Discovery of bioactive polycyclic polyprenylated acylphloroglucinol from Hypericum patulum that protects against hepatic ischemia/reperfusion injury

Bo Tao , Xiangli Zhao , Zhengyi Shi , Jie Li , Yulin Duan , Xiaosheng Tan , Gang Chen , Changxing Qi , Yonghui Zhang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) : 1104 -1110.

PDF (1929KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) :1104 -1110. DOI: 10.1016/S1875-5364(25)60975-7
Original article
research-article

Discovery of bioactive polycyclic polyprenylated acylphloroglucinol from Hypericum patulum that protects against hepatic ischemia/reperfusion injury

Author information +
History +
PDF (1929KB)

Abstract

Hepatic ischemia/reperfusion injury (IRI) remains a critical complication contributing to graft dysfunction following liver surgery. As part of an ongoing search for hepatoprotective natural products, five previously unreported homoadamantane-type polycyclic polyprenylated acylphloroglucinols (PPAPs), named hyperhomanoons A-E (1−5), and one known analog, hypersampsone O (6), were isolated from Hypericum patulum. Among these, compound 6 demonstrated potent protective effects against CoCl₂-induced hypoxic injury in hepatocytes. Furthermore, in a murine model of hepatic IRI induced by vascular occlusion, pretreatment with 6 markedly alleviated liver damage and reduced hepatocyte apoptosis. This study is the first to identify PPAPs as promising scaffolds for the development of therapeutic agents targeting hepatic IRI, underscoring their potential as lead compounds in drug discovery efforts for ischemic liver diseases.

Keywords

Hepatic ischemia/reperfusion injury / Hypericum patulum / Polycyclic polyprenylated acylphloroglucinols / Natural products / Secondary metabolites

Cite this article

Download citation ▾
Bo Tao, Xiangli Zhao, Zhengyi Shi, Jie Li, Yulin Duan, Xiaosheng Tan, Gang Chen, Changxing Qi, Yonghui Zhang. Discovery of bioactive polycyclic polyprenylated acylphloroglucinol from Hypericum patulum that protects against hepatic ischemia/reperfusion injury. Chinese Journal of Natural Medicines, 2025, 23(9): 1104-1110 DOI:10.1016/S1875-5364(25)60975-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fang B, Yang J, Wang L, et al. A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chin Chem Lett. 2024; 35(6):108913. https://doi.org/10.1016/j.cclet.2023.108913.

[2]

Fang Y, Hu Q. Neutrophil CC 1 plays a protective role in orthotopic liver transplantation: views from the perspective of natural compounds. Chin J Nat Med. 2023; 21(4):241-242. https://doi.org/10.1016/S1875-5364(23)60432-7.

[3]

Hu H, Li Y, Shi Z, et al. Discovery of ergosterol derivative from Aspergillus sp. TJ507 that protects against hepatic ischemia/reperfusion injury. Bioorg Chem. 2023;135:106530. https://doi.org/10.1016/j.bioorg.2023.106530.

[4]

Jia Y, Xiao H, Wang X, et al. Design, synthesis, and evaluation of n-butylphthalide and ligustrazine hybrids as potent neuroprotective agents for the treatment of ischemic stroke in vitro and in vivo. Bioorg Chem. 2024;142:106961. https://doi.org/10.1016/j.bioorg.2023.106961.

[5]

Li S, Xu F, Yu L, et al. Stigmasterol protects human brain microvessel endothelial cells against ischemia-reperfusion injury through suppressing EPHA2 phosphorylation. Chin J Nat Med. 2023; 21(2):127-135. https://doi.org/10.1016/S1875-5364(23)60390-5.

[6]

Liu H, Huang Z, Jiang H, et al. Dihydroartemisinin attenuates ischemia/reperfusion-induced renal tubular senescence by activating autophagy. Chin J Nat Med. 2023; 21(9):682-693. https://doi.org/10.1016/S1875-5364(23)60398-X.

