Azaphilone derivatives with RANKL-induced osteoclastogenesis inhibition from the mangrove endophytic fungus Diaporthe sp.

Miaoping Lin , Yanhui Tan , Humu Lu , Yuyao Feng , Min Li , Chenghai Gao , Yonghong Liu , Xiaowei Luo

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) : 1143 -1152.

PDF (2402KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) :1143 -1152. DOI: 10.1016/S1875-5364(25)60974-5
Original article
research-article

Azaphilone derivatives with RANKL-induced osteoclastogenesis inhibition from the mangrove endophytic fungus Diaporthe sp.

Author information +
History +
PDF (2402KB)

Abstract

This study identified six novel azaphilones, isochromophilones G−L (1−6), and three novel biosynthetically related congeners (7−9) from Diaporthe sp. SCSIO 41011. The structures and absolute configurations were elucidated through comprehensive spectroscopic analyses combined with experimental and calculated electronic circular dichroism (ECD) spectra. Significantly, three highly oxygenated azaphilones contain an acetyl group at the terminal chain (4) or linear conjugated polyenoid moieties (5 and 6), which occur infrequently in the azaphilone family. Additionally, several compounds demonstrated inhibition of lipopolysaccharide (LPS)-induced nuclear factor kappa-B (NF-κB) activation in RAW 264.7 macrophages at 20 μmol·L−1. The novel compound (1) effectively inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation without exhibiting cytotoxicity in bone marrow and RAW 264.7 macrophages, indicating its potential as a promising lead compound for osteolytic disease treatment. This research presents the first documented evidence of azaphilone derivatives as inhibitors of RANKL-induced osteoclastogenesis.

Keywords

Marine fungus / Diaporthe sp. / Azaphilones / Anti-osteoclastogenesis

Cite this article

Download citation ▾
Miaoping Lin, Yanhui Tan, Humu Lu, Yuyao Feng, Min Li, Chenghai Gao, Yonghong Liu, Xiaowei Luo. Azaphilone derivatives with RANKL-induced osteoclastogenesis inhibition from the mangrove endophytic fungus Diaporthe sp.. Chinese Journal of Natural Medicines, 2025, 23(9): 1143-1152 DOI:10.1016/S1875-5364(25)60974-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Eastell R, O'Neill TW, Hofbauer LC, et al. Postmenopausal osteoporosis. Nat Rev Dis Primers. 2016; 2(1):16069. https://doi.org/10.1038/nrdp.2016.69.

[2]

Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011; 377(9773):1276-1287. https://doi.org/10.1016/S0140-6736(10)62349-5.

[3]

Zhao XL, Feng YX, Peng Y. Prevention and treatment of osteoporosis with Chinese Herbal Medicines. Chin Herb Med. 2012;(4):265-270. https://doi.org/10.3969/j.issn.1674-6348.2012.04.001

[4]

Tan YH, Deng WD, Zhang YY, et al. A marine fungus-derived nitrobenzoyl sesquiterpenoid suppresses receptor activator of NF-κB ligand-induced osteoclastogenesis and inflammatory bone destruction. Brit J Pharmacol. 2020; 177(18):4242-4260. https://doi.org/10.1111/bph.15179.

[5]

McDonald MM, Khoo WH, Ng PY, et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 2021; 184(5):1330-1347. https://doi.org/10.1016/j.cell.2021.03.010.

[6]

Huang DE, Zhao C, Li RY, et al. Identification of a binding site on soluble RANKL that can be targeted to inhibit soluble RANK-RANKL interactions and treat osteoporosis. Nat Commun. 2022; 13(1):5338. https://doi.org/10.1038/s41467-022-33006-4.

[7]

Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003; 423(6937):337-342. https://doi.org/10.1038/nature01658.

[8]

Wang XY, Yamauchi K, Mitsunaga T. A review on osteoclast diseases and osteoclastogenesis inhibitors recently developed from natural resources. Fitoterapia. 2020;142:104482. https://doi.org/10.1016/j.fitote.2020.104482.

[9]

Carroll AR, Copp BR, Davis RA, et al. Marine natural products. Nat Prod Rep. 2024; 41(2):162-207. https://doi.org/10.1039/D3NP00061C.

