Leveraging microbial natural products for pharmaceutical innovation: a vision of inspiration and future prospects

Junbiao Yang , Jiwen Wang , Mengqun Liu , Xuzhe Zhou , Dong Feng , Hanxiang Jiang , Xinna Liu , Lu Chen , Ying Wang

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) : 1047 -1057.

PDF (1237KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) :1047 -1057. DOI: 10.1016/S1875-5364(25)60971-X
Review
research-article

Leveraging microbial natural products for pharmaceutical innovation: a vision of inspiration and future prospects

Author information +
History +
PDF (1237KB)

Abstract

Microorganisms, abundant in nature, are prolific producers of a diverse array of natural products (NPs) that are fundamental in the development of innovative therapeutics. Despite their significant potential, the field faces considerable challenges, including the continuous emergence of potential health threats, as well as novel pathogen strains and viruses. The advent and implementation of advanced technologies, such as culture strategies, genomics mining, and artificial intelligence (AI), are facilitating a paradigm shift in pharmaceutical research, introducing innovative methodologies and perspectives. The development and maturation of these technologies have enhanced the exploration of microbial-derived NPs, thereby advancing pharmaceutical research and development. This review synthesizes recent developments in this context, emphasizing their applications in pharmaceutical discovery and development. Through systematic analysis and synthesis, it provides objective insights into the promising prospects and future direction of this essential field.

Keywords

Microbial derivatives / Bioactive natural products / Marketed pharmaceuticals / Innovative biochemical entities / Pharmaceutical discovery

Cite this article

Download citation ▾
Junbiao Yang, Jiwen Wang, Mengqun Liu, Xuzhe Zhou, Dong Feng, Hanxiang Jiang, Xinna Liu, Lu Chen, Ying Wang. Leveraging microbial natural products for pharmaceutical innovation: a vision of inspiration and future prospects. Chinese Journal of Natural Medicines, 2025, 23(9): 1047-1057 DOI:10.1016/S1875-5364(25)60971-X

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kang W, Liu HH, Ma LM, et al. Effective antimicrobial activity of a peptide mutant Cbf-14-2 against penicillin-resistant bacteria based on its unnatural amino acids. Eur J Pharm Sci. 2017; 105:169-177. https://doi.org/10.1016/j.ejps.2017.05.030.

[2]

Wu HY, Yang P, Li AQ, et al.Chlorella sp. -ameliorated undesirable microenvironment promotes diabetic wound healing. Acta Pharm Sin B. 2023, 13(1):410-424. https://doi.org/10.1016/j.apsb.2022.06.012.

[3]

Fleming A.The discovery of penicillin. Br Med J. 1955; 1(4915):711.

[4]

Guo LX, Wang HY, Liu XD, et al. Saponins from Clematis mandshurica Rupr. regulates gut microbiota and its metabolites during alleviation of collagen-induced arthritis in rats. Pharmacol Res. 2019;149:104459. https://doi.org/10.1016/j.phrs.2019.104459.

[5]

Guo C, Yang L, Wan CX, et al. Anti-neuroinflammatory effect of sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. Phytomedicine. 2016; 23(13):1629-1637. https://doi.org/10.1016/j.phymed.2016.10.007.

[6]

Yang MH, Li TX, Wang Y, et al. Antimicrobial metabolites from the plant endophytic fungus Penicillium sp. Fitoterapia. 2017; 116:72-76. https://doi.org/10.1016/j.fitote.2016.11.008.

[7]

Spížek J, Sigler K, Řezanka T, et al. Biogenesis of antibiotics—viewing its history and glimpses of the future. Folia Microbiol. 2016; 61(4):347-358. https://doi.org/10.1007/s12223-016-0462-y.

[8]

Yao H, Liu JK, Xu ST, et al. The structural modification of natural products for novel drug discovery. Expert Opin Drug Dis. 2017; 12(2):121-140. https://doi.org/10.1080/17460441.2016.1272757.

[9]

Jiang HX, Chen JQ, Du XY, et al.Unveiling synergistic potency: exploring butyrolactone I to enhance gentamicin efficacy against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300. ACS Infect Dis. 2024; 10(1):196-214. https://doi.org/10.1021/acsinfecdis.3c00534.

[10]

Wang HY, Hua HY, Liu XY, et al. In vitro biotransformation of red ginseng extract by human intestinal microflora: metabolites identification and metabolic profile elucidation using LC-Q-TOF/MS. J Pharmaceut Biomed. 2014; 98:296-306. https://doi.org/10.1016/j.jpba.2014.06.006.

[11]

Li P, Wei DD, Wang JS, et al. 1H NMR metabolomics to study the effects of diazepam on anisatin induced convulsive seizures. J Pharm Biomed Anal. 2016; 117:184-194. https://doi.org/10.1016/j.jpba.2015.08.029.

[12]

Hao HP, Zheng X, Wang GJ. Insights into drug discovery from natural medicines using reverse pharmacokinetics. Trends Pharmacol Sci. 2014; 35(4):168-177. https://doi.org/10.1016/j.tips.2014.02.001.

[13]

Li ZR, Xu X, Wang Y, et al. Carrier-free nanoplatforms from natural plants for enhanced bioactivity. J Adv Res. 2023; 50:159-176. https://doi.org/10.1016/j.jare.2022.09.013.