[7]

Liu J, Mu D, Xu J, et al. Inhibition of TLR4 signaling by isorhapontigenin targeting of the AHR alleviates cerebral ischemia/reperfusion injury. J Agric Food Chem. 2023; 71(36):13270-13283. https://doi.org/10.1021/acs.jafc.3c00152.

[8]

Ma Y, Zhao C, Hu H, et al. Liver protecting effects and molecular mechanisms of icariin and its metabolites. Phytochemistry. 2023;215:113841. https://doi.org/10.1016/j.phytochem.2023.113841.

[9]

Qi Z, Tong Y, Luo H, et al. Neuroprotective effect of a Keap1-Nrf2 protein-protein inter-action inhibitor on cerebral ischemia/reperfusion injury. Bioorg Chem. 2023;132:106350. https://doi.org/10.1016/j.bioorg.2023.106350.

[10]

Sun Z, Wang Y, Pang X, et al. Mechanisms of polydatin against spinal cord ischemia-reperfusion injury based on network pharmacology, molecular docking and molecular dynamics simulation. Bioorg Chem. 2023;140:106840. https://doi.org/10.1016/j.bioorg.2023.106840.

[11]

Xue Y, Fu W, Yu P, et al. Ginsenoside Rc alleviates myocardial ischemia-reperfusion injury by reducing mitochondrial oxidative stress and apoptosis: role of SIRT1 activation. J Agric Food Chem. 2023; 71(3):1547-1561. https://doi.org/10.1021/acs.jafc.2c06926.

[12]

Yang Z, Luo G, Ying Y, et al. Novel 2,6-disubstituted benzofuran-3-one analogues improve cerebral ischemia/reperfusion injury via neuroprotective and antioxidative effects. Bioorg Chem. 2023;132:106346. https://doi.org/10.1016/j.bioorg.2023.106346.

[13]

Zhang B, Chen Z, Jiang Z, et al. Nephroprotective effects of cardamonin on renal ischemia reperfusion injury/UUO-induced renal fibrosis. J Agric Food Chem. 2023; 71(36):13284-13303. https://doi.org/10.1021/acs.jafc.3c01880.

[14]

Zhang Y, Zhao X, Cao Y, et al. Bioactive indole alkaloid from Aspergillus amoenus TJ507 that ameliorates hepatic ischemia/reperfusion injury. J Nat Prod. 2023; 86(8):2059-2064. https://doi.org/10.1021/acs.jnatprod.3c00251.

[15]

Zhang F, Yang J, Yi P, et al. Hyperpatone A, a polycyclic polyprenylated acylphloroglucinol with a rare 8/6/5/6/5 pentacyclic skeleton from Hypericum patulum. Org Biomol Chem. 2022; 21(1):140-146. https://doi.org/10.1039/d2ob01851a.

[16]

Li X, Li Q, Xu J, et al. Isolation and antihyperglycemic effects of garcibractinols A-H, intricate polycyclic polyprenylated acylphloroglucinols from the fruits of Garcinia bracteata. Bioorg Chem. 2023;138:106651. https://doi.org/10.1016/j.bioorg.2023.106651.

[17]

Huang JC, Xu HH, Shi Q, et al. Enantiomeric pairs of macrocyclic acylphloroglucinols from Syzygium szemaoense. Bioorg Chem. 2023;132:106381. https://doi.org/10.1016/j.bioorg.2023.106381.

[18]

Zhang R, Cheng Z, Fang Q, et al.Monoterpenoid acylphloroglucinols from Hypericum hengshanense W. T. Wang with antiproliferative activities. Phytochemistry. 2023;205:113500. https://doi.org/10.1016/j.phytochem.2022.113500.

[19]

Ye YS, Duan YT, Zhou Z, et al. Structurally diverse cytotoxic polyphenols from Garcinia gracilis. J Nat Prod. 2023; 86(9):2206-2215. https://doi.org/10.1021/acs.jnatprod.3c00498.

