Artificial intelligence in traditional Chinese medicine: from systems biological mechanism discovery, real-world clinical evidence inference to personalized clinical decision support

Dengying Yan , Qiguang Zheng , Kai Chang , Rui Hua , Yiming Liu , Jingyan Xue , Zixin Shu , Yunhui Hu , Pengcheng Yang , Yu Wei , Jidong Lang , Haibin Yu , Xiaodong Li , Runshun Zhang , Wenjia Wang , Baoyan Liu , Xuezhong Zhou

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (11) : 1342 -1357.

PDF (5188KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (11) :1342 -1357. DOI: 10.1016/S1875-5364(25)60983-6
Review
research-article

Artificial intelligence in traditional Chinese medicine: from systems biological mechanism discovery, real-world clinical evidence inference to personalized clinical decision support

Author information +
History +
PDF (5188KB)

Abstract

Traditional Chinese medicine (TCM) represents a paradigmatic approach to personalized medicine, developed through the systematic accumulation and refinement of clinical empirical data over more than 2000 years, and now encompasses large-scale electronic medical records (EMR) and experimental molecular data. Artificial intelligence (AI) has demonstrated its utility in medicine through the development of various expert systems (e.g., MYCIN) since the 1970s. With the emergence of deep learning and large language models (LLMs), AI’s potential in medicine shows considerable promise. Consequently, the integration of AI and TCM from both clinical and scientific perspectives presents a fundamental and promising research direction. This survey provides an insightful overview of TCM AI research, summarizing related research tasks from three perspectives: systems-level biological mechanism elucidation, real-world clinical evidence inference, and personalized clinical decision support. The review highlights representative AI methodologies alongside their applications in both TCM scientific inquiry and clinical practice. To critically assess the current state of the field, this work identifies major challenges and opportunities that constrain the development of robust research capabilities—particularly in the mechanistic understanding of TCM syndromes and herbal formulations, novel drug discovery, and the delivery of high-quality, patient-centered clinical care. The findings underscore that future advancements in AI-driven TCM research will rely on the development of high-quality, large-scale data repositories; the construction of comprehensive and domain-specific knowledge graphs (KGs); deeper insights into the biological mechanisms underpinning clinical efficacy; rigorous causal inference frameworks; and intelligent, personalized decision support systems.

Keywords

Artificial intelligence / Systems biological mechanism / Real-world clinical evidence / Clinical decision support

Cite this article

Download citation ▾
Dengying Yan, Qiguang Zheng, Kai Chang, Rui Hua, Yiming Liu, Jingyan Xue, Zixin Shu, Yunhui Hu, Pengcheng Yang, Yu Wei, Jidong Lang, Haibin Yu, Xiaodong Li, Runshun Zhang, Wenjia Wang, Baoyan Liu, Xuezhong Zhou. Artificial intelligence in traditional Chinese medicine: from systems biological mechanism discovery, real-world clinical evidence inference to personalized clinical decision support. Chinese Journal of Natural Medicines, 2025, 23(11): 1342-1357 DOI:10.1016/S1875-5364(25)60983-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang J, Liu B, Ma K.Traditional Chinese medicine. Lancet. 2008; 372(9654):1938-1940. https://doi.org/10.1016/S0140-6736(08)61354-9.

[2]

Li Shao, Xiao Wei, et al. General expert consensus on the application of network pharmacology in the research and development of new traditional Chinese medicine drugs. Chin J Nat Med. 2025; 23(2):129-142. https://doi.org/10.1016/S1875-5364(25)60802-8.

[3]

Jiang WY. Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science. Trends Pharmacol Sci. 2005; 26(11):558-563. https://doi.org/10.1016/j.tips.2005.09.006.

[4]

Qiu J. China plans to modernize traditional medicine. Nature. 2007; 446(7136):590. https://doi.org/10.1038/446590a.

[5]

Wei G, Wang M, Yang Y, et al. Combination of Chinese traditional and western medicine focuses on doctors and showes in patients. J Innov Med Res. 2023; 2(9):24-28. https://www.paradigmpress.org/jimr/article/view/786.

[6]

Xu Q, Bauer R, Hendry BM, et al. The quest for modernisation of traditional Chinese medicine. BMC Complement Altern Med. 2013; 13(1):132. https://doi.org/10.1186/1472-6882-13-132.

[7]

Wamba SF, Akter S, Edwards A, et al. How ‘big data’can make big impact: findings from a systematic review and a longitudinal case study. Int J Prod Econ. 2015; 165:234-246. https://doi.org/10.1016/j.ijpe.2014.12.031.

[8]

Li S, Zhang B, Jiang D, et al. Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae. BMC Bioinf. 2010; 11(11):S6. https://doi.org/10.1186/1471-2105-11-S11-S6.

[9]

Gajewski A, Kośmider A, Nowacka A, et al. Potential of herbal products in prevention and treatment of COVID-19. Literature review. Biomed Pharmacother. 2021;143:112150. https://doi.org/10.1016/j.biopha.2021.112150.

[10]

Andresen SL.John McCarthy: father of AI. IEEE Intell Syst. 2002; 17(5):84-85. https://doi.org/10.1109/MIS.2002.1039837.

[11]

Das S, Dey A, Pal A, et al. Applications of artificial intelligence in machine learning: review and prospect. Int J Comput Appl. 2015; 115(9):31-41. https://doi.org/10.5120/20182-2402.

[12]

Feigenbaum EA. Knowledge engineering:the applied side of artificial intelligence. In Proc. of a Symposium on Computer Culture: The Scientific, Intellectual, and Social Impact of the Computer. New York Academy of Sciences; 1984;91-107. 10.5555/4959.496.

[13]

Brynjolfsson E, Mcafee A.Artificial intelligence, for real. Harv Bus Rev. 2017; 1(1):1-31. https://starlab-alliance.com/wp-content/uploads/2017/09/AI-Article.pdf.

[14]

He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019; 25(1):30-36. https://doi.org/10.1038/s41591-018-0307-0.

[15]

Van Melle W. MYCIN: a knowledge-based consultation program for infectious disease diagnosis. Int J Man Mach Stud. 1978; 10(3):313-322. https://doi.org/10.1016/S0020-7373(78)80049-2.

[16]

Lambin P, Leijenaar RT, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017; 14(12):749-762. https://doi.org/10.1038/nrclinonc.2017.141.

[17]

Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge. Nature. 2023; 620(7972):172-180. https://doi.org/10.1038/s41586-023-06291-2.

[18]

Nilanjan C, Shi JX, Montserrat GC. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet. 2016; 17(7):392-406. https://doi.org/10.1038/nrg.2016.27.

[19]

Jin Q, Wang Z, Floudas CS, et al. Matching patients to clinical trials with large language models. Nat Commun. 2024; 15(1):9074. https://doi.org/10.1038/s41467-024-53081-z.

[20]

Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008; 4(11):682-690. https://doi.org/10.1038/nchembio.118.

[21]

Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596(7873):583-589. https://doi.org/10.1038/s41586-021-03819-2.

[22]

Lu Z, Peng Y, Cohen T, et al. Large language models in biomedicine and health: current research landscape and future directions. J Am Med Inf Assoc. 2024; 31(9):1801-1811. https://doi.org/10.1093/jamia/ocae202.

[23]

Zong X, Dai L. Analysis of 196 cases of liver disease treated by computer. Liaoning J Tradit Chin Med. 1992(06):26-27. https://doi.org/10.13192/j.ljtcm.1992.06.28.zongxq.016.

[24]

Ke Z, Liu M, Liu J, et al. The application of artificial intelligence in the research and development of traditional chinese medicine. Int J Drug Discov Pharmacol. 2024:100001. https://doi.org/10.53941/ijddp.2024.100001.

[25]

Hong Y, Zhu S, Liu Y, et al. The integration of machine learning into traditional chinese medicine. J Pharm Anal. 2024:101157. https://doi.org/10.1016/j.jpha.2024.101157.

[26]

Song Z, Chen G, Chen Y. AI empowering traditional Chinese medicine? Chem Sci. 2024; 15(41):16844-16886. https://doi.org/10.1039/D4SC04107K.

[27]

Johnson KB, Wei WQ, Weeraratne D, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 2021; 14(1):86-93. https://doi.org/10.1111/cts.12884.

[28]

Jurisica I. Explainable biology for improved therapies in precision medicine: AI is not enough. Best Pr Res Clin Rheumatol. 2024:102006. https://doi.org/10.1016/j.berh.2024.102006.

[29]

Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008; 36(suppl_1):D901-D906. https://doi.org/10.1093/nar/gkm958.

[30]

Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012; 40(D1):D1100-D1107. https://doi.org/10.1093/nar/gkr777.

[31]

Chen CYC. TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One. 2011; 6(1):e15939. https://doi.org/10.1371/journal.pone.0015939.

[32]

Xue R, Fang Z, Zhang M, et al. TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res. 2013; 41(D1):D1089-D1095. https://doi.org/10.1093/nar/gks1100.

