.2018.12.015.

[6]

Ge Z, Chen Y, Ma L, et al. Macrophage polarization and its impact on idiopathic pulmonary fibrosis. Front Immunol. 2024;15:1444964. https://doi.org/10.3389/fimmu.2024.1444964.

[7]

Zhang M, Zhang S. T cells in fibrosis and fibrotic diseases. Front Immunol. 2020;11:1142. https://doi.org/10.3389/fimmu.2020.01142.

[8]

Winters NI, Burman A, Kropski JA, et al. Epithelial injury and dysfunction in the pathogenesis of idiopathic pulmonary fibrosis. Am J Med Sci. 2019; 357(5):374-378. https://doi.org/10.1016/j.amjms.2019.01.010.

[9]

Wang J, Li K, Hao D, et al. Pulmonary fibrosis: pathogenesis and therapeutic strategies. MedComm. 2024; 5(10):e744. https://doi.org/10.1002/mco2.744.

[10]

Zhang Y, Wang J. Cellular and molecular mechanisms in idiopathic pulmonary fibrosis. Adv Respir Med. 2023; 91(1):26-48. https://doi.org/10.3390/arm91010005.

[11]

Chen H, Matsumoto K, Stripp BR.Bronchiolar progenitor cells. Proc Am Thorac Soc. 2009; 6(7):602-606. https://doi.org/10.1513/pats.200907-078rm.

[12]

Zhang L, Wang Y, Wu G, et al. Macrophages: friend or foe in idiopathic pulmonary fibrosis? Respir Res. 2018; 19(1):170. https://doi.org/10.1186/s12931-018-0864-2.

[13]

Saradna A, Do DC, Kumar S, et al.Macrophage polarization and allergic asthma. Transl Res. 2018; 191:1-14. https://doi.org/10.1016/j.trsl.2017.09.002.

[14]

Funes SC, Rios M, Escobar-Vera J, et al. Implications of macrophage polarization in autoimmunity. Immunology. 2018; 154(2):186-195. https://doi.org/10.1111/imm.12910.

[15]

Cheng P, Li S, Chen H. Macrophages in lung injury, repair, and fibrosis. Cells. 2021; 10(2):436. https://doi.org/10.3390/cells10020436.

[16]

Akata K, van Eeden SF. Lung macrophage functional properties in chronic obstructive pulmonary disease. Int J Mol Sci. 2020; 21(3):853. https://doi.org/10.3390/ijms21030853.

[17]

Lis-López L, Bauset C, Seco-Cervera M, et al. Is the macrophage phenotype determinant for fibrosis development? Biomedicines. 2021; 9(12):1747. https://doi.org/10.3390/biomedicines9121747.

[18]

Deng L, Jian Z, Xu T, et al. Macrophage polarization: an important candidate regulator for lung diseases. Molecules. 2023; 28(5):2379. https://doi.org/10.3390/molecules28052379.

[19]

Hu M, Yao Z, Xu L, et al. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon. 2023; 9(5):e16206. https://doi.org/10.1016/j.heliyon.2023.e16206.

[20]

Wang Q, Ni H, Lan L, et al. Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 2010; 20(6):701-712. https://doi.org/10.1038/cr.2010.52.

[21]

Rui Y. Study on the mechanism of eucalyptol inhibiting pulmonary fibrosis by downregulating M2 macrophage polarization. Shandong Univ. 2023. https://doi.org/10.27272/d.cnki.gshdu.2023.000774.

[22]

Xu Y, Tan X, Wang Y, et al. Mechanism study of thymoquinone regulating M2 macrophage phenotype polarization. Chin Tradit Pat Med. 2016; 38(2):235-240. https://doi.org/10.3969/j.issn.1001-1528.2016.02.002.

[23]

Xiang J, Cheng S, Feng T, et al. Neotuberostemonine attenuates bleomycin-induced pulmonary fibrosis by suppressing the recruitment and activation of macrophages. Int Immunopharmacol. 2016; 36:158-164. https://doi.org/10.1016/j.intimp.2016.04.016.