[14]

Liu JT, Lu XL, Liu XY, et al. Bioactive natural products from the antarctic and arctic organisms. Mini-Rev Med Chem. 2013; 13(4):617-626. https://doi.org/10.2174/1389557511313040013.

[15]

Hei YY, Zhang HL, Tan NN, et al. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with Lichen symbiosis from Qinghai-Tibet Plateau. Microbiol Res. 2021;244:126652. https://doi.org/10.1016/j.micres.2020.126652.

[16]

Scientific database of natural products.Known natural products. 2024: https://organchem.csdb.cn/npsd/default.aspx.

[17]

Wu LH, Ye K, Jiang S, et al. Marine power on cancer: drugs, lead compounds, and mechanisms. Mar Drugs. 2021; 19(9):488. https://doi.org/10.3390/md19090488.

[18]

Jiao H, Shang XH, Dong Q, et al. Polysaccharide constituents of three types of sea urchin shells and their anti-inflammatory activities. Mar Drugs. 2015; 13(9):5882-5900. https://doi.org/10.3390/md13095882.

[19]

Ying YM, Tu SB, Ni JY, et al. Secondary metabolites from Aspergillus terreus F6-3, a marine fungus associated with Johnius belengerii. Fitoterapia. 2023;170:105662. https://doi.org/10.1016/j.fitote.2023.105662.

[20]

Lu QP, Ye JJ, Huang YM, et al. Exploitation of potentially new antibiotics from mangrove actinobacteria in maowei sea by combination of multiple discovery strategies. Antibiotics. 2019; 8(4):236. https://doi.org/10.3390/antibiotics8040236.

[21]

Feng JC, Liang JZ, Cai YP, et al. Deep-sea organisms research oriented by deep-sea technologies development. Sci Bull. 2022; 67(17):1802-1816. https://doi.org/10.1016/j.scib.2022.07.016.

[22]

Wang Y, Yang MH, Wang XB, et al. Bioactive metabolites from the endophytic fungus Alternaria alternata. Fitoterapia. 2014; 99:153-158. https://doi.org/10.1016/j.fitote.2014.09.015.

[23]

Luo JG, Xu YM, Sandberg DC, et al. Montagnuphilones A-G, azaphilones from Montagnulaceae sp. dM0194, a fungal endophyte of submerged roots of Persicaria amphibia. J Nat Prod. 2017; 80(1):76-81. https://doi.org/10.1021/acs.jnatprod.6b00714.

[24]

Wu YR, Yin GP, Gao HL, et al. Asperfuranones A-C, 3(2H)-furanone derivatives from the fungus Aspergillus sp. and the configuration reassignment of their eighteen analogues. Fitoterapia. 2019; 134:196-200. https://doi.org/10.1016/j.fitote.2019.02.024.

[25]

Wang HL, Li R, Zhao M, et al. A drimane meroterpenoid borate as a synchronous Ca+ oscillation inhibitor from the coral-associated fungus Alternaria sp. ZH-15. J Nat Prod. 2023; 86(2):429-433. https://doi.org/10.1021/acs.jnatprod.2c01028.

[26]

Alam K, Mazumder A, Sikdar S, et al. Streptomyces: the biofactory of secondary metabolites. Front Microbiol. 2022;13:968053. https://doi.org/10.3389/fmicb.2022.968053.

[27]

Jiang ZK, Hu XX, Xiao LL, et al. Beilunmycin, a new virginiamycins antibiotic from mangrove-derived Streptomyces sp. 2BBP-J2 and the antibacterial activity by inhibiting protein translation. J Asian Nat Prod Res. 2021; 23(10):992-1000. https://doi.org/10.1080/10286020.2020.1810669.

[28]

Feng L, Wang J, Liu S, et al. Colletopeptides A-D, anti-inflammatory cyclic tridepsipeptides from the plant endophytic fungus Colletotrichum sp. S8. J Nat Prod. 2019; 82(6):1434-1441. https://doi.org/10.1021/acs.jnatprod.8b00829.

[29]

Zhang H, Yang MH, Li Y, et al. Seven new guanacastane-type diterpenoids from the fungus Verticillium dahliae. Fitoterapia. 2019; 133:219-224. https://doi.org/10.1016/j.fitote.2019.01.009.

[30]

Zhu HY, Cao J, Cui SS, et al. Enhanced tumor targeting and antitumor efficacy via hydroxycamptothecin-encapsulated folate-modified N-succinyl-N-octyl chitosan micelles. Asian J Pharm Sci. 2013; 102(4):1318-1332. https://doi.org/10.1002/jps.23470.

[31]

Wang Z, Chen PR, Guo M, et al. Physicochemical characterization of berberine-loaded pluronic F127 polymeric micelles and in vivo evaluation of hypoglycemic effect. J Pharm Innov. 2023; 18(2):538-547. https://doi.org/10.1007/s12247-022-09658-6.

[32]

Cao J, Song W, Gu B, et al. Correlation between carbapenem consumption and antimicrobial resistance rates of Acinetobacter baumannii in a university-affiliated hospital in China. J Clin Pharmacol. 2013; 53(1):96-102. https://doi.org/10.1177/0091270011435988.