[20]

Daus M, Hayton JB, Holland DC, et al. Camaldulensals A-C, the first meroterpenoids possessing two spatially separated formyl phloroglucinols conjugated to a terpene core from the leaves of Eucalyptus camaldulensis Dehnh. J Nat Prod. 2023; 86(8):1994-2005. https://doi.org/10.1021/acs.jnatprod.3c00443.

[21]

Cuesta-Rubio O, Monzote L, Fernández-Acosta R, et al. A review of nemorosone: chemistry and biological properties. Phytochemistry. 2023;210:113674. https://doi.org/10.1016/j.phytochem.2023.113674.

[22]

Qiu YF, Grossman RB, Yang XW. Structure revision of type B polycyclic polyprenylated acylphloroglucinols fused to a partly reduced furan ring. J Nat Prod. 2023; 86(10):2391-2397. https://doi.org/10.1021/acs.jnatprod.3c00591.

[23]

Xie JY, Wang ZX, Liu WY, et al. Hyperelatolides A-D, antineuroinflammatory constituents with unusual carbon skeletons from Hypericum elatoides. J Nat Prod. 2023; 86(8):1910-1918. https://doi.org/10.1021/acs.jnatprod.3c00226.

[24]

Tan X, Qi C, Zhao X, et al. ERK inhibition promotes engraftment of allografts by reprogramming T-cell metabolism. Adv Sci. 2023;10:2206768. https://doi.org/10.1002/advs.202206768.

[25]

Qi C, Bao J, Wang J, et al. Asperterpenes A and B, two unprecedented meroterpenoids from Aspergillus terreus with BACE1 inhibitory activities. Chem Sci. 2016; 7(10):6563-6572. https://doi.org/10.1039/C6SC02464E.

[26]

Duan Y, Guo Y, Deng Y, et al.Norprzewalsone A, a rearranged polycyclic polyprenylated acylphloroglucinol with a spiro[cyclopentane-1,3-tricyclo[7.4 0.01,6]tridecane] core from Hypericum przewalskii. J Org Chem. 2022; 87(10):6824-6831. https://doi.org/10.1021/acs.joc.2c00503.

[27]

Duan Y, Bu P, Guo Y, et al. Walskiiglucinol A, a pair of rearranged acylphloroglucinol derivative enantiomers from Hypericum przewalskii. Org Biomol Chem. 2022; 24(20):4970-4975. https://doi.org/10.1039/d2ob00562j.

[28]

Tian W, Qiu Y, Jin X, et al. Novel polycyclic polyprenylated acylphloroglucinols from Hypericum sampsonii. Tetrahedron. 2014; 70(43):7912-7916. https://doi.org/10.1016/j.tet.2014.08.062.

[29]

Yang X, Li M, Liu X, et al. Polycyclic polyprenylated acylphloroglucinol congeners possessing diverse structures from Hypericum henryi. J Nat Prod. 2015; 78(4):885-895. https://doi.org/10.1021/acs.jnatprod.5b00057.

[30]

Muñoz-Sánchez J, Chánez-Cárdenas ME. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 2019; 39(4):556-570. https://doi.org/10.1002/jat.3749.

[31]

Tang Q, Dai X, Lin Q, et al. Dcalycinumines A-E, alkaloids with cytotoxic activities of nasopharyngeal carcinoma cells from Daphniphyllum calycinum. Chin J Chem. 2024; 42(1):35-42. https://doi.org/10.1002/cjoc.202300442.

[32]

Cheng Y, Li H, Wu D, et al. Anti-inffammatory polyoxygenated cyclohexene derivatives from Uvaria macclurei. Phytochemistry. 2023;214:113797. https://doi.org/10.1016/j.phytochem.2023.113797.