[24]

Luzina IG, Todd NW, Iacono AT, et al. Roles of T lymphocytes in pulmonary fibrosis. J Leukoc Biol. 2008; 83(2):237-244. https://doi.org/10.1189/jlb.0707504.

[25]

Desai O, Winkler J, Minasyan M, et al. The role of immune and inflammatory cells in idiopathic pulmonary fibrosis. Front Med. 2018;5:43. https://doi.org/10.3389/fmed.2018.00043.

[26]

Baraut J, Michel L, Verrecchia F, et al. Relationship between cytokine profiles and clinical outcomes in patients with systemic sclerosis. Autoimmun Rev. 2010; 10(2):65-73. https://doi.org/10.1016/j.autrev.2010.08.003.

[27]

Li S, Ding X, Zhang H, et al. IL-25 improves diabetic wound healing through stimulating M2 macrophage polarization and fibroblast activation. Int Immunopharmacol. 2022;106:108605. https://doi.org/10.1016/j.intimp.2022.108605.

[28]

Lee C, Lee Y, Wang C, et al. Polygonum multiflorum decreases airway allergic symptoms in a murine model of asthma. Am J Chin Med. 2016; 44(1):133-147. https://doi: 10.1142/S0192415X16500099.

[29]

Wang G, Liu C, Wang Z, et al. Effects of Astragalus membranaceus in promoting T-helper cell type 1 polarization and interferon-gamma production by up-regulating T-bet expression in patients with asthma. Chin J Integr Med. 2006; 12(4):262-267. https:// https://doi.org/10.1007/s11655-006-0262-y.

[30]

Guo T, Zou L, Ni J, et al. Regulatory T cells: an emerging player in radiation-induced lung injury. Front Immunol. 2020;11:1769. https://doi.org/10.3389/fimmu.2020.01769.

[31]

Dong Y, Yang M, Zhang J, et al. Depletion of CD8+ T cells exacerbates CD4+ T cell-induced monocyte-to-fibroblast transition in renal fibrosis. J Immunol. 2016; 196(4):1874-1881. https://doi.org/10.4049/jimmunol.1501232.

[32]

Brodeur TY, Robidoux TE, Weinstein JS, et al. IL-21 promotes pulmonary fibrosis through the induction of profibrotic CD8+ T cells. J Immunol. 2015; 195(11):5251-5260. https://doi.org/10.4049/jimmunol.1500777.

[33]

Zeng W, Jin L, Zhang F, et al. Naringenin as a potential immunomodulator in therapeutics. Pharmacol Res. 2018; 135:122-126. https://doi.org/10.1016/j.phrs.2018.08.002.

[34]

Wang L, Liu H, He Q, et al. Galangin ameliorated pulmonary fibrosis in vivo and in vitro by regulating epithelial-mesenchymal transition. Bioorg Med Chem. 2020; 28(19):115663. https://doi.org/10.1016/j.bmc.2020.115663.

[35]

Niu CH, Wang Y, Liu JD, et al. Protective effects of neferine on amiodarone-induced pulmonary fibrosis in mice. Eur J Pharmacol. 2013; 714(1-3):112-119. https://doi.org/10.1016/j.ejphar.2013.06.004.

[36]

Kolahian S, Fernandez IE, Eickelberg O, et al.Immune mechanisms in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2016; 55(3):309-322. https://doi.org/10.1165/rcmb.2016-0121tr.

[37]

Kruger P, Saffarzadeh M, Weber ANR, et al. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog. 2015; 11(3):e1004651. https://doi.org/10.1371/journal.ppat.1004651.

[38]

Chua F, Dunsmore SE, Clingen PH, et al. Mice lacking neutrophil elastase are resistant to bleomycin-induced pulmonary fibrosis. Am J Pathol. 2007; 170(1):65-74. https://doi.org/10.2353/ajpath.2007.060352.

[39]

Mahalanobish S, Saha S, Dutta S, et al. Matrix metalloproteinase: an upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacol Res. 2020;152:104591. https://doi.org/10.1016/j.phrs.2019.104591.