[33]

Qiu QQ, Shi W, Zhao SY, et al. Discovery to solve multidrug resistance: design, synthesis, and biological evaluation of novel agents. Arch Pharm. 2019; 352(10):1900127. https://doi.org/10.1002/ardp.201900127.

[34]

Mancuso G, Midiri A, Gerace E, et al. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 2021; 10(10):1310. https://doi.org/10.3390/pathogens10101310.

[35]

Ikuta KS, Swetschinski LR, Aguilar GR, et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022; 400(10369):2221-2248. https://doi.org/10.1016/S0140-6736(22)02185-7.

[36]

Yu Q, Ravu RR, Xu QM, et al. Antibacterial prenylated acylphloroglucinols from Psorothamnus fremontii. J Nat Prod. 2015; 78(11):2748-2753. https://doi.org/10.1021/acs.jnatprod.5b00721.

[37]

Wu LY, Bao FF, Li L, et al. Bacterially mediated drug delivery and therapeutics: strategies and advancements. Adv Drug Deliver Rev. 2022;187:114363. https://doi.org/10.1016/j.addr.2022.114363.

[38]

Li B, Kang W, Liu HH, et al. The antimicrobial activity of Cbf-K16 against MRSA was enhanced by β-lactamantibiotics through cell wall non-integrity. Arch Pharm Res. 2016; 39(7):978-988. https://doi.org/10.1007/s12272-016-0769-x.

[39]

Chen J, Liu YF, Cheng TY, et al. A common binding mode that may facilitate the design of novel broad-spectrum inhibitors against metallo-β-lactamases. Med Chem Res. 2014; 23(1):300-309. https://doi.org/10.1007/s00044-013-0646-9.

[40]

Shen BZ, Yu Y, Chen H, et al. Inhibitor discovery of full-length new delhi metallo-β-lactamase-1 (NDM-1). PLoS ONE. 2013; 8(5):e62955. https://doi.org/10.1371/journal.pone.0062955.

[41]

Chen J, Shang XH, Hu F, et al. β-Lactamase inhibitors: an update. MRMC. 2013; 13(13):1846-1861. https://doi.org/10.2174/13895575113139990074.

[42]

Zhang M, Kong XJ, Zheng J, et al. Research and development of antibiotics: insights from patents and citation network. Expert Opin Ther Pat. 2016; 26(5):617-627. https://doi.org/10.1517/13543776.2016.1167877.

[43]

Shirley DAT, Heil EL, Johnson JK. Ceftaroline fosamil: a brief clinical review. Infect Dis Ther. 2013; 2(2):95-110. https://doi.org/10.1007/s40121-013-0010-x.

[44]

Food and Drug Administration. FDA approves new antibiotic for three different uses. 2024. https://www.prnewswire.com/news-releases/fda-approves-new-antibiotic-for-three-different-uses-302107661.html.

[45]

Zhang WL, Hu ES, Wang YJ, et al. Emerging antibacterial strategies with application of targeting drug delivery system and combined treatment. IJN. 2021; 2021(16): 6141-6156. https://doi.org/10.2147/IJN.S311248.

[46]

Wang FZ, Xing L, Tang ZH, et al. Codelivery of doxorubicin and shAkt1 by poly(ethylenimine)-glycyrrhetinic acid nanoparticles to induce autophagy-mediated liver cancer combination therapy. Mol Pharm. 2016; 13(4):1298-1307. https://doi.org/10.1021/acs.molpharmaceut.5b00879.

[47]

Lizza BD, Betthauser KD, Ritchie DJ, et al. New perspectives on antimicrobial agents: ceftolozane-tazobactam. Antimicrob Agents Chemother. 2021; 65(7):e02318-20. https://doi.org/10.1128/AAC.02318-20.

[48]

Keam SJ.Cefepime/enmetazobactam: first approval. Drugs. 2024; 84:737-744. https://doi.org/10.1007/s40265-024-02035-2.

[49]

Li ZL, Liu YX, Jiao Z, et al. Population pharmacokinetics of vancomycin in Chinese iCU neonates: initial dosage recommendations. Front Pharmacol. 2018;9:603. https://doi.org/10.3389/fphar.2018.00603.

[50]

Kaufman MB.Pharmaceutical approval update. P&T. 2018; 43(1):22-60. https://pmc.ncbi.nlm.nih.gov/articles/PMC5737248/.

[51]

Markham A.Oritavancin: first global approval. Drugs. 2014; 74(15):1823-1828. https://doi.org/10.1007/s40265-014-0295-4.

[52]

Jackson BT, Cluck DB, Henao-Martínez AF, et al. Kimyrsa and orbactiv - a tale of two formulations. DDDT. 2023; 17:737-742. https://doi.org/10.2147/DDDT.S324285.

[53]

Heo YA. Oritavancin (KIMYRSATM) in acute bacterial skin and skin structure infections: a profile of its use in the USA. Drugs Ther Perspect. 2022; 38(2):57-63. https://doi.org/10.1007/s40267-021-00888-1.

[54]

Ebied AM, Elmariah H, Cooper-DeHoff RM. New drugs approved in 2021. Am J Med. 2022; 135(7):836-839. https://doi.org/10.1016/j.amjmed.2022.01.055.