[33]

Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminf. 2014; 6(1):13. https://doi.org/10.1186/1758-2946-6-13.

[34]

Zhang R, Yu S, Bai H, et al. TCM-Mesh: the database and analytical system for network pharmacology analysis for TCM preparations. Sci Rep. 2017; 7(1):2821. https://doi.org/10.1038/s41598-017-03039-7.

[35]

Li B, Ma C, Zhao X, et al. YaTCM: yet another traditional Chinese medicine database for drug discovery. Comput Struct Biotechnol J. 2018; 16:600-610. https://doi.org/10.1016/j.csbj.2018.11.002.

[36]

Zhang Y, Li X, Shi Y, et al. ETCM v2.0: an update with comprehensive resource and rich annotations for traditional Chinese medicine. Acta Pharm Sin B. 2023; 13(6):2559-2571. https://doi.org/10.1016/j.apsb.2023.03.012.

[37]

Fang S, Dong L, Liu L, et al. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021; 49(D1):D1197-D1206. https://doi.org/10.1093/nar/gkaa1063.

[38]

Lv Q, Chen G, He H, et al. TCMBank: bridges between the largest herbal medicines, chemical ingredients, target proteins, and associated diseases with intelligence text mining. Chem Sci. 2023; 14(39):10684-10701. https://doi.org/10.1039/D3SC02139D.

[39]

Yan D, Zheng G, Wang C, et al. HIT 2.0: an enhanced platform for herbal ingredients’ targets. Nucleic Acids Res. 2022; 50(D1):D1238-D1243. https://doi.org/10.1093/nar/gkab1011.

[40]

Kong X, Liu C, Zhang Z, et al. BATMAN-TCM 2.0:an enhanced integrative database for known and predicted interactions between traditional chinese medicine ingredients and target proteins. Nucleic Acids Res. 2024; 52(D1):D1110-D1120. https://doi.org/10.1093/nar/gkad926.

[41]

Sun C, Huang J, Tang R, et al. CPMCP: a database of Chinese patent medicine and compound prescription. Database. 2022;2022:baac073. https://doi.org/10.1093/database/baac073.

[42]

Wu Y, Zhang F, Yang K, et al. SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res. 2019; 47(D1):D1110-D1117. https://doi.org/10.1093/nar/gky1021.

[43]

Li X, Ren J, Zhang W, et al. LTM-TCM: a comprehensive database for the linking of traditional Chinese medicine with modern medicine at molecular and phenotypic levels. Pharmacol Res. 2022; 178:106185. https://doi.org/10.1016/j.phrs.2022.106185.

[44]

Ren Z, Ren Y, Li Z, et al. TCMM: a unified database for traditional Chinese medicine modernization and therapeutic innovations. Comput Struct Biotechnol J. 2024; 23:1619-1630. https://doi.org/10.1016/j.csbj.2024.04.016.

[45]

Huang L, Wang Q, Duan Q, et al. TCMSSD: a comprehensive database focused on syndrome standardization. Phytomedicine. 2024; 128:155486. https://doi.org/10.1016/j.phymed.2024.155486.

[46]

Liu Z, Cai C, Du J, et al. TCMIO: a comprehensive database of traditional Chinese medicine on immuno-oncology. Front Pharmacol. 2020; 11. https://doi.org/10.3389/fphar.2020.00439.

[47]

Dong X, Zhao C, Song X, et al. PresRecST: a novel herbal prescription recommendation algorithm for real-world patients with integration of syndrome differentiation and treatment planning. J Am Med Inf Assoc. 2024; 31(6):1268-1279. https://doi.org/10.1093/jamia/ocae066.

[48]

Hua R, Dong X, Wei Y, et al. Lingdan: enhancing encoding of traditional Chinese medicine knowledge for clinical reasoning tasks with large language models. J Am Med Inf Assoc. 2024; 31(9):2019-2029. https://doi.org/10.1093/jamia/ocae087.

[49]

Kong Y, Hao M, Chen A, et al. SymMap database and TMNP algorithm reveal huanggui tongqiao granules for allergic rhinitis through IFN-mediated neuroimmuno-modulation. Pharmacol Res. 2022; 185:106483. https://doi.org/10.1016/j.phrs.2022.106483.

[50]

Yang R, Liu H, Bai C, et al.Chemical composition and pharmacological mechanism of qingfei paidu decoction and ma xing shi gan decoction against coronavirus disease 2019 (COVID-19): in silico and experimental study. Pharmacol Res.2020; 157:104820. https://doi.org/10.1016/j.phrs.2020.104820.

[51]

Wang Y, Liu M, Jafari M, et al. A critical assessment of traditional Chinese medicine databases as a source for drug discovery. Front Pharmacol. 2024; 15. https://doi.org/10.3389/fphar.2024.1303693.

[52]

Li X, Zhang J, Shen X, et al. Overview and limitations of database in global traditional medicines: a narrative review. Acta Pharmacol Sin. 2025; 46(2):235-263. https://doi.org/10.1038/s41401-024-01353-1.

[53]

Almada M, Midão L, Portela D, et al. A new paradigm in health research: FAIR data (findable, accessible, interoperable, reusable). Acta Med Port. 2020; 33(12):828-834. https://doi.org/10.20344/amp.12910.

[54]

Morris JH, Soman K, Akbas RE, et al. The scalable precision medicine open knowledge engine (SPOKE): a massive knowledge graph of biomedical information. Bioinformatics. 2023; 39(2):btad080. https://doi.org/10.1093/bioinformatics/btad080.

[55]

Li X, Chen CH, Zheng P, et al. A knowledge graph-aided concept-knowledge approach for evolutionary smart product-service system development. J Mech Des. 2020; 142(10):101403. https://doi.org/10.1115/1.4046807.

[56]

Paulheim H. Knowledge graph refinement: a survey of approaches and evaluation methods. Semant Web. 2017; 8(3):489-508. https://doi.org/10.3233/SW-160218.

[57]

Ehrlinger L, Wöß W. Towards a definition of knowledge graphs. Semant Posters Demos Success. 2016; 48(1-4):2. https://ceur-ws.org/Vol-1695/paper4.pdf?utm_source=gradientflow&utm_medium=newsletter&utm_campaign=issues20.

[58]

Suchanek FM, Kasneci G, Weikum G. Yago: a core of semantic knowledge. Proceedings of the 16th International Conference on World Wide Web. 2007;697-706. https://doi.org/10.1145/1242572.1242667.

[59]

Buitelaar P, Cimiano P, Frank A, et al. Ontology-based information extraction and integration from heterogeneous data sources. Int J Hum Comput Stud. 2008; 66(11):759-788. https://doi.org/10.1016/j.ijhcs.2008.07.007.

[60]

Gruber TR. Toward principles for the design of ontologies used for knowledge sharing? Int J Hum Comput Stud. 1995; 43(5):907-928. https://doi.org/10.1006/ijhc.1995.1081.

[61]

Roldán ML, Gonnet S, Leone H. An ontology-based approach for sharing, integrating, and retrieving architectural knowledge. Electron Notes Theor Comput Sci. 2018; 339:43-62. https://doi.org/10.1016/j.entcs.2018.06.004.

[62]

Buccella A, Cechich A, Rodríguez BN. An ontology approach to data integration. J Comput Sci Tech. 2003; 3(2):62-68. http://sedici.unlp.edu.ar/handle/10915/9470.

[63]

Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004; 32(suppl_1):D267-D270. https://doi.org/10.1093/nar/gkh061.

[64]

Santos A, Colaço AR, Nielsen AB, et al. A knowledge graph to interpret clinical proteomics data. Nat Biotechnol. 2022; 40(5):692-702. https://doi.org/10.1038/s41587-021-01145-6.

[65]

Chandak P, Huang K, Zitnik M. Building a knowledge graph to enable precision medicine. Sci Data. 2023; 10(1):67. https://doi.org/10.1038/s41597-023-01960-3.

[66]

Zheng S, Rao J, Song Y, et al. PharmKG: a dedicated knowledge graph benchmark for bomedical data mining. Brief Bioinf. 2021; 22(4):bbaa344. https://doi.org/10.1093/bib/bbaa344.

[67]

Yang Z.Biomedical information retrieval incorporating knowledge graph for explainable precision medicine. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’20. Association for Computing Machinery; 2020; 2486. https://doi.org/10.1145/3397271.3401458.

[68]

Jaimini U, Sheth A. CausalKG: causal knowledge graph explainability using interventional and counterfactual reasoning. IEEE Internet Comput. 2022; 26(1):43-50. https://doi.org/10.1109/MIC.2021.3133551.

[69]

Lyu K, Tian Y, Shang Y, et al. Causal knowledge graph construction and evaluation for clinical decision support of diabetic nephropathy. J Biomed Inf. 2023;139:104298. https://doi.org/10.1016/j.jbi.2023.104298.

[70]

Chen H, Mao Y, Zheng X, et al. Towards semantic e-Science for traditional Chinese medicine. BMC Bioinf. 2007; 8(3):S6. https://doi.org/10.1186/1471-2105-8-S3-S6.