[40]

Craig VJ, Zhang L, Hagood JS, et al. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015; 53(5):585-600. https://doi.org/10.1165/rcmb.2015-0020tr.

[41]

Madtes DK, Elston AL, Kaback LA, et al. Selective induction of tissue inhibitor of metalloproteinase-1 in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2001; 24(5):599-607. https://doi.org/10.1165/ajrcmb.24.5.4192.

[42]

Geng Q, Wei Q, Wang S, et al. Physcion 8-O-β-glucopyranoside extracted from Polygonum cuspidatum exhibits anti-proliferative and anti-inflammatory effects on MH7A rheumatoid arthritis-derived fibroblast-like synoviocytes through the TGF-β/MAPK pathway. Int J Mol Med. 2018; 42(2):745-754. https://doi.org/10.3892/ijmm.2018.3649.

[43]

Shao J. Effects of schisandrin B on the expression of MMP-9 and TIMP-1 mRNA in lung tissue of rats induced by silica dust. Natl Med Front Chin. 2013; 23:24-25. https://doi.org/10.3969/j.issn.1673-5552.2013.23.0013.

[44]

Ruaro B, Salton F, Braga L, et al. The history and mystery of alveolar epithelial type II cells: focus on their physiologic and pathologic role in lung. Int J Mol Sci. 2021; 22(5):2566. https://doi.org/10.3390/ijms22052566.

[45]

van Geffen C, Deißler A, Quante M, et al. Regulatory immune cells in idiopathic pulmonary fibrosis: friends or foes? Front Immunol. 2021;12:663203. https://doi.org/10.3389/fimmu.2021.663203.

[46]

Klee S, Lehmann M, Wagner DE, et al. WISP1 mediates IL-6-dependent proliferation in primary human lung fibroblasts. Sci Rep. 2016;6:20547. https://doi.org/10.1038/srep20547.

[47]

Passalacqua G, Mincarini M, Colombo D, et al. IL-13 and idiopathic pulmonary fibrosis: possible links and new therapeutic strategies. Pulm Pharmacol Ther. 2017; 45:95-100. https://doi.org/10.1016/j.pupt.2017.05.007.

[48]

Jakubzick C, Choi ES, Carpenter KJ, et al. Human pulmonary fibroblasts exhibit altered interleukin-4 and interleukin-13 receptor subunit expression in idiopathic interstitial pneumonia. Am J Pathol. 2004; 164(6):1989-2001. https://doi.org/10.1016/s0002-9440(10)63759-5.

[49]

Song C, He L, Zhang J, et al. Fluorofenidone attenuates pulmonary inflammation and fibrosis via inhibiting the activation of NALP3 inflammasome and IL-1β/IL-1R1/MyD88/NF-κB pathway. J Cell Mol Med. 2016; 20(11):2064-2077. https://doi.org/10.1111/jcmm.12898.

[50]

Huang M, Sharma S, Zhu LX, et al. IL-7 inhibits fibroblast TGF-β production and signaling in pulmonary fibrosis. J Clin Invest. 2002; 109(7):931-937. https://doi.org/10.1172/jci14685.

[51]

Sziksz E, Pap D, Lippai R, et al. Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediat Inflamm. 2015;2015:764641. https://doi.org/10.1155/2015/764641.

[52]

Zhang LM, Zhang Y, Fei C, et al. Neutralization of IL-18 by IL-18 binding protein ameliorates bleomycin-induced pulmonary fibrosis via inhibition of epithelial-mesenchymal transition. Biochem Biophys Res Commun. 2019; 508(2):660-666. https://doi.org/10.1016/j.bbrc.2018.11.129.

[53]

Lo Re S, Lecocq M, Uwambayinema F, et al. Platelet-derived growth factor-producing CD4+ Foxp3+ regulatory T lymphocytes promote lung fibrosis. Am J Respir Crit Care Med. 2011; 184(11):1270-1281. https://doi.org/10.1164/rccm.201103-0516oc.

[54]

Gasse P, Mary C, Guenon I, et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest. 2007; 117(12):3786-3799. https://doi.org/10.1172/jci32285.