[55]

Liang NX, Zhou SF, Li TT, et al. Physiologically based pharmacokinetic modeling to assess the drug-drug interactions of anaprazole with clarithromycin and amoxicillin in patients undergoing eradication therapy of H. pylori infection. Eur J Pharm Sci. 2023;189:106534. https://doi.org/10.1016/j.ejps.2023.106534.

[56]

Chu S, Wilson DS, Deaton RL, et al. Single‐ and multiple‐dose pharmacokinetics of clarithromycin, a new macrolide antimicrobial. J Clin Pharmacol. 1993; 33(8):719-726. https://doi.org/10.1002/j.1552-4604.1993.tb05613.x.

[57]

Shirley M. Vonoprazan: a review in helicobacter pylori infection. Drugs. 2024; 84(3):319-327. https://doi.org/10.1007/s40265-023-01991-5.

[58]

Zhao XH, Zhang ZQ, Lu F, et al. Effects of CYP2C19 genetic polymorphisms on the cure rates of H. pylori in patients treated with the proton pump inhibitors: an updated meta-analysis. Front Pharmacol. 2022;13:938419. https://doi.org/10.3389/fphar.2022.938419.

[59]

Furuta T, Yamade M, Kagami T, et al. Dual therapy with vonoprazan and amoxicillin is aseffective as triple therapy with vonoprazan, amoxicillin and clarithromycin for eradication of Helicobacter pylori. Digestion. 2019; 101(6):743-751. https://doi.org/10.1159/000502287.

[60]

Liu SW, Han XY, Jiang Z, et al. Hetiamacin B-D, new members of amicoumacin group antibiotics isolated from Bacillus subtilis PJS. J Antibiot. 2016; 69(10):769-772. https://doi.org/10.1038/ja.2016.3.

[61]

Li WT, Luo D, Huang JN, et al.Antibacterial constituents from Antarctic fungus, Aspergillus sydowii SP-1. Nat Prod Res. 2018; 32(6):662-667. https://doi.org/10.1080/14786419.2017.1335730.

[62]

Jiang CS, Zhou ZF, Yang XH, et al. Antibacterial sorbicillin and diketopiperazines from the endogenous fungus Penicillium sp. GD6 associated Chinese mangrove Bruguiera gymnorrhiza. Chin J Nat Med. 2018; 16(5):358-365. https://doi.org/10.1016/S1875-5364(18)30068-2.

[63]

Yang YH, Yang DS, Li GH, et al. Antibacterial diketopiperazines from an endophytic fungus Bionectria sp. Y1085. J Antibiot. 2019; 72(10):752-758. https://doi.org/10.1038/s41429-019-0209-5.

[64]

Wang X, Mohammad IS, Fan L, et al. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B. 2021; 11(8):2585-2604. https://doi.org/10.1016/j.apsb.2021.04.010.

[65]

Denning DW. Global incidence and mortality of severe fungal disease. Lancet Infect Dis. 2024;24:e428-e438. https://doi.org/10.1016/S1473-3099(23)00692-8.

[66]

Robbins N, Wright GD, Cowen LE. Antifungal drugs: the current armamentarium and development of new agents. Microbiol Spectr. 2016; 4(5). https://doi.org/10.1128/microbiolspec.funk-0002-2016.

[67]

Liu RH, Shang ZC, Li TX, et al. In vitro antibiofilm activity of eucarobustol e against Candida albicans. Antimicrob Agents Chemother. 2017; 61(8):e02707-16. https://doi.org/10.1128/AAC.02707-16.

[68]

Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of america. Clin Infect Dis. 2016; 62(4):e1-e50. https://doi.org/10.1093/cid/civ933.

[69]

Letscher-Bru V. Caspofungin: the first representative of a new antifungal class. J Antimicrob Chemoth. 2003; 51(3):513-521. https://doi.org/10.1093/jac/dkg117.

[70]

Syed YY.Rezafungin: first approval. Drugs. 2023; 83(9):833-840. https://doi.org/10.1007/s40265-023-01891-8.

[71]

Lee A.Ibrexafungerp: first approval. Drugs. 2021; 81(12):1445-1450. https://doi.org/10.1007/s40265-021-01571-5.

[72]

Sun FJ, Li M, Gu L, et al. Recent progress on anti-Candida natural products. Chin J Nat Med. 2021; 19(8):561-579. https://doi.org/10.1016/S1875-5364(21)60057-2.

[73]

Li TX, Yang MH, Wang XB, et al. Synergistic antifungal meroterpenes and dioxolanone derivatives from the endophytic fungus Guignardia sp. J Nat Prod. 2015; 78(11):2511-2520. https://doi.org/10.1021/acs.jnatprod.5b00008.

[74]

The global challenge of cancer. Nat Cancer. 2020; 1(1):1-2. https://doi.org/10.1038/s43018-019-0023-9.

[75]

Li ZR, Gu MZ, Xu X, et al. Promising natural lysine specific demethylase 1 inhibitors for cancer treatment: advances and outlooks. Chin J Nat Med. 2022; 20(4):241-257. https://doi.org/10.1016/S1875-5364(22)60141-9.