[71]

Chu X, Sun B, Huang Q, et al. Quantitative knowledge presentation models of traditional Chinese medicine (TCM): a review. Artif Intell Med. 2020;103:101810. https://doi.org/10.1016/j.artmed.2020.101810.

[72]

Zhou X, Wu Z, Yin A, et al. Ontology development for unified traditional Chinese medical language system. Artif Intell Med. 2004; 32(1):15-27. https://doi.org/10.1016/j.artmed.2004.01.014.

[73]

Gao M, Wang L, Cui M. Expression model for multiple relationships in the ontology of traditional Chinese medicine knowledge. J Tradit Chin Med Sci. 2016; 3(1):59-65. https://doi.org/10.1016/j.jtcms.2016.07.001.

[74]

Ji W, Zhang Y, Wang X, et al. Latent semantic diagnosis in traditional Chinese medicine. World Wide Web. 2017; 20(5):1071-1087. https://doi.org/10.1007/s11280-017-0443-3.

[75]

Cui M, Jia L, Yu T, et al. Current status of traditional Chinese medicine language system. In Frontier and Future Development of Information Technology in Medicine and Education. Netherlands: Springer. 2014:2287-2292. https://doi.org/10.1007/978-94-007-7618-0_280.

[76]

Long H, Zhu Y, Jia L, et al. An ontological framework for the formalization, organization and usage of TCM-knowledge. BMC Med Inform Decis Mak. 2019; 19(2):53. https://doi.org/10.1186/s12911-019-0760-9.

[77]

Xing AL, Wang F, Liu JZ, et al. The prospect and underlying mechanisms of Chinese medicine in treating periodontitis. Chin J Nat Med. 2025; 23(3):269-285. https://doi.org/10.1016/S1875-5364(25)60842-9.

[78]

Zhang Y, Wang N, Du X, et al. SoFDA: an integrated web platform from syndrome ontology to network-based evaluation of disease-syndrome-formula associations for precision medicine. Sci Bull. 2022; 67(11):1097-1101. https://doi.org/10.1016/j.scib.2022.03.013.

[79]

Shu Z, Hua R, Yan D, et al. ISPO: an integrated ontology of symptom phenotypes for semantic integration of traditional Chinese medical data. Methods Inf Med. 2025; 63:164-175. https://doi.org/10.1055/a-2576-1847.

[80]

Huan JM, Wang XJ, Li Y, et al. The biomedical knowledge graph of symptom phenotype in coronary artery plaque: machine learning-based analysis of real-world clinical data. Biodata Min. 2024; 17(1):13. https://doi.org/10.1186/s13040-024-00365-1.

[81]

Lu K, Yang K, Sun H, et al. SympGAN: a systematic knowledge integration system for symptom-gene associations network. Knowl-Based Syst. 2023;276:110752. https://doi.org/10.1016/j.knosys.2023.110752.

[82]

Theodorou M, Fleckenstein J. The chinese black box-a scientific model of traditional Chinese medicine. J Acupunct Res. 2019; 36(1):1-11. https://doi.org/10.13045/jar.2018.00297.

[83]

Mohamed SK, Nounu A, Nováček V. Biological applications of knowledge graph embedding models. Brief Bioinform. 2021; 22(2):1679-1693. https://doi.org/10.1093/bib/bbaa012.

[84]

Gu Y, Wu GS, Li HK, et al. Strategy of systems biology for visualizing the “black box” of traditional Chinese medicine. World J Tradit Chin Med. 2020; 6(3):260. https://doi.org/10.4103/wjtcm.wjtcm_31_20.

[85]

Tianyu C, Tingli N, Xin N, et al. Application of traditional Chinese medicine four-diagnostic auxiliary apparatus in evaluation of health status and clinical treatment. J Tradit Chin Med. 2018; 38(3):447-451. https://doi.org/10.1016/S0254-6272(18)30637-X.

[86]

Q Chen. Analysis of TCM syndrome and treatment model based on artificial neural network. Chin Arch Traditonal Chin Med. 2009; 27(07):1517-1520. https://doi.org/10.13193/j.archtcm.2009.07.174.chenqw.010.

[87]

Lam CFD, Leung KS, Heng PA, et al. Chinese acupuncture expert system (CAES)—a useful tool to practice and learn medical acupuncture. J Med Syst. 2012; 36(3):1883-1890. https://doi.org/10.1007/s10916-010-9647-0.

[88]

Qiao S, Tang C, Jin H, et al. KISTCM: knowledge discovery system for traditional Chinese medicine. Appl Intell. 2010; 32(3):346-363. https://doi.org/10.1007/s10489-008-0149-4.

[89]

Zhang Z, Zhang Y, Yao L, et al. A sensor-based wrist pulse signal processing and lung cancer recognition. J Biomed Inf. 2018; 79:107-116. https://doi.org/10.1016/j.jbi.2018.01.009.

[90]

Tian Z, Wang D, Sun X, et al. Current status and trends of artificial intelligence research on the four traditional Chinese medicine diagnostic methods: a scientometric study. Ann Transl Med. 2023; 11(3):145. https://doi.org/10.21037/atm-22-6431.

[91]

Liu B, Zhou X, Wang Y, et al. Data processing and analysis in real-world traditional Chinese medicine clinical data: challenges and approaches. Stat Med. 2012; 31(7):653-660. https://doi.org/10.1002/sim.4417.

[92]

Zhou X, Liu B, Wang Y, et al. Building clinical data warehouse for traditional Chinese medicine knowledge discovery. In: 2008 International Conference on BioMedical Engineering and Informatics. Vol 1.; 2008:615-620. https://doi.org/10.1109/BMEI.2008.83.

[93]

Wang Z, Huo M, Qiao L, et al. SYSTCM: a systemic web platform for objective identification of pharmacological effects based on interplay of “traditional Chinese medicine-components-targets”. Comput Biol Med. 2024;179:108878. https://doi.org/10.1016/j.compbiomed.2024.108878.

[94]

Wang A, Peng H, Wang Y, et al. NP-TCMtarget: a network pharmacology platform for exploring mechanisms of action of traditional Chinese medicine. Brief Bioinform. 2025; 26(1):bbaf078. https://doi.org/10.1093/bib/bbaf078.

[95]

Liu Y, Li X, Chen C, et al. TCMNPAS: a comprehensive analysis platform integrating network formulaology and network pharmacology for exploring traditional Chinese medicine. Chin Med. 2024; 19(1):50. https://doi.org/10.1186/s13020-024-00924-y.

[96]

Bu D, Xia Y, Zhang J, et al. FangNet: mining herb hidden knowledge from TCM clinical effective formulas using structure network algorithm. Comput Struct Biotechnol J. 2021; 19:62-71. https://doi.org/10.1016/j.csbj.2020.11.036.

[97]

Gao W, Cheng N, Xin G, et al. TCM2Vec: a detached feature extraction deep learning approach of traditional Chinese medicine for formula efficacy prediction. Multimed Tools Appl. 2023; 82(17):26987-27004. https://doi.org/10.1007/s11042-023-14701-w.

[98]

Niu Q, Li H, Tong L, et al. TCMFP: a novel herbal formula prediction method based on network target’s score integrated with semi-supervised learning genetic algorithms. Brief Bioinform. 2023; 24(3):bbad102. https://doi.org/10.1093/bib/bbad102.

[99]

Zhu W, Wang X. Shennong-tcm: a traditional Chinese medicine large language model. Github.https://github.com/michael-wzhu/ShenNong-TCM-LLM.

[100]

Yang S, Zhao H, Zhu S, et al. Zhongjing: enhancing the Chinese medical capabilities of large language model through expert feedback and real-world multi-turn dialogue. Proc AAAI Conf Artif Intell. 2024; 38(17):19368-19376. https://doi.org/10.1609/aaai.v38i17.29907.

[101]

Wei S, Peng X, Wang Y fei, et al. BianCang: a traditional Chinese medicine large language model. arXiv. 2024. https://doi.org/10.48550/arXiv.2411.11027.

[102]

Xiao W, Zhang M, Zhao D, et al. TCMKD: from ancient wisdom to modern insights-a comprehensive platform for traditional Chinese medicine knowledge discovery. J Pharm Anal. 2025; 15(6):101297. https://doi.org/10.1016/j.jpha.2025.101297.

[103]

Qiao C, Zhang HX, Tian XT, et al. Harnessing multi-omics approaches to elucidate the role of Chinese herbal compounds in chemotherapy-induced gastrointestinal damage. World J Gastrointest Oncol. 2025; 17(2):101500. https://doi.org/10.4251/wjgo.v17.i2.101500.

[104]

Buriani A, Garcia-Bermejo ML, Bosisio E, et al. Omic techniques in systems biology approaches to traditional Chinese medicine research: present and future. J Ethnopharmacol. 2012; 140(3):535-544. https://doi.org/10.1016/j.jep.2012.01.055.