[55]

Zhang Y, Lee TC, Guillemin B, et al. Enhanced IL-1β and tumor necrosis factor-α release and messenger RNA expression in macrophages from idiopathic pulmonary fibrosis or after asbestos exposure. J Immunol. 1993; 150(9):4188-4196. https://doi.org/10.4049/jimmunol.150.9.4188.

[56]

Kline JN, Schwartz DA, Monick MM, et al. Relative release of lnterleukin-1β and lnterleukin-1 receptor antagonist by alveolar macrophages. Chest. 1993; 104(1):47-53. https://doi.org/10.1378/chest.104.1.47.

[57]

Aono Y, Nishioka Y, Inayama M, et al. Imatinib as a novel antifibrotic agent in bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med. 2005; 171(11):1279-1285. https://doi.org/10.1164/rccm.200404-531oc.

[58]

Du MY, Duan JX, Zhang CY, et al. Psoralen attenuates bleomycin-induced pulmonary fibrosis in mice through inhibiting myofibroblast activation and collagen deposition. Cell Biol Int. 2020; 44(1):98-107. https://doi.org/10.1002/cbin.11205.

[59]

Song L, Yu B, Yang L, et al. The mechanism of psoralen and isopsoralen hepatotoxicity as revealed by hepatic gene expression profiling in SD rats. Basic Clin Pharma Tox. 2019; 125(6):527-535. https://doi.org/10.1111/bcpt.13287.

[60]

Seo E, Kang H, Oh Y, et al. Psoralea corylifolia L. seed extract attenuates diabetic nephropathy by inhibiting renal fibrosis and apoptosis in streptozotocin-induced diabetic mice. Nutrients. 2017; 9(8):828. https://doi.org/10.3390/nu9080828.

[61]

Guo J, Song D, Han F, et al. In vitro transport mechanism of psoralen in a human placental cell line (BeWo cells) . Planta Med. 2015; 81(2):138-144. https://doi.org/10.1055/s-0034-1396147.

[62]

Dinesh BV, Suresh KA, Sudhandiran G. Diosgenin inhibits TGF-β1/Smad signaling and regulates epithelial mesenchymal transition in experimental pulmonary fibrosis. Drug Chem Toxicol. 2022; 45(3):1264-1275. https://doi.org/10.1080/01480545.2020.1814803.

[63]

Qin Y, Wu X, Huang W, et al.Acute toxicity and sub-chronic toxicity of steroidal saponins from Dioscorea zingiberensis C.H. Wright in rodents. J Ethnopharmacol. 2009; 126(3):543-550. https://doi.org/10.1016/j.jep.2009.08.047.

[64]

Manda V, Avula B, Ali Z, et al. Characterization of in vitro ADME properties of diosgenin and dioscin from Dioscorea villosa. Planta Med. 2013; 79(15):1421-1428. https://doi.org/10.1055/s-0033-1350699.

[65]

Luo X, Deng Q, Xue Y, et al. Anti-fibrosis effects of magnesium lithospermate B in experimental pulmonary fibrosis: by inhibiting TGF-βRI/Smad signaling. Molecules. 2021; 26(6):1715. https://doi.org/10.3390/molecules26061715.

[66]

Saito F, Tasaka S, Inoue KI, et al. Role of interleukin-6 in bleomycin-induced lung inflammatory changes in mice. Am J Respir Cell Mol Biol. 2008; 38(5):566-571. https://doi.org/10.1165/rcmb.2007-0299oc.

[67]

Kobayashi T, Tanaka K, Fujita T, et al. Bidirectional role of IL-6 signal in pathogenesis of lung fibrosis. Respir Res. 2015; 16(1):99. https://doi.org/10.1186/s12931-015-0261-z.

[68]

Ayaub EA, Dubey A, Imani J, et al. Overexpression of OSM and IL-6 impacts the polarization of pro-fibrotic macrophages and the development of bleomycin-induced lung fibrosis. Sci Rep. 2017;7:13281. https://doi.org/10.1038/s41598-017-13511-z.