[76]

Zhao YZ, Zhang YY, Han H, et al. Advances in the antitumor activities and mechanisms of action of steroidal saponins. Chin J Nat Med. 2018; 16(10):732-748. https://doi.org/10.1016/S1875-5364(18)30113-4.

[77]

Zhang KJ, Gu QL, Yang K, et al. Anticarcinogenic effects of α-mangostin: a review. Planta Med. 2016; 83(03/04):188-202. https://doi.org/10.1055/s-0042-119651.

[78]

Zhang DM, Xu HG, Wang L, et al. Betulinic acid and its derivatives as potential antitumor agents. Med Res Rev. 2015; 35(6):1127-1155. https://doi.org/10.1002/med.21353.

[79]

Silli EK, Li MF, Shao YT, et al. Liposomal nanostructures for gemcitabine and paclitaxel delivery in pancreatic cancer. Eur J Pharm Biopharm. 2023; 192:13-24. https://doi.org/10.1016/j.ejpb.2023.09.014.

[80]

Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, et al. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol. 2022; 106(5-6):1855-1878. https://doi.org/10.1007/s00253-022-11821-5.

[81]

Dembic Z.Antitumor drugs and their targets. Molecules. 2020; 25(23):5776. https://doi.org/10.3390/molecules25235776.

[82]

Khan GJ, Sun L, Khan S, et al. Versatility of cancer associated fibroblasts: commendable targets for anti-tumor therapy. CDT. 2018; 19(13):1573-1588. https://doi.org/10.2174/1389450119666180219124439.

[83]

Chen WL, Sun HP, Li DD, et al. G9a-an appealing antineoplastic target. Curr Cancer Drug Tar. 2017; 17(6):555-568. https://doi.org/10.2174/1568009616666160512145303.

[84]

Jiang X, Qin YM, Kun L, et al. The significant role of the microfilament system in tumors. Front Oncol. 2021;11:620390. https://doi.org/10.3389/fonc.2021.620390.

[85]

Trendowski M. Using cytochalasins to improve current chemotherapeutic approaches. Anticancer Agents Med Chem. 2015; 15(3):327-335. https://doi.org/10.2174/1871520614666141016164335.

[86]

Xin XQ, Chen Y, Zhang H, et al. Cytotoxic seco-cytochalasins from an endophytic Aspergillus sp. harbored in Pinellia ternata tubers. Fitoterapia. 2019; 132:53-59. https://doi.org/10.1016/j.fitote.2018.11.010.

[87]

Roy D, Sheng GY, Herve S, et al. Interplay between cancer cell cycle and metabolism: challenges, targets and therapeutic opportunities. Biomed Pharmacother. 2017; 89:288-296. https://doi.org/10.1016/j.biopha.2017.01.019.

[88]

Yuan K, Wang X, Dong HJ, et al. Selective inhibition of CDK4/6: a safe and effective strategy for developing anticancer drugs. Acta Pharm Sin B. 2021; 11(1):30-54. https://doi.org/10.1016/j.apsb.2020.05.001.

[89]

Fan W, Sun L, Zhou JQ, et al. Marsdenia tenacissima extract induces G0/G1 cell cycle arrest in human esophageal carcinoma cells by inhibiting mitogen-activated protein kinase (MAPK) signaling pathway. Chin J Nat Med. 2015; 13(6):428-437. https://doi.org/10.1016/S1875-5364(15)30036-4.

[90]

Stone RM, Manley PW, Larson RA, et al. Midostaurin: its odyssey from discovery to approval for treating acute myeloid leukemia and advanced systemic mastocytosis. Blood Adv. 2018; 2(4):444-453. https://doi.org/10.1182/bloodadvances.2017011080.

[91]

Lee MD, Ellestad GA, Borders DB. Calicheamicins: discovery, structure, chemistry, and interaction with DNA. Acc Chem Res. 1991; 24(8):235-243. https://doi.org/10.1021/ar00008a003.

[92]

Wang Z, Li ZX, Zhao WC, et al. Identification and characterization of isocitrate dehydrogenase 1 (IDH1) as a functional target of marine natural product grincamycin B. Acta Pharmacol Sin. 2021; 42(5):801. https://doi.org/10.1038/s41401-020-0491-6.

[93]

Shi CY, Gao F, Gao XD, et al. A novel anti-VEGF165 monoclonal antibody-conjugated liposomal nanocarrier system: physical characterization and cellular uptake evaluation in vitro and in vivo. Biomed Pharmacother. 2015; 69:191-200. https://doi.org/10.1016/j.biopha.2014.11.025.

[94]

Wang YJ, Li YY, Liu XY, et al. Marine antibody-drug conjugates: design strategies and research progress. Mar Drugs. 2017; 15(1):18. https://doi.org/10.3390/md15010018.

[95]

Long BH, Golik J, Forenza S, et al. Esperamicins, a class of potent antitumor antibiotics: mechanism of action. Proc Natl Acad Sci USA. 1989; 86(1):2-6. https://doi.org/10.1073/pnas.86.1.2.

[96]

Li T, Chen X, Dai XY, et al. Novel Hsp 90 inhibitor platycodin D disrupts Hsp90/Cdc37 complex and enhances the anticancer effect of mTOR inhibitor. Toxicol Appl Pharm. 2017; 330:65-73. https://doi.org/10.1016/j.taap.2017.07.006.