[10]

Chen SH, Cai RL, Liu ZM, et al. Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities. Nat Prod Rep. 2022; 39:560-595. https://doi.org/10.1039/D1NP00041A.

[11]

Li KL, Chen SQ, Pang XY, et al. Natural products from mangrove sediments-derived microbes: structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem. 2022;230:114117. https://doi.org/10.1016/j.ejmech.2022.114117.

[12]

El-Desoky AHH, Tsukamoto S. Marine natural products that inhibit osteoclastogenesis and promote osteoblast differentiation. J Nat Med. 2022; 76(3):575-583. https://doi.org/10.1007/s11418-022-01622-5.

[13]

Zhang YT, Li ZC, Huang BY, et al. Anti-osteoclastogenic and antibacterial effects of chlorinated polyketides from the Beibu Gulf coral-derived fungus Aspergillus unguis GXIMD 02505. Mar Drugs. 2022; 20(3):178. https://doi.org/10.3390/md20030178.

[14]

Lu HM, Tan YH, Zhang YT, et al. Osteoclastogenesis inhibitory phenolic derivatives produced by the Beibu Gulf coral-associated fungus Acremonium sclerotigenum GXIMD 02501. Fitoterapia. 2022159:105201. https://doi.org/10.1016/j.fitote.2022.105201.

[15]

Cai J, Gao L, Wang Y, et al. Discovery of a novel anti-osteoporotic agent from marine fungus-derived structurally diverse sirenins. Eur J Med Chem. 2024;265:116068. https://doi.org/10.1016/j.ejmech.2023.116068.

[16]

Wang WH, Lee J, Kim KJ, et al. Austalides, osteoclast differentiation inhibitors from a marine-derived strain of the fungus Penicillium rudallense. J Nat Prod. 2019; 82(11):3083-3088. https://doi.org/10.1021/acs.jnatprod.9b00690.

[17]

Gao JM, Yang SX, Qin JC. Azaphilones: chemistry and biology. Chem Rev. 2013; 113(7):4755-4811. https://doi.org/10.1021/cr300402y.

[18]

Pavesi C, Flon V, Mann S, et al. Biosynthesis of azaphilones: a review. Nat Prod Rep. 2021; 38(6):1058-1071. https://doi.org/10.1039/D0NP00080A.

[19]

Chen CM, Tao HM, Chen WH, et al. Recent advances in the chemistry and biology of azaphilones. RSC Adv. 2020; 10(17):10197-10220. https://doi.org/10.1039/d0ra00894j.

[20]

Luo XW, Lin XP, Tao HM, et al. Isochromophilones A-F, cytotoxic chloroazaphilones from the marine mangrove endophytic fungus Diaporthe sp. SCSIO 41011. J Nat Prod. 2018; 81(4):934-941. https://doi.org/10.1021/acs.jnatprod.7b01053.

[21]

Zang Y, Gong YH, Chen X, et al. Piperazine-2,5-dione derivatives and an α-pyrone polyketide from Penicillium griseofulvum and their immunosuppression activity. Phytochemistry. 2021;186:112708. https://doi.org/10.1016/j.phytochem.2021.112708.

[22]

Chen YM, Wang SX, Shen YC. Chemical constituents from Ainsliaea glabra. Guihaia. 2014; 34(03):402-407. https://doi.org/10.3969/j.issn.1000-3142.

[23]

Jiang HM, Cai RL, Zang ZM, et al. Azaphilone derivatives with anti-inflammatory activity from the mangrove endophytic fungus Penicillium sclerotiorum ZJHJJ-18. Bioorg Chem. 2022;122:105721. https://doi.org/10.1016/j.bioorg.2022.105721.

[24]

Chiang YM, Oakley CE, Ahuja M, et al. An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. J Am Chem Soc. 2013; 135(20):7720-7731. https://doi.org/10.1021/ja401945a.

[25]

Luo XW, Chen CM, Tao HM, et al. Structurally diverse diketopiperazine alkaloids from the marine-derived fungus Aspergillus versicolor SCSIO 41016. Org Chem Front. 2019; 6(6):736-740. https://doi.org/10.1039/C8QO01147H.

PDF (2402KB)

111

Accesses

0

Citation

Detail

Sections
Recommended

/