[69]

Xie Y, Li W, Lu C, et al. The effects of phycocyanin on bleomycin-induced pulmonary fibrosis and the intestinal microbiota in C57BL/6 mice. Appl Microbiol Biotechnol. 2019; 103(20):8559-8569. https://doi.org/10.1007/s00253-019-10018-7.

[70]

Akitsu A, Iwakura Y. Interleukin-17-producing γδ T (γδ17) cells in inflammatory diseases. Immunology. 2018; 155(4):418-426. https://doi.org/10.1111/imm.12993.

[71]

Yan K, Yang J, Qian Q, et al. Pathogenic role of an IL-23/γδT17/neutrophil axis in coxsackievirus B3-induced pancreatitis. J Immunol. 2019; 203(12):3301-3312. https://doi.org/10.4049/jimmunol.1900787.

[72]

Domingues RG, Hepworth MR. Immunoregulatory sensory circuits in group 3 innate lymphoid cell (ILC3) function and tissue homeostasis. Front Immunol. 2020;11:116. https://doi.org/10.3389/fimmu.2020.00116.

[73]

John M, Au BT, Jose PJ, et al. Expression and release of interleukin-8 by human airway smooth muscle cells: inhibition by Th-2 cytokines and corticosteroids. Am J Respir Cell Mol Biol. 1998; 18(1):84-90. https://doi.org/10.1165/ajrcmb.18.1.2813.

[74]

Baggiolini M, Dewald B, Moser B. Lnterleukin-8 and related chemotactic cytokines: CXC and CC chemokines. Adv Immunol. 1994; 55:97-179. https://doi.org/10.1016/s0065-2776(08)60509-x.

[75]

Car BD, Meloni F, Luisetti M, et al. Elevated IL-8 and MCP-1 in the bronchoalveolar lavage fluid of patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir Crit Care Med. 1994; 149(3):655-659. https://doi.org/10.1164/ajrccm.149.3.8118632.

[76]

Lynch JP, Standiford TJ, Rolfe MW, et al.Neutrophilic alveolitis in idiopathic pulmonary fibrosis: the role of interleukin-8. Am Rev Respir Dis. 1992; 145(6):1433-1439. https://doi.org/10.1164/ajrccm/145.6.1433.

[77]

Carré PC, Mortenson RL, King TE, et al. Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. A potential mechanism for the recruitment and activation of neutrophils in lung fibrosis. J Clin Invest. 1991; 88(6):1802-1810. https://doi.org/10.1172/jci115501.

[78]

Keane MP, Arenberg DA, Lynch JP, et al. The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. J Immunol. 1997; 159(3):1437-1443. https://doi.org/10.4049/jimmunol.159.3.1437.

[79]

Okamoto M. Interleukin 18 (IL-18) in synergy with IL-2 induces lethal lung injury in mice: a potential role for cytokines, chemokines, and natural killer cells in the pathogenesis of interstitial pneumonia. Blood. 2002; 99(4):1289-1298. https://doi.org/10.1182/blood.v99.4.1289.

[80]

Kitasato Y, Hoshino T, Okamoto M, et al. Enhanced expression of interleukin-18 and its receptor in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2004; 31(6):619-625. https://doi.org/10.1165/rcmb.2003-0306oc.

[81]

Kawayama T, Okamoto M, Imaoka H, et al. Interleukin-18 in pulmonary inflammatory diseases. J Interf Cytokine Res. 2012; 32(10):443-449. https://doi.org/10.1089/jir.2012.0029.

[82]

Visscher DW. Histologic spectrum of idiopathic interstitial pneumonias. Proc Am Thorac Soc. 2006; 3(4):322-329. https://doi.org/10.1513/pats.200602-019tk.

[83]

Li F, Wang H, Cao B, et al. Mechanistic study of nebulized inhalation of glycyrrhizic acid alleviating pulmonary fibrosis in mice induced by bleomycin. Chin J Mod Med. 2018; 28(13):1-8. https://doi.org/10.3969/j.issn.1005-8982.2018.13.001.

[84]

Peng L, Wen L, Shi QF, et al. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis. 2020; 11(11):978. https://doi.org/10.1038/s41419-020-03178-2.