[97]

Yun CW, Kim HJ, Lim JH, et al. Heat shock proteins: agents of cancer development and therapeutic targets in anti-cancer therapy. Cells. 2019; 9(1):60. https://doi.org/10.3390/cells9010060.

[98]

Li L, Chen NN, You QD, et al.An updated patent review of anticancer Hsp90 inhibitors (2013-present). Expert Opin Ther Pat.2021; 31(1):67-80. https://doi.org/10.1080/13543776.2021.1829595.

[99]

Socias SB, González-Lizárraga F, Avila CL, et al. Exploiting the therapeutic potential of ready-to-use drugs: repurposing antibiotics against amyloid aggregation in neurodegenerative diseases. Prog Neurobiol. 2018; 162:17-36. https://doi.org/10.1016/j.pneurobio.2017.12.002.

[100]

McCombs JR, Chang HP, Shah DK, et al. Antibody-drug conjugate and free geldanamycin combination therapy enhances anti-cancer efficacy. Int J Pharmaceut. 2021;610:121272. https://doi.org/10.1016/j.ijpharm.2021.121272.

[101]

BAI ZS, PENG YL, YE XY, et al. Autophagy and cancer treatment: four functional forms of autophagy and their therapeutic applications. J Zhejiang Univ Sci B. 2022; 23(2):89-101. https://doi.org/10.1631/jzus.B2100804.

[102]

Liu L, Han Y, Xiao JH, et al. Chlorotheolides A and B, spiroketals generated via diels-alder reactions in the endophytic fungus Pestalotiopsis theae. J Nat Prod. 2016; 79(10):2616-2623. https://doi.org/10.1021/acs.jnatprod.6b00550.

[103]

Frančula-Zaninović S, Nola IA. Management of measurable variable cardiovascular disease’ risk factors. Curr Cardiol Rev. 2018; 14(3):153. https://doi.org/10.2174/1573403X14666180222102312.

[104]

Lu H, Daugherty A.Recent highlights of ATVB atherosclerosis. Arterioscler Thromb Vasc Biol. 2015; 35(3):485. https://doi.org/10.1161/ATVBAHA.115.305380.

[105]

Zhang XD, Xing L, Jia XN, et al. Comparative lipid-lowering/increasing efficacy of 7 statins in patients with dyslipidemia, cardiovascular diseases, or diabetes mellitus: systematic review and network meta-analyses of 50 randomized controlled trials. Cardiovasc Ther. 2020; 2020:1-21. https://doi.org/10.1155/2020/3987065.

[106]

Liu F, Wang FQ, Li Q, et al. Aculeatones A and B, epimeric lovastatin derivatives with a 6/6/3-tricyclic carbon skeleton from Aspergillus aculeatus and their chemical transformation. Org ChemFront. 2024; 11(11):3100-3108. https://doi.org/10.1039/D4QO00351A.

[107]

Deng HM, He JX, Chang BL, et al. Lipid-lowering meroterpenoids penihemeroterpenoids A-F from Penicillium herquei GZU-31-6 via targeting the AMPK/ACC/SREBP-1c signaling pathway. Org Lett. 2024; 26(16):3424-3428. https://doi.org/10.1021/acs.orglett.4c00946.

[108]

Afzal M. Recent updates on novel therapeutic targets of cardiovascular diseases. Mol Cell Biochem. 2021; 476(1):145-155. https://doi.org/10.1007/s11010-020-03891-8.

[109]

Li PH, Xie DX, Chen H, et al. Secondary metabolites from marine derived fungus Penicillium chrysogenum Y19-1 with proangiogenic and antithrombotic activities. Biochem Syst Ecol. 2023;107:104625. https://doi.org/10.1016/j.bse.2023.104625.

[110]

Dong XL, Zhou MZ, Li YH, et al. Cardiovascular protective effects of plant polysaccharides: a review. Front Pharmacol. 2021;12:783641. https://doi.org/10.3389/fphar.2021.783641.

[111]

Bai RR, Wu XM, Xu JY. Current natural products with antihypertensive activity. Chin J Nat Med. 2015; 13(10):721-729. https://doi.org/10.1016/S1875-5364(15)30072-8.

[112]

Yu Z, Huang JP, Yang J, et al. Discovery and biosynthesis of karnamicins as angiotensin converting enzyme inhibitors. Nat Commun. 2023; 14(1):209. https://doi.org/10.1038/s41467-023-35829-1.

[113]

Collaborators G 2017 C of D. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet.2018; 392(10159):1736. https://doi.org/10.1016/S0140-6736(18)32203-7.

[114]

Dinarello CA.Anti-inflammatory agents: present and future. Cell. 2010; 140(6):935-950. https://doi.org/10.1016/j.cell.2010.02.043.

[115]

Cao F, Liu J, Sha BX, et al. Natural products: experimental efficient agents for inflammatory bowel disease therapy. CPD. 2020; 25(46):4893-4913. https://doi.org/10.2174/1381612825666191216154224.

[116]

Yaermaimaiti S, Wang P, Luo J, et al. Sesquiterpenoids from the seeds of Sarcandra glabra and the potential anti-inflammatory effects. Fitoterapia. 2016; 111:7-11. https://doi.org/10.1016/j.fitote.2016.03.020.