[105]

Momozawa Y, Mizukami K. Unique roles of rare variants in the genetics of complex diseases in humans. J Hum Genet. 2021; 66(1):11-23. https://doi.org/10.1038/s10038-020-00845-2.

[106]

Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov. 2013; 12(8):581-594. https://doi.org/10.1038/nrd4051.

[107]

Pun FW, Ozerov IV, Zhavoronkov A.AI-powered therapeutic target discovery. Trends Pharmacol Sci. 2023; 44(9):561-572. https://doi.org/10.1016/j.tips.2023.06.010.

[108]

Patel MN, Halling-Brown MD, Tym JE, et al. Objective assessment of cancer genes for drug discovery. Nat Rev Drug Discov. 2013; 12(1):35-50. https://doi.org/10.1038/nrd3913.

[109]

Sanseau P, Agarwal P, Barnes MR, et al. Use of genome-wide association studies for drug repositioning. Nat Biotechnol. 2012; 30(4):317-320. https://doi.org/10.1038/nbt.2151.

[110]

Wang M, Wang H, Zheng H. A mini review of node centrality metrics in biological networks. Int J Netw Dyn Intell. 2022; 1(1):99-110. https://doi.org/10.53941/ijndi0101009.

[111]

Chen Q, Zhang S, Jiang X, et al. The transcriptomic-based disease network reveals synergistic therapeutic effect of total alkaloids from coptis chinensis and total ginsenosides from panax ginseng on type 2 diabetes mellitus. Chin J Nat Med. 2025; 23(8):997-1008. https://doi.org/10.1016/S1875-5364(24)60689-8.

[112]

Yang K, Wang N, Liu G, et al. Heterogeneous network embedding for identifying symptom candidate genes. J Am Med Inform Assoc JAMIA. 2018; 25(11):1452-1459. https://doi.org/10.1093/jamia/ocy117.

[113]

Lu K, Yang K, Niyongabo E, et al. Integrated network analysis of symptom clusters across disease conditions. J Biomed Inform. 2020;107:103482. https://doi.org/10.1016/j.jbi.2020.103482.

[114]

Shu Z, Wang J, Sun H, et al. Diversity and molecular network patterns of symptom phenotypes. npj Syst Biol Appl. 2021; 7(1):1-14. https://doi.org/10.1038/s41540-021-00206-5.

[115]

Li S. Network systems underlying traditional Chinese medicine syndrome and herb formula. Curr Bioinforma. 2009; 4(3):188-196. https://doi.org/10.2174/157489309789071129.

[116]

Li R, Ma T, Gu J, et al. Imbalanced network biomarkers for traditional Chinese medicine syndrome in gastritis patients. Sci Rep. 2013; 3(1):1543. https://doi.org/10.1038/srep01543.

[117]

Sun J, Zhu K, Zheng WJ, et al. A comparative study of disease genes and drug targets in the human protein interactome. BMC Bioinformatics. 2015; 16(5):S1. https://doi.org/10.1186/1471-2105-16-S5-S1.

[118]

Li X, Liu ZQ, Liao J, et al. Network pharmacology approaches for research of Traditional Chinese Medicines. Chin J Nat Med. 2023; 21(5):323-332. https://doi.org/10.1016/S1875-5364(23)60429-7.

[119]

Thomford NE, Senthebane DA, Rowe A, et al. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018; 19(6):1578. https://doi.org/10.3390/ijms19061578.

[120]

Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med. 2011; 17(10):1217-1220. https://doi.org/10.1038/nm.2471.

[121]

Howells LM, Berry DP, Elliott PJ, et al. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases—safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res. 2011; 4(9):1419-1425. https://doi.org/10.1158/1940-6207.CAPR-11-0148.

[122]

Jakubikova J, Cervi D, Ooi M, et al. Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and phenethyl isothiocyanate, in multiple myeloma. Haematologica. 2011; 96(8):1170. https://doi.org/10.3324/haematol.2010.029363.

[123]

Liang X, Lai G, Yu J, et al. Herbal ingredient-target interaction prediction via multi-modal learning. Inf Sci. 2025;711:122115. https://doi.org/10.1016/j.ins.2025.122115.

[124]

Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013; 11(2):110-120. https://doi.org/10.1016/S1875-5364(13)60037-0.

[125]

Liu Y, Li X, Chen C, et al. Exploration of compatibility rules and discovery of active ingredients in TCM formulas by network pharmacology. Chin Herb Med. 2024; 16(4):572-588. https://doi.org/10.1016/j.chmed.2023.09.008.

[126]

Ding LL, Xu L, Hu N, et al. Deciphering the therapeutic potential and mechanisms of Artemisia argyit essential oil on flagellum-mediated Salmonella infections. Chin J Nat Med. 2025; 23(6):714-726. https://doi.org/10.1016/S1875-5364(25)60890-9.

[127]

Wang X, Wang ZY, Zheng JH, et al. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin J Nat Med. 2021; 19(1):1-11. https://doi.org/10.1016/S1875-5364(21)60001-8.

[128]

Huang XF, Cheng WB, Jiang Y, et al. A network pharmacology-based strategy for predicting anti-inflammatory targets of ephedra in treating asthma. Int Immunopharmacol. 2020;83:106423. https://doi.org/10.1016/j.intimp.2020.106423.

[129]

Huang J, Guo W, Cheung F, et al. Integrating network pharmacology and experimental models to investigate the efficacy of coptidis and scutellaria containing huanglian jiedu decoction on hepatocellular carcinoma. Am J Chin Med. 2020; 48(1):161-182. https://doi.org/10.1142/S0192415X20500093.

[130]

Yang K, Liu G, Wang N, et al. Heterogeneous network propagation for herb target identification. BMC Med Inform Decis Mak. 2018; 18(S1):17. https://doi.org/10.1186/s12911-018-0592-z.

[131]

Wang N, Li P, Hu X, et al. Herb target prediction based on representation learning of symptom related heterogeneous network. Comput Struct Biotechnol J. 2019; 17:282-290. https://doi.org/10.1016/j.csbj.2019.02.002.

[132]

Duan P, Yang K, Su X, et al. HTINet2: herb-target prediction via knowledge graph embedding and residual-like graph neural network. Brief Bioinform. 2024; 25(5):bbae414. https://doi.org/10.1093/bib/bbae414.

[133]

Zhao W, Wu H, He J. HGNA-HTI: heterogeneous graph neural network with attention mechanism for prediction of herb-target interactions. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE. 2021:3949-3956. https://doi.org/10.1109/BIBM52615.2021.9669308.

[134]

Zhu Y, Ren L, Sun R, et al. Herb-target interaction prediction by multi-instance learning. IEEE Trans Artif Intell.Published online 2024:1-10. https://doi.org/10.1109/TAI.2024.3515932.

[135]

Zhang Y, Shen Q, Leng L, et al. Incipient diploidization of the medicinal plant perilla within 10,000 years. Nat Commun. 2021; 12(1):5508. https://doi.org/10.1038/s41467-021-25681-6.

[136]

Liu Y, Wang B, Shu S, et al. Analysis of the coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nat Commun. 2021; 12(1):3276. https://doi.org/10.1038/s41467-021-23611-0.

[137]

Guo R, Luo X, Liu J, et al. Omics strategies decipher therapeutic discoveries of traditional Chinese medicine against different diseases at multiple layers molecular-level. Pharmacol Res. 2020;152:104627. https://doi.org/10.1016/j.phrs.2020.104627.

[138]

Biswas N, Chakrabarti S. Artificial intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer. Front Oncol. 2020;10. https://doi.org/10.3389/fonc.2020.588221.

[139]

Yetgin A. Revolutionizing multi-omics analysis with artificial intelligence and data processing. Quant Biol. 2025; 13(3):e70002. https://doi.org/10.1002/qub2.70002.

[140]

Li S, Pei W, Yuan W, et al. Multi-omics joint analysis reveals the mechanism of action of the traditional Chinese medicine marsdenia tenacissima (Roxb) moon in the treatment of hepatocellular carcinoma. J Ethnopharmacol. 2022;293:115285. https://doi.org/10.1016/j.jep.2022.115285.

[141]

Chen W, Li Y, Zhang C, et al. Multi-omics and experimental validation reveal anti-HCC mechanisms of tibetan liuwei muxiang pill and quercetin. Pharmaceuticals. 2025; 18(6):900. https://doi.org/10.3390/ph18060900.

[142]

Woo CSJ, Lau JSH, EI-Nezami H. Herbal medicine: toxicity and recent trends in assessing their potential toxic effects. Adv Bot Res. 2012; 62:365-384. https://doi.org/10.1016/B978-0-12-394591-4.00009-X.

[143]

Spanakis M, Tzamali E, Tzedakis G, et al. Artificial intelligence models and tools for the assessment of drug-herb interactions. Pharmaceuticals. 2025; 18(3):282. https://doi.org/10.3390/ph18030282.

