Isodons A−H, seco-abietane and abietane-type diterpenoids from Isodon lophanthoides: isolation, structural elucidation, and anti-cholestatic activity

Huiling Zhou , Mingzhu Han , Miaomiao Nan , Yingrong Leng , Weiming Huang , Shengtao Ye , Lingyi Kong , Wenjun Xu , Hao Zhang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) : 1133 -1142.

PDF (2148KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) :1133 -1142. DOI: 10.1016/S1875-5364(25)60977-0
Original article
research-article

Isodons A−H, seco-abietane and abietane-type diterpenoids from Isodon lophanthoides: isolation, structural elucidation, and anti-cholestatic activity

Author information +
History +
PDF (2148KB)

Abstract

Eight new diterpenoids, Isodons A−H (1−8), comprising seco-abietane and abietane-type structures, together with 13 known analogues (9−21), were isolated from Isodon lophanthoides (Buch.-Ham. ex D. Don) Hara. The compounds (+)-3/(−)-3, (+)-4/(−)-4, and (+)-5/(−)-5 were identified as three enantiomeric pairs. The planar structures and absolute configurations of 1−8 were determined through high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), 1D & 2D nuclear magnetic resonance (NMR) spectroscopy, electronic circular dichroism (ECD) calculations, and X-ray diffraction crystallography. A cholesterol 7α-hydroxylase (Cyp7a1) luciferase reporter assay revealed significant anti-cholestatic activities for compounds 1, (+)-4, 6, 7, 12−14, and 16. Additionally, compound 6 demonstrated anti-cholestatic effects through the farnesoid X receptor (FXR)-associated signaling pathways in vitro and in vivo. These findings suggest potential applications for I. Lophanthoides in pharmaceutical development.

Keywords

Isodon lophanthoides / Diterpenoids / Anticholestatic effect / FXR / Cyp7a1

Cite this article

Download citation ▾
Huiling Zhou, Mingzhu Han, Miaomiao Nan, Yingrong Leng, Weiming Huang, Shengtao Ye, Lingyi Kong, Wenjun Xu, Hao Zhang. Isodons A−H, seco-abietane and abietane-type diterpenoids from Isodon lophanthoides: isolation, structural elucidation, and anti-cholestatic activity. Chinese Journal of Natural Medicines, 2025, 23(9): 1133-1142 DOI:10.1016/S1875-5364(25)60977-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu W, Li K, Ran X, et al. Combination of resveratrol and luteolin ameliorates α-naphthylisothiocyanate-induced cholestasis by regulating the bile acid homeostasis and suppressing oxidative stress. Food Funct. 2022; 13(13):7098-7111. https://doi.org/10.1039/D2FO00521B.

[2]

Gao XG, Fu T, Wang CY, et al. Yangonin protects against cholestasis and hepatotoxity via activation of farnesoid X receptor in vivo and in vitro. Toxicol Appl Pharmacol. 2018; 348:105-116. https://doi.org/10.1016/j.taap.2018.04.015.

[3]

Zheng SH, Cao PC, Yin ZQ, et al. Apigenin protects mice against 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced cholestasis. Food Funct. 2021; 12(5):2323-2334. https://doi.org/10.1039/D0FO02910F.

[4]

Li T, Xu L, Zheng R, et al. Picroside II protects against cholestatic liver injury possibly through activation of farnesoid X receptor. Phytomedicine. 2019;68:153153. https://doi.org/10.1016/j.phymed.2019.153153.

[5]

Zhang S, Yu M, Guo F, et al. Rosiglitazone alleviates intrahepatic cholestasis induced by α-naphthylisothiocyanate in mice: The role of circulating 15-deoxy-Δ12, 14-PGJ2 and Nogo. Br J Pharmacol. 2020; 177(5):1041-1060. https://doi.org/10.1111/bph.14886.

[6]

Luo Z, Yin F, Wang X, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[7]

Zhou W, Xie H, Wu P, et al. Abietane diterpenoids from Isodon lophanthoides var. graciliflorus and their cytotoxicity. Food Chem. 2012; 136(2):1110-1116. https://doi.org/10.1016/j.foodchem.2012.08.015.

[8]

Wan J, Jiang HY, Tang JW, et al. ent-Abietanoids isolated from Isodon serra. Molecules. 2017; 22(2):309. https://doi.org/10.3390/molecules22020309.