[117]

Gao WX, Li FL, Lin S, et al. Two new lanostane-type triterpenoids from the fungus Periconia sp. TJ403-rc01. Nat Prod Res. 2023; 37(7):1154-1160. https://doi.org/10.1080/14786419.2021.1998046.

[118]

Dai LT, Yang L, Guo JC, et al. Anti-diabetic and anti-inflammatory indole diterpenes from the marine-derived fungus Penicillium sp. ZYX-Z-143. Bioorg Chem. 2024;145:107205. https://doi.org/10.1016/j.bioorg.2024.107205.

[119]

Lee HS, Nagahawatta DP, Jeon YJ, et al. Streptinone, a new indanone derivative from a marine-derived Streptomyces massiliensis, inhibits particulate matter-induced inflammation. Mar Drugs. 2023; 21(12):640. https://doi.org/10.3390/md21120640.

[120]

Islam N, Shkolnikov VM, Acosta RJ, et al. Excess deaths associated with covid-19 pandemic in 2020: age and sex disaggregated time series analysis in 29 high income countries. BMJ. 2021;373:n1137. https://doi.org/10.1136/bmj.n1137.

[121]

Jin J, Chen S, Wang DH, et al. Oroxylin A suppresses influenza A virus replication correlating with neuraminidase inhibition and induction of IFNs. Biomed Pharmacother. 2018; 97:385-394. https://doi.org/10.1016/j.biopha.2017.10.140.

[122]

Chen JX, Ding ZQ.Advances in natural product anti-coronavirus research (2002-2022). Chin Med.2023; 18(1):13. https://doi.org/10.1186/s13020-023-00715-x.

[123]

Deng WY, Chen F, Zhao Y, et al. Anti-hepatitis B virus activities of natural products and their antiviral mechanisms. Chin J Nat Med. 2023; 21(11): 803-811. https://doi.org/10.1016/S1875-5364(23)60505-9.

[124]

Guo YJ, Contesini FJ, Wang XH, et al.Biosynthesis of calipyridone a rrepresents a fungal 2-pyridone formation without ring expansion in Aspergillus californicus. Org Lett. 2022; 24(3):804-808. https://doi.org/10.1021/acs.orglett.1c03792.

[125]

Qi X, Chen WH, Chen LR, et al. Structurally various p-terphenyls with neuraminidase inhibitory from a sponge derived fungus Aspergillus sp. SCSIO41315. Bioorg Chem. 2023;132:106357. https://doi.org/10.1016/j.bioorg.2023.106357.

[126]

Kamisuki S, Shibasaki H, Murakami H, et al. Isolation, structural determination, and antiviral activities of metabolites from vanitaracin A-producing Talaromyces sp. J Antibiot. 2023; 76(2):75-82. https://doi.org/10.1038/s41429-022-00585-9.

[127]

Dong K, Pan HX, Yang D, et al. Induction, detection, formation, and resuscitation of viable but non‐culturable state microorganisms. Comp Rev Food Sci Food Safe. 2020; 19(1):149-183. https://doi.org/10.1111/1541-4337.12513.

[128]

Zhang ZF, Liu F, Liu LR, et al. Culturing the uncultured marine fungi in the omics age: opportunities and challenges. Fungal Biol Rev. 2024;48:100353. https://doi.org/10.1016/j.fbr.2023.100353.

[129]

Yang MY, Zhang JW, Wu XR, et al. Optimization of critical medium components for enhancing antibacterial thiopeptide nocathiacin I production with significantly improved quality. Chin J Nat Med. 2017; 15(4):292-300. https://doi.org/10.1016/S1875-5364(17)30047-X.

[130]

Kim E, Du YE, Ban YH, et al. Enhanced ohmyungsamycin a production via adenylation domain engineering and optimization of culture conditions. Front Microbiol. 2021;12:626881. https://doi.org/10.3389/fmicb.2021.626881.

[131]

Sung A, Gromek S, Balunas M. Upregulation and identification of antibiotic activity of a marine-derived Streptomyces sp. via co-cultures with human pathogens. Mar Drugs. 2017; 15(8):250. https://doi.org/10.3390/md15080250.

[132]

Yu ML, Li YX, Banakar SP, et al.New metabolites from the co-culture of marine-derived actinomycete Streptomyces rochei MB037 and fungus Rhinocladiella similis 35. Front Microbiol. 2019;10:915. https://doi.org/10.3389/fmicb.2019.00915.

[133]

Chaudhary DK, Khulan A, Kim J. Development of a novel cultivation technique for uncultured soil bacteria. Sci Rep. 2019; 9(1):6666. https://doi.org/10.1038/s41598-019-43182-x.

[134]

MacIntyre LW, Haltli BA, Charles MJ, et al. An ichip-domesticated sponge bacterium produces an N-acyltyrosine bearing an α-methyl substituent. Org Lett. 2019; 21(19):7768-7771. https://doi.org/10.1021/acs.orglett.9b02710.

[135]

Sukmarini L. Recent advances in discovery of lead structures from microbial natural products: genomics- and metabolomics-guided acceleration. Molecules. 2021; 26(9):2542. https://doi.org/10.3390/molecules26092542.