[144]

Jia C, Li X, Hu S, et al. Advanced mass-spectra-based machine learning for predicting the toxicity of traditional Chinese medicines. Anal Chem. 2025; 97(1):783-792. https://doi.org/10.1021/acs.analchem.4c05311.

[145]

Wu W, Qian J, Liang C, et al. GeoDILI: a robust and interpretable model for drug-induced liver injury prediction using graph neural network-based molecular geometric representation. Chem Res Toxicol. 2023; 36(11):1717-1730. https://doi.org/10.1021/acs.chemrestox.3c00199.

[146]

Wang R, Liu Z, Gong J, et al. An uncertainty-guided deep learning method facilitates rapid screening of CYP3A4 inhibitors. J Chem Inf Model. 2023; 63(24):7699-7710. https://doi.org/10.1021/acs.jcim.3c01241.

[147]

Lv J, Liu G, Ju Y, et al. Integrating multi-source drug information to cluster drug-drug interaction network. Comput Biol Med. 2023;162:107088. https://doi.org/10.1016/j.compbiomed.2023.107088.

[148]

Li X, Xiong Z, Zhang W, et al. Deep learning for drug-drug interaction prediction: a comprehensive review. Quant Biol. 2024; 12(1):30-52. https://doi.org/10.1002/qub2.32.

[149]

Pang S, Zhang Y, Song T, et al. AMDE: a novel attention-mechanism-based multidimensional feature encoder for drug-drug interaction prediction. Brief Bioinform. 2022; 23(1):1. https://doi.org/10.1093/bib/bbab545.

[150]

Zhu X, Shen Y, Lu W.Molecular substructure-aware network for drug-drug interaction prediction. In:Proceedings of the 31st ACM International Conference on Information & Knowledge Management. CIKM ’22. Association for Computing Machinery; 2022:4757-4761. https://doi.org/10.1145/3511808.3557648.

[151]

Ren ZH, You ZH, Yu CQ, et al. A biomedical knowledge graph-based method for drug-drug interactions prediction through combining local and global features with deep neural networks. Brief Bioinform. 2022; 23(5):bbac363. https://doi.org/10.1093/bib/bbac363.

[152]

Bartlett VL, Dhruva SS, Shah ND, et al. Feasibility of using real-world data to replicate clinical trial evidence. JAMA Netw Open. 2019; 2(10):e1912869. https://doi.org/10.1001/jamanetworkopen.2019.12869.

[153]

Zhou X, Peng Y, Liu B. Text mining for traditional Chinese medical knowledge discovery: a survey. J Biomed Inform. 2010; 43(4):650-660. https://doi.org/10.1016/j.jbi.2010.01.002.

[154]

Zhou X, Chen S, Liu B, et al. Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support. Artif Intell Med. 2010; 48(2-3):139-152. https://doi.org/10.1016/j.artmed.2009.07.012.

[155]

Luo ZW, Yin FC, Wang XB, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[156]

Zou Q, Yang K, Shu Z, et al. Phenonizer: a fine-grained phenotypic named entity recognizer for Chinese clinical texts. Biomed Res Int. 2022; 2022(1): 3524090. https://doi.org/10.1155/2022/3524090.

[157]

Du Z, Tang D, Xie D. Automatic extraction of clinical symptoms in traditional Chinese medicine for electronic medical records. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2021:3784-3790. https://doi.org/10.1109/BIBM52615.2021.9669345.

[158]

Xia Y, Cai J, Li Y, et al. A precision-preferred comprehensive information extraction system for clinical articles in traditional Chinese Medicine. Int J Intell Syst. 2022; 37(8):4994-5010. https://doi.org/10.1002/int.22748.

[159]

Jafari M, Wang Y, Amiryousefi A, et al. Unsupervised learning and multipartite network models: a promising approach for understanding traditional medicine. Front Pharmacol. 2020; 11. https://doi.org/10.3389/fphar.2020.01319.

[160]

Denny JC, Collins FS. Precision medicine in 2030—seven ways to transform healthcare. Cell. 2021; 184(6):1415-1419. https://doi.org/10.1016/j.cell.2021.01.015.

[161]

Zhang NL, Yuan S, Chen T, et al. Latent tree models and diagnosis in traditional Chinese medicine. Artif Intell Med. 2008; 42(3):229-245. https://doi.org/10.1016/j.artmed.2007.10.004.

[162]

Xu F, Lu H. The application of FP-growth algorithm based on distributed intelligence in wisdom medical treatment. Int J Pattern Recognit Artif Intell. 2017; 31(04):1759005. https://doi.org/10.1142/S0218001417590054.

[163]

Li JF, Guo HL, Dong Y, et al. Polysaccharides from Chinese herbal medicine: a review on the hepatoprotective and molecular mechanism. Chin J Nat Med. 2024; 22(1):4-14. https://doi.org/10.1016/S1875-5364(24)60558-3.

[164]

Hu Y, Wang MQ, Xie J, et al. Exposure to ephedrine attenuates Th1/Th2 imbalance underlying OVA-induced asthma through airway epithelial cell-derived exosomal lnc-TRPM2-AS. Chin J Nat Med. 2024; 22(6):530-540. https://doi.org/10.1016/S1875-5364(24)60554-6.

[165]

Wang R, Li J, Wang Y.Research on the medication regularity of traditional Chinese medicine for common chronic diseases based on association rules. In:Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence. ACAI ’22. Association for Computing Machinery; 2023:1-6. https://doi.org/10.1145/3579654.3579664.

[166]

Lin YY, Wei JL, Zhang YH, et al. Shen Qi Wan attenuates renal interstitial fibrosis through upregulating AQP1. Chin J Nat Med. 2023; 21(5):359-370. https://doi.org/10.1016/S1875-5364(23)60453-4.

[167]

Wang M, Li J, Chen L, et al. The study of the compatibility rules of traditional Chinese medicine based on apriori and HMETIS hypergraph partitioning algorithm. In: Biomedical Data Management and Graph Online Querying. Springer International Publishing. 2016:16-31. https://doi.org/10.1007/978-3-319-41576-5_2.

[168]

Zheng Y, Chen Y. The identification of Chinese herbal medicine combination association rule analysis based on an improved apriori algorithm in treating patients with COVID-19 disease. J Healthc Eng. 2022; 2022(1): 6337082. https://doi.org/10.1155/2022/6337082.

[169]

Zhou X, Liu B. Network analysis system for traditional Chinese medicine clinical data. In: 2009 2nd International Conference on Biomedical Engineering and Informatics. 2009:1-5. https://doi.org/10.1109/BMEI.2009.5302924.

[170]

Liu L, Gao Y. Study on the correlation between traditional Chinese medicine syndrome and short-term prognosis of ischemic stroke using logistic regression model and repeated-measures analysis of variance. J Chin Integr Med. 2012; 10(9):983-990. https://doi.org/10.3736/jcim20120906.

[171]

Egger M, Moons KGM, Fletcher C, et al. GetReal: from efficacy in clinical trials to relative effectiveness in the real world. Res Synth Methods. 2016; 7(3):278-281. https://doi.org/10.1002/jrsm.1207.

[172]

Xu N, Zhong K, Yu H, et al. Add-on Chinese medicine for hospitalized chronic obstructive pulmonary disease (CHOP): a cohort study of hospital registry. Phytomedicine. 2023;109:154586. https://doi.org/10.1016/j.phymed.2022.154586.

[173]

Shu Z, Chang K, Zhou Y, et al.Add-on Chinese medicine for coronavirus disease 2019 (ACCORD): a retrospective cohort study of hospital registries. Am J Chin Med.2021; 49(03):543-575. https://doi.org/10.1142/S0192415X21500257.

[174]

Song Y, Ma S, Dai Y, et al. AI-assisted TCM syndrome differentiation: key issues and technical challenges. Strateg Study Chin Acad Eng. 2024; 26(2):234-244. https://doi.org/10.15302/J-SSCAE-2024.02.010.

[175]

Long H, Wang Z, Cui Y, et al. Towards an ontology-based decision support system for syndrome-differentiation and treatment of psoriasis vulgaris in traditional Chinese medicine. Res Sq.Published online 2020. https://doi.org/10.21203/rs.3.rs-38383/v2.

[176]

Wang Z, Wang D, Liu W, et al. Traditional Chinese medicine diagnosis and treatment based on systematics. Iliver. 2023; 2(4):181-187. https://doi.org/10.1016/j.iliver.2023.08.004.

[177]

Zhao Y, Sun Q, Mei S, et al. Wearable multichannel-active pressurized pulse sensing platform. Microsyst Nanoeng. 2024; 10(1):77. https://doi.org/10.1038/s41378-024-00703-7.

[178]

Dai Y, Wang G, Dai J, et al. A multimodal deep architecture for traditional Chinese medicine diagnosis. Concurr Comput Pract Exp. 2020; 32(19):e5781. https://doi.org/10.1002/cpe.5781.

[179]

Liu GP, Li GZ, Wang YL, et al. Modelling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning. BMC Complement Altern Med. 2010; 10(1):37. https://doi.org/10.1186/1472-6882-10-37.