[9]

Lin L, Gao Q, Cui C, et al.Isolation and identification of ent-kaurane-type diterpenoids from Rabdosia serra (MAXIM.) HARA leaf and their inhibitory activities against HepG-2, MCF-7, and HL-60 cell lines. Food Chem. 2011; 131(3):1009-1014. https://doi.org/10.1016/j.foodchem.2011.09.105.

[10]

Zhou W, Xie H, Xu X, et al. Phenolic constituents from Isodon lophanthoides var. graciliflorus and their antioxidant and antibacterial activities. J Funct Foods. 2013; 6:492-498. https://doi.org/10.1016/j.jff.2013.11.015.

[11]

Liang Y, Xie H, Wu P, et al. Podocarpane, isopimarane, and abietane diterpenoids from Isodon lophanthoides var. graciliflorus. Food Chem. 2012; 136(3-4):1177-1182. https://doi.org/10.1016/j.foodchem.2012.09.084.

[12]

Liu M, Wang WG, Sun HD, et al. Diterpenoids from Isodon species: an update. Nat Prod Rep. 2017; 34(9):1090-1140. https://doi.org/10.1039/C7NP00027H.

[13]

Sun HD, Huang SX, Han QB. Diterpenoids from Isodon species and their biological activities. Nat Prod Rep. 2006; 23(5):673-698. https://doi.org/10.1039/b604174d.

[14]

Lin CZ, Zhao W, Feng XL, et al. Cytotoxic diterpenoids from Rabdosia lophanthoides var. gerardianus. Fitoterapia. 2015; 109:14-19. https://doi.org/10.1016/j.fitote.2015.11.015.

[15]

Tu WC, Huang YX, Li B, et al. Wulfenioidins D-N, structurally diverse diterpenoids with anti-Zika virus activity isolated from Orthosiphon wulfenioides. J Nat Prod. 2023; 86(10):2348-2359. https://doi.org/10.1021/acs.jnatprod.3c00543.

[16]

Chen X, Liao RN, Xie QL. Abietane diterpenes from Rabdosia serra (maxim) hara. J Chem Res. 2001; 39(32):200139197. https://doi.org/10.1002/chin.200139197.

[17]

Grandolini G, Casinovi CG, Betto P, et al. A sesquiterpene lactone from Artemisia arborescens. Phytochemistry. 1988; 27(11):3670-3672. https://doi.org/10.1016/0031-9422(88)80792-1.

[18]

Zheng X, Kadir A, Zheng G, et al. Antiproliferative abietane quinone diterpenoids from the roots of Salvia deserta. Bioorg Chem. 2020;104:104261. https://doi.org/10.1016/j.bioorg.2020.104261.

[19]

Zhao A, Li S, Li Y, et al. Two new abietane quinones from Isodon lophanthoides var. micranthus. Chin Chem Lett. 2003; 14(06):591-593. https://doi.org/10.1002/ciuz.200300280.

[20]

Jonathan LT, Che CT, Pezzuto JM, et al.7-O-Methylhorminone and other cytotoxic diterpene quinones from Lepechinia bullata. J Nat Prod. 1989; 52(3):571-575. https://doi.org/10.1021/np50063a016.

[21]

Eghtesadi F, Moridi Farimani M, Hazeri N, et al. Abietane and nor-abitane diterpenoids from the roots of Salvia rhytidea. Springerplus. 2016;5:1068. https://doi.org/10.1186/s40064-016-2652-0.

[22]

Yang F, Wang Y, Li G, et al. Effects of corilagin on alleviating cholestasis via farnesoid X receptor-associated pathways in vitro and in vivo. Br J Pharmacol. 2018; 175(5):810-829. https://doi.org/10.1111/bph.14126.

[23]

Chambers KF, Day PE, Aboufarrag HT, et al. Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1: a review. Nutrients. 2019; 11(11):2588. https://doi.org/10.3390/nu11112588.

[24]

Zhao Y, He X, Ma X, et al. Paeoniflorin ameliorates cholestasis via regulating hepatic transporters and suppressing inflammation in ANIT-fed rats. Biomed Pharmacother. 2017; 89:61-68. https://doi.org/10.1016/j.biopha.2017.02.025.

PDF (2148KB)

102

Accesses

0

Citation

Detail

Sections
Recommended

/