[85]

Zou S, Jie H, Han X, et al. The role of neutrophil extracellular traps in sepsis and sepsis-related acute lung injury. Int Immunopharmacol. 2023;124(Pt A):110436. https://doi.org/10.1016/j.intimp.2023.110436.

[86]

Shen YH, Cheng MH, Liu XY, et al. Sodium houttuyfonate inhibits bleomycin induced pulmonary fibrosis in mice. Front Pharmacol. 2021;12:596492. https://doi.org/10.3389/fphar.2021.596492.

[87]

Biron CA. Role of early cytokines, including alpha and beta interferons (IFN-αβ), in innate and adaptive immune responses to viral infections. Semin Immunol. 1998; 10(5):383-390. https://doi.org/10.1006/smim.1998.0138.

[88]

Paolini R, Bernardini G, Molfetta R, et al.NK cells and interferons. Cytokine Growth Factor Rev. 2015; 26(2):113-120. https://doi.org/10.1016/j.cytogfr.2014.11.003.

[89]

Santini SM, Di Pucchio T, Lapenta C, et al. The natural alliance between type I interferon and dendritic cells and its role in linking innate and adaptive immunity. J Interf Cytokine Res. 2002; 22(11):1071-1080. https://doi.org/10.1089/10799900260442494.

[90]

Galani IE, Koltsida O, Andreakos E. Type III interferons (IFNs): emerging master regulators of immunity. Adv Exp Med Biol. 2015; 850:1-15. https://doi.org/10.1007/978-3-319-15774-0_1.

[91]

Samuel CE.Antiviral actions of interferons. Clin Microbiol Rev. 2001; 14(4):778-809. https://doi.org/10.1128/cmr.14.4.778-809.2001.

[92]

Goodbourn S, Didcock L, Randall RE. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol. 2000; 81(10):2341-2364. https://doi.org/10.1099/0022-1317-81-10-2341.

[93]

Dallagi A, Girouard J, Hamelin-Morrissette J, et al. The activating effect of IFN-γ on monocytes/macrophages is regulated by the LIF-trophoblast-IL-10 axis via Stat1 inhibition and Stat3 activation. Cell Mol Immunol. 2015; 12(3):326-341. https://doi.org/10.1038/cmi.2014.50.

[94]

Hu X, Ivashkiv LB. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity. 2009; 31(4):539-550. https://doi.org/10.1016/j.immuni.2009.09.002.

[95]

Belardelli F. Role of interferons and other cytokines in the regulation of the immune response. APMIS. 1995; 103(3):161-179. https://doi.org/10.1111/j.1699-0463.1995.tb01092.x.

[96]

Du S, Li H, Cui Y, et al. Houttuynia cordata inhibits lipopolysaccharide-induced rapid pulmonary fibrosis by up-regulating IFN-γ and inhibiting the TGF-β1/Smad pathway. Int Immunopharmacol. 2012; 13(3):331-340. https://doi.org/10.1016/j.intimp.2012.03.011.

[97]

Ji Y, Wang T, Wei ZF, et al. Paeoniflorin, the main active constituent of Paeonia lactiflora roots, attenuates bleomycin-induced pulmonary fibrosis in mice by suppressing the synthesis of type I collagen. J Ethnopharmacol. 2013; 149(3):825-832. https://doi.org/10.1016/j.jep.2013.08.017.

[98]

Fernandez IE, Eickelberg O. The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc. 2012; 9(3):111-116. https://doi.org/10.1513/pats.201203-023aw.

[99]

Bartram U, Speer CP. The role of transforming growth factor β in lung development and disease. Chest. 2004; 125(2):754-765. https://doi.org/10.1378/chest.125.2.754.

[100]

Willis BC, Borok Z. TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 2007; 293(3):L525-L534. https://doi.org/10.1152/ajplung.00163.2007.

[101]

Wang C, Zhang W, Tang F, et al. Protective effects of sennoside A on bleomycin-induced pulmonary fibrosis and immune disorder. J Guangdong Pharm Univ. 2021; 37(4):40-45. https://doi.org/10.16809/j.cnki.2096-3653.2021040704.

