AI and natural medicines

Xiaohui Fan

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (11) : 1281 -1282.

PDF (4312KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (11) :1281 -1282. DOI: 10.1016/S1875-5364(25)60981-2
Editorial
research-article

AI and natural medicines

Author information +
History +
PDF (4312KB)

Cite this article

Download citation ▾
Xiaohui Fan. AI and natural medicines. Chinese Journal of Natural Medicines, 2025, 23(11): 1281-1282 DOI:10.1016/S1875-5364(25)60981-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Newman DJ, Cragg GM, Snader KM.Natural products as sources of new drugs over the period 1981-2002. J Nat Prod.2003; 66(7):1022-1137. https://doi.org/10.1021/np030096l.

[2]

Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021; 20(3):200-216. https://doi.org/10.1038/s41573-020-00114-z.

[3]

Zhang J, Fang Y, Shao X, et al. The future of molecular studies through the lens of large language models. J Chem Inf Model. 2024; 64(3):563-566. https://doi.org/10.1021/acs.jcim.3c01977.

[4]

Chen HY, Tang RT, Hong M, et al. Applications of artificial intelligence in the research of molecular mechanisms of traditional Chinese medicine formulas. Chin J Nat Med. 2025; 23(11):1329-1341. https://doi.org/10.1016/S1875-5364(25)60903-4.

[5]

Yuan X, Yang XB, Pan QY, et al. Artificial intelligence in natural products research. Chin J Nat Med. 2025; 23(11):1342-1357. https://doi.org/10.1016/S1875-5364(25)60902-2.

[6]

Liu JX, Chang S, Deng QT, et al. Advances in small molecule representations and AI-driven drug research: bridging the gap between theory and application. Chin J Nat Med. 2025; 23(11):1391-1408. https://doi.org/10.1016/S1875-5364(25)60946-0.

[7]

Tang XY, Chen HG, Zhang GY, et al. DeepGCGR: an interpretable two-layer deep learning model for the discovery of GCGR-activating compounds. Chin J Nat Med. 2025; 23(11):1301-1309. https://doi.org/10.1016/S1875-5364(25)60969-1.

[8]

Li SS, Fan J, He HY, et al. MolP-PC: a multi-view fusion and multi-task learning framework for drug ADMET property prediction. Chin J Nat Med. 2025; 23(11):1293-1300. https://doi.org/10.1016/S1875-5364(25)60945-9.

[9]

Yue CY, Chen BY, Chen L, et al. KG-CNNDTI: a knowledge graph-enhanced prediction model for drug-target interactions and application in virtual screening of natural products against Alzheimer’s disease. Chin J Nat Med. 2025; 23(11):1283-1292. https://doi.org/10.1016/S1875-5364(25)60980-0.

[10]

Wang ZY, Zhang TY, Wang BY, et al. TCM network pharmacology: new perspective integrating network target with artificial intelligence and multi-modal multi-omics technologies. Chin J Nat Med. 2025; 23(11):1425-1434. https://doi.org/10.1016/S1875-5364(25)60986-1.

[11]

Shao X, Chen Y, Zhang JL, et al. Advancing network pharmacology with artificial intelligence: the next paradigm in traditional Chinese medicine. Chin J Nat Med. 2025; 23(11):1358-1376. https://doi.org/10.1016/S1875-5364(25)60941-1.

[12]

Wang YW, Wu T, Li XY, et al. Exploring artificial intelligence approaches for predicting synergistic effects of active compounds in traditional Chinese medicine based on molecular compatibility theory. Chin J Nat Med. 2025; 23(11):1409-1424. https://doi.org/10.1016/S1875-5364(25)60967-8.

[13]

Niu TL, Zhu YM, Mou MJ, et al. Identification of natural product-based drug combination (NPDC) using artificial intelligence. Chin J Nat Med. 2025; 23(11):1377-1390. https://doi.org/10.1016/S1875-5364(25)60942-3.

[14]

Yan DY, Zheng QG, Chang K, et al. Artificial intelligence in traditional Chinese medicine: from systems biological mechanism discovery, real-world clinical evidence inference to personalized clinical decision support. Chin J Nat Med. 2025; 23(11):1310-1328. https://doi.org/10.1016/S1875-5364(25)60983-6.

PDF (4312KB)

111

Accesses

0

Citation

Detail

Sections
Recommended

/