[180]

Wang J, He Q, Yao K wu, et al. Support vector machine (SVM) and traditional Chinese medicine:syndrome factors based an SVM from coronary heart disease treated by prominent traditional Chinese medicine doctors. In: 2009 Fifth International Conference on Natural Computation. 2009, 2: 176-180. https://doi.org/10.1109/ICNC.2009.735.

[181]

Ouyang WW, Lin X, Ren Y, et al. TCM syndromes diagnostic model of hypertension: study based on tree augmented naive bayes. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW).. 2011:834-837. https://doi.org/10.1109/BIBMW.2011.6112481.

[182]

Zhu W, Yan J, Huang B. Application of bayesian network in syndrome differentiation system of traditional Chinese medicine. J Chin Integr Med. 2006; 4(6):567-571. https://doi.org/10.3736/jcim20060604.

[183]

Feng YT, Liu J, Gong L, et al. Inonotus obliquus (Chaga) against HFD/STZ-induced glucolipid metabolism disorders and abnormal renal functions by regulating NOS-cGMP-PDE5 signaling pathway. Chin J Nat Med. 2024; 22(7):619-631. https://doi.org/10.1016/S1875-5364(24)60616-3.

[184]

Chen X, Ma L, Chu N, et al. Diagnosis based on decision tree and discrimination analysis for chronic hepatitis b in TCM. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW).. 2011:817-822. https://doi.org/10.1109/BIBMW.2011.6112478.

[185]

Wang H, Liu X, Lv B, et al. Reliable multi-label learning via conformal predictor and random forest for syndrome differentiation of chronic fatigue in traditional Chinese medicine. PLoS One. 2014; 9(6):e99565. https://doi.org/10.1371/journal.pone.0099565.

[186]

Xu J, Jiang T, Liu S. Research status and prospect of tongue image diagnosis analysis based on machine learning. Digit Chin Med. 2024; 7(1):3-12. https://doi.org/10.1016/j.dcmed.2024.04.002.

[187]

Chen Z, Zhang D, Liu C, et al. Traditional Chinese medicine diagnostic prediction model for holistic syndrome differentiation based on deep learning. Integr Med Res. 2024; 13(1):101019. https://doi.org/10.1016/j.imr.2023.101019.

[188]

Hu Q, Yu T, Li J, et al. End-to-end syndrome differentiation of Yin deficiency and Yang deficiency in traditional Chinese medicine. Comput Methods Programs Biomed. 2019; 174:9-15. https://doi.org/10.1016/j.cmpb.2018.10.011.

[189]

Huang Z, Miao J, Chen J, et al. A traditional Chinese medicine syndrome classification model based on cross-feature generation by convolution neural network: model development and validation. JMIR Med Inform. 2022; 10(4):e29290. https://doi.org/10.2196/29290.

[190]

Xu Q, Guo Q, Wang CX, et al. Network differentiation: a computational method of pathogenesis diagnosis in traditional Chinese medicine based on systems science. Artif Intell Med. 2021;118:102134. https://doi.org/10.1016/j.artmed.2021.102134.

[191]

Waqas A, Tripathi A, Ramachandran RP, et al. Multimodal data integration for oncology in the era of deep neural networks: a review. Front Artif Intell. 2024; 7. https://doi.org/10.3389/frai.2024.1408843.

[192]

Yuan L, Yang L, Zhang S, et al. Development of a tongue image-based machine learning tool for the diagnosis of gastric cancer: a prospective multicentre clinical cohort study. eClinicalMedicine. 2023; 57. https://doi.org/10.1016/j.eclinm.2023.101834.

[193]

Hu Y, Wen G, Liao H, et al. Automatic construction of Chinese herbal prescriptions from tongue images using CNNs and auxiliary latent therapy topics. IEEE Trans Cybern. 2021; 51(2):708-721. https://doi.org/10.1109/TCYB.2019.2909925.

[194]

Yao L, Zhang Y, Wei B, et al. A topic modeling approach for traditional Chinese medicine prescriptions. IEEE Trans Knowl Data Eng. 2018; 30(6):1007-1021. https://doi.org/10.1109/TKDE.2017.2787158.

[195]

Zhou W, Yang K, Zeng J, et al. FordNet: recommending traditional Chinese medicine formula via deep neural network integrating phenotype and molecule. Pharmacol Res. 2021;173:105752. https://doi.org/10.1016/j.phrs.2021.105752.

[196]

Liu Z, Zheng Z, Guo X, et al. AttentiveHerb: a novel method for traditional Medicine prescription generation. IEEE Access. 2019; 7:139069-139085. https://doi.org/10.1109/ACCESS.2019.2941503.

[197]

Dong X, Zheng Y, Shu Z, et al. TCMPR: TCM prescription recommendation based on subnetwork term mapping and deep learning. Biomed Res Int. 2022; 2022(1): 4845726. https://doi.org/10.1155/2022/4845726.

[198]

Liu L, Yang X, Lei J, et al. A survey on medical large language models: technology, application, trustworthiness, and future directions. arXiv. 2024. https://doi.org/10.48550/arXiv.2406.03712.

[199]

Tian H, Yang K, Dong X, et al. TCMLLM-PR: evaluation of large language models for prescription recommendation in traditional Chinese medicine. Digit Chin Med. 2024; 7(4):343-355. https://doi.org/10.1016/j.dcmed.2025.01.007.

[200]

Chen J, Miao C. DeepSeek deployed in 90 chinese tertiary hospitals: how artificial intelligence is transforming clinical practice. J Med Syst. 2025; 49(1):53. https://doi.org/10.1007/s10916-025-02181-4.

[201]

Mess SA, Mackey AJ, Yarowsky DE. Artificial intelligence scribe and large language model technology in healthcare documentation: advantages, limitations, and recommendations. Plast Reconstr Surg - Glob Open. 2025; 13(1):e6450. https://doi.org/10.1097/GOX.0000000000006450.

[202]

Akinwande V, Cintas C, Speakman S, et al. Identifying audio adversarial examples via anomalous pattern detection. arXiv. 2020. https://doi.org/10.48550/arXiv.2002.05463.

[203]

Yang X, Chen A, PourNejatian N, et al. A large language model for electronic health records. npj Digit Med. 2022; 5(1):1-9. https://doi.org/10.1038/s41746-022-00742-2.

[204]

Tae KH, Roh Y, Oh YH, et al. Data cleaning for accurate, fair, and robust models: a big data - AI integration approach. In:Proceedings of the 3rd International Workshop on Data Management for End-to-End Machine Learning. DEEM’19. Association for Computing Machinery; 2019:1-4. https://doi.org/10.1145/3329486.3329493.

[205]

Leaman R, Islamaj Doğan R, Lu Z. DNorm: disease name normalization with pairwise learning to rank. Bioinformatics. 2013; 29(22):2909-2917. https://doi.org/10.1093/bioinformatics/btt474.

[206]

Wang Q, Ji Z, Wang J, et al. A study of entity-linking methods for normalizing Chinese diagnosis and procedure terms to ICD codes. J Biomed Inf. 2020;105:103418. https://doi.org/10.1016/j.jbi.2020.103418.

[207]

Xu X, Shi Y, Sang Z, et al.Features and development trends in international standardization of Chinese materia medica in ISO/TC 249. Pharmacol Res. 2021;167:105519. https://doi.org/10.1016/j.phrs.2021.105519.

[208]

Semenov I, Osenev R, Gerasimov S, et al. Experience in developing an FHIR medical data management platform to provide clinical decision support. Int J Env Res Public Health. 2020; 17(1):73. https://doi.org/10.3390/ijerph17010073.

[209]

Yang C, Liu J, Chen S, et al. Implementation of a big data accessing and processing platform for medical records in cloud. J Med Syst. 2017; 41(10):149. https://doi.org/10.1007/s10916-017-0777-5.

[210]

Štufi M, Bačić B, Stoimenov L. Big data analytics and processing platform in Czech Republic healthcare. Appl Sci Basel. 2020; 10(5):1705. https://doi.org/10.3390/app10051705.

[211]

Zhou G, Xu X, Zhang X, et al. Design of data governance system based on national health information platform construction. Chin J Health Inf Manag. 2019; 16(2):131-134. https://doi.org/10.3969/j.issn.1672-5166.2019.02.02.

[212]

Wang M, Li S, Zheng T, et al. Big data health care platform with multisource heterogeneous data integration and massive high-dimensional data governance for large hospitals: design, development, and application. JMIR Med Inf. 2022; 10(4):e36481. https://doi.org/10.2196/36481.

[213]

Li N, Lewin A, Ning S, et al. Privacy-preserving federated data access and federated learning: improved data sharing and AI model development in transfusion medicine. Transfusion (Paris). 2025; 65(1):22-28. https://doi.org/10.1111/trf.18077.

[214]

Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. npj Digit Med. 2020; 3(1):119. https://doi.org/10.1038/s41746-020-00323-1.