[102]

Wang L, Jin M, Zang BX, et al. Inhibitory effect of safflor yellow on pulmonary fibrosis. Biol Pharm Bull. 2011; 34(4):511-516. https://doi.org/10.1248/bpb.34.511.

[103]

Chen C, Wang YY, Wang YX, et al. Gentiopicroside ameliorates bleomycin-induced pulmonary fibrosis in mice via inhibiting inflammatory and fibrotic process. Biochem Biophys Res Commun. 2018; 495(4):2396-2403. https://doi.org/10.1016/j.bbrc.2017.12.112.

[104]

Pi N, He Q, Zhong Y, et al. Gentiana cruciata regulates the TGF-β1/Smad2/3 signaling pathway to inhibit epithelial-mesenchymal transition in a mouse model of pulmonary fibrosis. Pharmacol Clin Chin Mater Med. 2021; 37:58-63. https://doi.org/10.13412/j.cnki.zyyl.2021.06.008.

[105]

Sheibani N. Editorial: connective tissue growth factor: a key factor among mediators of tissue fibrosis. J Ophthalmic Vis Res. 2022; 17(4):449-452. https://doi.org/10.18502/jovr.v17i4.12294.

[106]

Cunningham JL, Tsolakis AV, Jacobson A, et al. Connective tissue growth factor expression in endocrine tumors is associated with high stromal expression of α-smooth muscle actin. Eur J Endocrinol. 2010; 163(4):691-697. https://doi.org/10.1530/eje-10-0420.

[107]

Chen JQ, Guo YS, Chen Q, et al. TGFβ1 and HGF regulate CTGF expression in human atrial fibroblasts and are involved in atrial remodelling in patients with rheumatic heart disease. J Cell Mol Med. 2019; 23(4):3032-3039. https://doi.org/10.1111/jcmm.14165.

[108]

Verrecchia F, Mauviel A.Transforming growth factor-β and fibrosis. World J Gastroenterol. 2007; 13(22):3056-3062. https://doi.org/10.3748/wjg.v13.i22.3056.

[109]

Wang B, Wang L, Zhu R. The effect of dihydroartemisinin on the expression of ERK and CTGF in rats with pulmonary fibrosis. J North Sichuan Med Coll. 2019; 34(4):338-342. https://doi.org/10.3969/j.issn.1005-3697.2019.04.05.

[110]

Quan Y. The effects of total saponins of Panax notoginseng on pulmonary fibrosis and CTGF expression in rats. Third Military Med Univ. 2005.

[111]

Nagaoka I, Trapnell BC, Crystal RG. Upregulation of platelet-derived growth factor-A and -B gene expression in alveolar macrophages of individuals with idiopathic pulmonary fibrosis. J Clin Invest. 1990; 85(6):2023-2027. https://doi.org/10.1172/jci114669.

[112]

Bonner J. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004; 15(4):255-273. https://doi.org/10.1016/j.cytogfr.2004.03.006.

[113]

Hao X, Guo Z, Li J, et al. Effects of curcumin on platelet-derived growth factor and collagen expression in lung tissue of rats with silicosis-induced pulmonary fibrosis. Chin Occup Med. 2013; 40(5):411-415. https://doi.org/10.11763/j.issn.2095-2619.2013.05.006.

[114]

Malli F, Koutsokera A, Paraskeva E, et al. Endothelial progenitor cells in the pathogenesis of idiopathic pulmonary fibrosis: an evolving concept. PLoS One. 2013; 8(1):e53658. https://doi.org/10.1371/journal.pone.0053658.

[115]

Jin H, Jiao Y, Guo L, et al. Astragaloside IV blocks monocrotaline-induced pulmonary arterial hypertension by improving inflammation and pulmonary artery remodeling. Int J Mol Med. 2023; 47(2):595-606. https://doi.org/10.3892/ijmm.2020.4813.

PDF (8694KB)

223

Accesses

0

Citation

Detail

Sections
Recommended

/