[33]

Zhang Y, Zeng M, Li B, et al. Ephedra herb extract ameliorates adriamycin-induced nephrotic syndrome in rats via the CAMKK2/AMPK/mTOR signaling pathway. Chin J Nat Med. 2023; 21(5):371-382. https://doi.org/10.1016/S1875-5364(23)60454-6.

[34]

Liu Y, Li J, Gao H, et al. A near-infrared and lysosome-targeted BODIPY photosensitizer for photodynamic and photothermal synergistic therapy. Org Biomol Chem. 2023; 21(22):4672-4682. https://doi.org/10.1039/d3ob00465a.

[35]

Samanta S, Maiti K, Halder S, et al. A ‘double locked’ ratiometric fluorescent probe for detection of cysteine in a viscous system and its application in cancer cells. Org Biomol Chem. 2023; 21(3):575-584. https://doi.org/10.1039/d2ob01813f.

[36]

Duan D, He H, Ding W, et al. Site-selective C-H difunctionalization of N-alkyl activated azaarenes via the synergistic catalysis of graphene oxide and visible light. Org Chem Front. 2023; 10:6055-6062. https://doi.org/10.1039/D3QO01375H.

[37]

Wang E, Han R, Wu M, et al. Size-dependent macrophage-targeting of mannose-modified rosiglitazone liposomes to alleviate inflammatory bowel disease. Chin Chem Lett. 2024; 35(1):108361. https://doi.org/10.1016/j.cclet.2023.108361.

[38]

Zhu T, Zhao M, Wang R, et al. Hantzsch ester modified asymmetric BODIPY probe with ultra-high sensitivity for ultra-fast detection of endogenous hypochlorite in living cells. Chin J Chem. 2023; 41(23):3319-3325. https://doi.org/10.1002/cjoc.202300345.

[39]

Kim H, Shil A, Sarkar S, et al. Dissecting the crosstalk between bisulffte and hypochlorous acid in the reaction-based fluorescence detection with dicyanovinyl based probes. J Org Chem. 2023; 88(9):5563-5571. https://doi.org/10.1021/acs.joc.3c00086.

[40]

Zhang L, Gao J, Wang B, et al. Imine induced metal-free C-H arylation of indoles. Org Chem Front. 2023; 10:6063-6069. https://doi.org/10.1039/D3QO01002C.

[41]

Duan Y, Sun W, Li Y, et al. Spirohypertones A and B as potent antipsoriatics: tumor necrosis factor-α inhibitors with unprecedented chemical architectures. Acta Pharm Sin B. 2024; 14(6):2646-2656. https://doi.org/10.1016/j.apsb.2024.02.002.

[42]

Tao B, Li Y, Duan Y, et al. Discovery of adamantane-type polycyclic polyprenylated acylphloroglucinols that can prevent concanavalin A-induced autoimmune hepatitis in mice. Bioorg Chem. 2024;144:107145. https://doi.org/10.1016/j.bioorg.2024.107145.

[43]

Tao B, Li Y, Shi Z, et al. Discovery of bioactive polycyclic polyprenylated acylphloroglucinols with adamantine/homoadamantane skeletons from Hypericum wilsonii. Phytochemistry. 2024;218:113953. https://doi.org/10.1016/j.phytochem.2023.113953.

[44]

Shi Z, Zhao X, Song F, et al. Prenyllongnols A-D, new prenylated acylphloroglucinols that fight concanavalin A-induced autoimmune hepatitis. J Agr Food Chem. 2023; 71(46):17801-17809. https://doi.org/10.1021/acs.jafc.3c05245.

[45]

Hu H, Li L, Shi Z, et al. Polyaspers A and B, the first ergosterol-polyether adducts with unprecedented 6/6/6/5/5/6/6/6/6 nonacyclic architecture from Aspergillus sp. TJ507. Chin J Chem. 2024; 42(7):743-751. https://doi.org/10.1002/cjoc.202300649.

PDF (1929KB)

107

Accesses

0

Citation

Detail

Sections
Recommended

/