[215]

Aouedi O, Sacco A, Piamrat K, et al. Handling privacy-sensitive medical data with federated learning: challenges and future directions. IEEE J Biomed Health Inform. 2023; 27(2):790-803. https://doi.org/10.1109/JBHI.2022.3185673.

[216]

Huang H, Chen R, Lin Y, et al. Research on chronic kidney disease staging prediction and prescription recommendation model based on multimodal data fusion. In: 2025 2nd International Conference on Electronic Engineering and Information Systems (EEISS). 2025:1-5. https://doi.org/10.1109/EEISS65394.2025.11085645.

[217]

Zhan Z, Qinghua P, Xiaoxia X, et al. An interpretability model for syndrome differentiation of HBV-ACLF in traditional Chinese medicine using small-sample imbalanced data. Digit Chin Med. 2024; 7(2):137-147. https://doi.org/10.1016/j.dcmed.2024.09.005.

[218]

Yan Y, Li C, Huang Y, et al. TCDiff: triplex cascaded diffusion for high-fidelity multimodal EHRs generation with incomplete clinical data. arXiv. 2025. https://doi.org/10.48550/arXiv.2508.01615.

[219]

Yim J, Stärk H, Corso G, et al. Diffusion models in protein structure and docking. WIREs Comput Mol Sci. 2024; 14(2):e1711. https://doi.org/10.1002/wcms.1711.

[220]

Ibrahim M, Khalil YA, Amirrajab S, et al. Generative AI for synthetic data across multiple medical modalities: a systematic review of recent developments and challenges. Comput Biol Med. 2025;189:109834. https://doi.org/10.1016/j.compbiomed.2025.109834.

[221]

Yellapragada S, Graikos A, Prasanna P, et al. PathLDM: text conditioned latent diffusion model for histopathology. In:Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2024:5182-5191.

[222]

Molino D, Feola FD, Faiella E, et al. XGeM: a multi-prompt foundation model for multimodal medical data generation. arXiv. 2025. https://doi.org/10.48550/arXiv.2501.04614.

[223]

Fan L, Chen T, He L, et al. GADM: data augmentation using generative adversarial diffusion model for pulse-based disease identification. Biomed Signal Process Control. 2025;100:107005. https://doi.org/10.1016/j.bspc.2024.107005.

[224]

Sun S, Su Z, Meizhou J, et al. Optimizing medical image report generation through a discrete diffusion framework. J Supercomput. 2025; 81(5):637. https://doi.org/10.1007/s11227-025-07111-2.

[225]

Lena MH, Reinke A, Godau P, et al. Metrics reloaded: recommendations for image analysis validation. Nat Methods. 2024; 21(2):195-212. https://doi.org/10.1038/s41592-023-02151-z.

[226]

Nguyen HL, Vu DT, Jung JJ. Knowledge graph fusion for smart systems: a survey. Inf Fusion. 2020; 61:56-70. https://doi.org/10.1016/j.inffus.2020.03.014.

[227]

Peng C, Xia F, Naseriparsa M, et al.Knowledge graphs: opportunities and challenges. Artif Intell Rev. 2023; 56(11):13071-13102. https://doi.org/10.1007/s10462-023-10465-9.

[228]

Fellbaum C. WordNet. In: Poli R, Healy M, Kameas A, Theory and applications of ontology:eds. computer applications. Berlin: Springer Netherlands. 2010:231-243. https://doi.org/10.1007/978-90-481-8847-5_10.

[229]

Auer S, Bizer C, Kobilarov G, et al. DBpedia:a nucleus for a web of open data. In: Aberer K, Choi KS, Noy N, et al., eds. The Semantic Web. Berlin: Springer. 2007:722-735. https://doi.org/10.1007/978-3-540-76298-0_52.

[230]

Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000; 25(1):25-29. https://doi.org/10.1038/75556.

[231]

Huang H, Wang X, Gu Z, et al. Research on medical knowledge graph construction technology and development status. J Comput Eng Appl. 2023; 59(13):33-48. https://doi.org/10.3778/j.issn.1002-8331.2209-0475.

[232]

Lin Y, Liu Z, Sun M, et al. Learning entity and relation embeddings for knowledge graph completion. Proc AAAI Conf Artif Intell. 2015; 29(1). https://doi.org/10.1609/aaai.v29i1.9491.

[233]

Zhang Z, Zhuang F, Zhu H, et al. Relational graph neural network with hierarchical attention for knowledge graph completion. Proc AAAI Conf Artif Intell. 2020; 34(5):9612-9619. https://doi.org/10.1609/aaai.v34i05.6508.

[234]

Lan X, Zhao J, Zhang Y, et al. Tacit knowledge mining: the key traditional Chinese medical inheritance. Chin Med Cult. 2020; 3(1):15. https://doi.org/10.4103/CMAC.CMAC_2_20.

[235]

Feng Y, Wu Z, Zhou X, et al. Knowledge discovery in traditional Chinese medicine: state of the art and perspectives. Artif Intell Med. 2006; 38(3):219-236. https://doi.org/10.1016/j.artmed.2006.07.005.

[236]

Wang S, Du X, Liu G, et al. An interpretable data-driven medical knowledge discovery pipeline based on artificial intelligence. IEEE J Biomed Health Inform. 2023; 27(10):5099-5109. https://doi.org/10.1109/JBHI.2023.3299339.

[237]

Xue B, Zou L. Knowledge graph quality management: a comprehensive survey. IEEE Trans Knowl Data Eng. 2023; 35(5):4969-4988. https://doi.org/10.1109/TKDE.2022.3150080.

[238]

Qi Y, Zheng W, Hong L, et al.Evaluating knowledge graph accuracy powered by optimized human-machine collaboration. In:Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. KDD ’22. Association for Computing Machinery; 2022:1368-1378. https://doi.org/10.1145/3534678.3539233.

[239]

Rahman S, Choi F, Kim H, et al. Knowledge acquisition and integration with expert-in-the-loop. arXiv. 2024. https://doi.org/10.48550/arXiv.2402.03291.

[240]

Kou Z, Shang L, Zhang Y, et al. HC-COVID: a hierarchical crowdsource knowledge graph approach to explainable COVID-19 misinformation detection. Proc ACM Hum-Comput Interact. 2022; 6(GROUP):36:1-36:25. https://doi.org/10.1145/3492855.

[241]

Füßl A, Nissen V, Heringklee SH. Interactive machine learning of knowledge graph-based explainable process analysis. In: Ruiz M, Soffer P, eds. Advanced Information Systems Engineering Workshops. Springer International Publishing; 2023:112-124. https://doi.org/10.1007/978-3-031-34985-0_12.

[242]

Eduardo MR, Elena HP, David AR, et al. Human-in-the-loop machine learning: a state of the art. Artif Intell Rev. 2023; 56(4):3005-3054. https://doi.org/10.1007/s10462-022-10246-w.

[243]

Holzinger A. Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 2016; 3(2):119-131. https://doi.org/10.1007/s40708-016-0042-6.

[244]

Monarch RM. Human-in-the-loop machine learning: active learning and annotation for human-centered AI. Shelton: Manning. 2021. https://ieeexplore.ieee.org/document/10280384.

[245]

Jarrahi MH, Davoudi V, Haeri M. The key to an effective AI-powered digital pathology: establishing a symbiotic workflow between pathologists and machine. J Pathol Inform. 2022;13:100156. https://doi.org/10.1016/j.jpi.2022.100156.

[246]

Wu X, Xiao L, Sun Y, et al. A survey of human-in-the-loop for machine learning. Future Gener Comput Syst. 2022; 135:364-381. https://doi.org/10.1016/j.future.2022.05.014.

[247]

Yang J, Zhuang X, Li Z, et al. CPMKG: a condition-based knowledge graph for precision medicine. Database. 2024;2024:baae102. https://doi.org/10.1093/database/baae102.

[248]

Vidal ME, Chudasama Y, Huang H, et al. Integrating knowledge graphs with symbolic AI: the path to interpretable hybrid AI systems in medicine. J Web Semant. 2025;84:100856. https://doi.org/10.1016/j.websem.2024.100856.

[249]

Li M, Xiao J, Chen B, et al. Loganin inhibits the ROS-NLRP3-IL-1β axis by activating the NRF2/HO-1 pathway against osteoarthritis. Chin J Nat Med. 2024; 22(11):977-990. https://doi.org/10.1016/S1875-5364(24)60555-8.

[250]

Xiu Y, Wang S, Zhang P, et al. Total glucosides of paeony alleviates cGAS-STING-mediated diseases by blocking the STING-IRF3 interaction. Chin J Nat Med. 2024; 22(5):402-415. https://doi.org/10.1016/S1875-5364(24)60572-8.

[251]

Huang Q, Wang M, Wang M, et al. Scutellaria baicalensis: a promising natural source of antiviral compounds for the treatment of viral diseases. Chin J Nat Med. 2023; 21(8):563-575. https://doi.org/10.1016/S1875-5364(23)60401-7.

[252]

Zhou T. Unveiling secrets of traditional Chinese medicine: cutting-edge techniques in component analysis. Chin Herb Med. 2025; 17(3):484-487. https://doi.org/10.1016/j.chmed.2025.05.006.

[253]

Qian J, Shao X, Bao H, et al. Identification and characterization of cell niches in tissue from spatial omics data at single-cell resolution. Nat Commun. 2025; 16(1):1693. https://doi.org/10.1038/s41467-025-57029-9.

[254]

Yang P, Jin K, Yao Y, et al. Spatial integration of multi-omics single-cell data with SIMO. Nat Commun. 2025; 16(1):1265. https://doi.org/10.1038/s41467-025-56523-4.

[255]

Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011; 12(1):56-68. https://doi.org/10.1038/nrg2918.

[256]

Guo R, Zhang S, Li A, et al. Ginsenoside Rb1 and berberine synergistically protect against type 2 diabetes mellitus via GDF15/HAMP pathway throughout the liver lobules: insights from spatial transcriptomics analysis. Pharmacol Res. 2025;215:107711. https://doi.org/10.1016/j.phrs.2025.107711.

[257]

Gao F, Huang K, Xing Y.Artificial intelligence in omics. Genomics Proteomics Bioinformatics. 2022; 20(5):811-813. https://doi.org/10.1016/j.gpb.2023.01.002.

[258]

Nam Y, Kim J, Jung SH, et al. Harnessing artificial intelligence in multimodal omics data integration: paving the path for the next frontier in precision medicine. Annu Rev Biomed Data Sci. 2024; 7:225-250. https://doi.org/10.1146/annurev-biodatasci-102523-103801.

[259]

Gan X, Shu Z, Wang X, et al. Network medicine framework reveals generic herb-symptom effectiveness of traditional Chinese medicine. Sci Adv. 2023; 9(43):eadh0215. https://doi.org/10.1126/sciadv.adh0215.

[260]

Amann J, Blasimme A, Vayena E, et al. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inf Decis Mak. 2020; 20:1-9. https://doi.org/10.1186/s12911-020-01332-6.

[261]

Ghassemi M, Naumann T, Schulam P, et al. A review of challenges and opportunities in machine learning for health. AMIA Jt Summits Transl Sci Proc. 2020;2020:191.https://pubmed.ncbi.nlm.nih.gov/32477638/.

[262]

Hasan U, Gani MO. Kcrl:a prior knowledge based causal discovery framework with reinforcement learning. In: Machine Learning for Healthcare Conference; PMLR. 2022:691-714. https://proceedings.mlr.press/v182/hasan22a.html.

[263]

Esmaeili P, Roshanravan N, Ghaffari S, et al. Unraveling atherosclerotic cardiovascular disease risk factors through conditional probability analysis with Bayesian networks: insights from the AZAR cohort study. Sci Rep. 2024; 14(1):4361. https://doi.org/10.1038/s41598-024-55141-2.

[264]

Pearl J. Comment:understanding simpson’s paradox. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Shelton: Manning Publications. 2022:399-412. https://doi.org/10.1145/3501714.3501738.

[265]

Cheng F, Kovács IA, Barabási AL.Network-based prediction of drug combinations. Nat Commun. 2019; 10(1):1197. https://doi.org/10.1038/s41467-019-09186-x.

[266]

Richens JG, Lee CM, Johri S. Improving the accuracy of medical diagnosis with causal machine learning. Nat Commun. 2020; 11(1):3923. https://doi.org/10.1038/s41467-020-17419-7.

[267]

Chu X, Wu S, Sun B, et al. Data-driven quantification and intelligent decision-making in traditional Chinese medicine: a review. Int J Mach Learn Cybern. 2024; 15(8):3455-3470. https://doi.org/10.1007/s13042-024-02103-9.

[268]

Charpignon M, Vakulenkolagun B, Zheng B, et al. Causal inference in medical records and complementary systems pharmacology for metformin drug repurposing towards dementia. Nat Commun. 2022; 13(1):7652. https://doi.org/10.1038/s41467-022-35157-w.

[269]

Xian Y, Fu Z, Muthukrishnan S, et al.Reinforcement knowledge graph reasoning for explainable recommendation. In:Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval; SIGIR’19. 2019:285-294. https://doi.org/10.1145/3331184.3331203.

[270]

Wang H, Wang J. A quantitative diagnostic method based on bayesian networks in traditional Chinese medicine. In: Neural Information Processing. Springer Berlin. 2006:176-183. https://doi.org/10.1007/11893295_20.

[271]

Xia C, Deng F, Wang Y, et al. Classification research on syndromes of TCM based on SVM. In: 2009 2nd International Conference on Biomedical Engineering and Informatics. 2009:1-4. https://doi.org/10.1109/BMEI.2009.5305418.

[272]

Hager P, Jungmann F, Holland R, et al. Evaluation and mitigation of the limitations of large language models in clinical decision-making. Nat Med. 2024; 30(9):2613-2622. https://doi.org/10.1038/s41591-024-03097-1.

[273]

Bussone A, Stumpf S, O’Sullivan D. The role of explanations on trust and reliance in clinical decision support systems. In: 2015 International Conference on Healthcare Informatics. IEEE. 2015:160-169. https://doi.org/10.1109/ICHI.2015.26.

[274]

Tonekaboni S, Joshi S, McCradden MD, et al. What clinicians want: contextualizing explainable machine learning for clinical end use. In:Machine Learning for Healthcare Conference. PMLR. 2019:359-380. https://proceedings.mlr.press/v106/tonekaboni19a.html.

[275]

Yin Z, Kuang Z, Zhang H, et al. Explainable AI method for tinnitus diagnosis via neighbor-augmented knowledge graph and traditional Chinese medicine: Development and validation study. JMIR Med Inform. 2024; 12(1):e57678. https://doi.org/10.2196/57678.

[276]

Chen Y, Li H, Li H, et al. An overview of knowledge graph reasoning: key technologies and applications. J Sens Actuator Netw. 2022; 11(4):78. https://doi.org/10.3390/jsan11040078.

[277]

Tutek M, Šnajder J. Toward practical usage of the attention mechanism as a tool for interpretability. IEEE Access. 2022; 10:47011-47030. https://doi.org/10.1109/ACCESS.2022.3169772.

[278]

Nohara Y, Matsumoto K, Soejima H, et al. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput Methods Programs Biomed. 2022;214:106584. https://doi.org/10.1016/j.cmpb.2021.106584.

[279]

Lin BY, Chen X, Chen J, et al. KagNet: knowledge-aware graph networks for commonsense reasoning. arXiv. 2019. https://doi.org/10.48550/arXiv.1909.02151.

[280]

Singh J, Rani S, Srilakshmi G. Towards explainable AI:interpretable models for complex decision-making. In: 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS). 2024:1-5. https://doi.org/10.1109/ICKECS61492.2024.10616500.

[281]

Sutton RT, Pincock D, Baumgart D, et al. An overview of clinical decision support systems: benefits, risks, and strategies for success. npj Digit Med. 2020; 3(1):17. https://doi.org/10.1038/s41746-020-0221-y.

[282]

Cai CJ, Reif E, Hegde N, et al.Human-centered tools for coping with imperfect algorithms during medical decision-making. In:Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. CHI ’19. 2019:1-14. https://doi.org/10.1145/3290605.3300234.

[283]

Silvia DA, Norajitra T, Lüth CT, et al. How do deep-learning models generalize across populations? cross-ethnicity generalization of COPD detection. Insights Imaging. 2024; 15(1):198. https://doi.org/10.1186/s13244-024-01781-x.

[284]

Futoma J, Simons M, Panch T, et al. The myth of generalisability in clinical research and machine learning in health care. Lancet Digit Health. 2020; 2(9):e489-e492. https://doi.org/10.1016/S2589-7500(20)30186-2.

[285]

Arcadu F, Benmansour F, Maunz A, et al. Deep learning algorithm predicts diabetic retinopathy progression in individual patients. npj Digit Med. 2019; 2(1):92. https://doi.org/10.1038/s41746-019-0172-3.

[286]

Gu Y, Ge Z, Bonnington CP, et al. Progressive transfer learning and adversarial domain adaptation for cross-domain skin disease classification. IEEE J Biomed Health Inform. 2020; 24(5):1379-1393. https://doi.org/10.1109/JBHI.2019.2942429.

[287]

Chaddad A, Lu Q, Li J, et al. Explainable, domain-adaptive, and federated artificial intelligence in medicine. IEEECAA J Autom Sin. 2023; 10(4):859-876. https://doi.org/10.1109/JAS.2023.123123.

[288]

Albalawi E, Mahesh T, Thakur A, et al. Integrated approach of federated learning with transfer learning for classification and diagnosis of brain tumor. BMC Med Imaging. 2024; 24(1):110. https://doi.org/10.1186/s12880-024-01261-0.

PDF (5188KB)

393

Accesses

0

Citation

Detail

Sections
Recommended

/