[136]

Cai B, Hu Z, Tang H, et al. Triptolide impairs genome integrity by directly blocking the enzymatic activity of DNA-PKcs in human cells. Biomed Pharmacother. 2020;129:110427. https://doi.org/10.1016/j.biopha.2020.110427.

[137]

Du GS, Fang Q, Den Toonder JMJ. Microfluidics for cell-based high throughput screening platforms—a review. Anal Chim Acta. 2016; 903:36-50. https://doi.org/10.1016/j.aca.2015.11.023.

[138]

Droplet microfluidics for microbial biotechnology. Microfluidics in Biotechnology. Cham: Springer International Publishing. 2020:129-157. https://link.springer.com/10.1007/10_2020_140.

[139]

Qiao S, Chen W, Zheng X, et al. Preparation of pH-sensitive alginate-based hydrogel by microfluidic technology for intestinal targeting drug delivery. Int J Biol Macromol. 2024;254:127649. https://doi.org/10.1016/j.ijbiomac.2023.127649.

[140]

Baret JC, Miller OJ, Taly V, et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip. 2009; 9(13):1850-1858. https://doi.org/10.1039/b902504a.

[141]

Oberpaul M, Brinkmann S, Marner M, et al. Combination of high‐throughput microfluidics and FACS technologies to leverage the numbers game in natural product discovery. Microb Biotechnol. 2021; 15(2):415-430. https://doi.org/10.1111/1751-7915.13872.

[142]

Wang XN, Song YH, Tang WW, et al. Integration of fluorescence and MALDI imaging for microfluidic chip-based screening of potential thrombin inhibitors from natural products. Biosens Bioelectron. 2023;237:115527. https://doi.org/10.1016/j.bios.2023.115527.

[143]

Zhang MM, Qiao Y, Ang EL, et al. Using natural products for drug discovery: the impact of the genomics era. Expert Opin Drug Discov. 2017; 12(5):475-487. https://doi.org/10.1080/17460441.2017.1303478.

[144]

Lu G, Qiao J, Wang L, et al. An integrated study of Violae Herba (Viola philippica) and five adulterants by morphology, chemical compositions and chloroplast genomes: insights into its certified plant origin. Chin Med. 2022; 17(1):32. https://doi.org/10.1186/s13020-022-00585-9.

[145]

Luo P, Lv JM, Xie YF, et al. Discovery and characterization of a novel sub-group of UbiA-type terpene cyclases with a distinct motif I. Org Chem Front. 2022; 9(11):3057-3060. https://doi.org/10.1039/D2QO00408A.

[146]

Yan Y, Liu N, Tang Y. Recent developments in self-resistance gene directed natural product discovery. Nat Prod Rep. 2020; 37(7):879-892. https://doi.org/10.1039/C9NP00050J.

[147]

Tu Q, Herrmann J, Hu S, et al. Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering. Sci Rep. 2016; 6(1):21066. https://doi.org/10.1038/srep21066.

[148]

Song CY, Luan J, Cui QW, et al. Enhanced heterologous spinosad production from a 79-kb synthetic multioperon assembly. ACS Synth Biol. 2019; 8(1):137-147. https://doi.org/10.1021/acssynbio.8b00402.

[149]

Alanjary M, Kronmiller B, Adamek M, et al. The antibiotic resistant target seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res. 2017; 45(W1):W42-W48. https://doi.org/10.1093/nar/gkx360.

[150]

Lorenzo De Los Santos E, Challis G. clusterTools: functional element identification for the in silico prioritization of biosynthetic gene clusters. Access Microbiol. 2019; 1(1A):154. https://doi.org/10.1099/acmi.ac2019.po0154.

[151]

Kjærbølling I, Vesth T, Andersen MR. Resistance gene-directed genome mining of 50 Aspergillus species. mSystems. 2019; 4(4):e00085-19. https://doi.org/10.1128/mSystems.00085-19.

[152]

Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol. 2020; 16(1):60-68. https://doi.org/10.1038/s41589-019-0400-9.

[153]

Mullowney MW, Duncan KR, Elsayed SS, et al. Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov. 2023; 22(11):895-916. https://doi.org/10.1038/s41573-023-00774-7.

[154]

Song D, Chen Y, Min Q, et al. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies. J Clin Pharm Ther. 2019; 44(2):268-275. https://doi.org/10.1111/jcpt.12786.

[155]

Hu Y, Ren Q, Liu X, et al. In silico prediction of human organ toxicity via artificial intelligence methods. Chem Res Toxicol. 2023; 36(7):1044-1054. https://doi.org/10.1021/acs.chemrestox.2c00411.

[156]

Liu G, Catacutan DB, Rathod K, et al.Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat Chem Biol. 2023; 19(11):1342-1350. https://doi.org/10.1038/s41589-023-01349-8.

[157]

Yu X, Nai J, Guo H, et al. Predicting the grades of Astragali radix using mass spectrometry-based metabolomics and machine learning. J Pharm Anal. 2021; 11(5):611-616. https://doi.org/10.1016/j.jpha.2020.07.008.

[158]

Zhou ZY, Zhu JW, Jiang MH, et al. The combination of cell cultured technology and in silico model to inform the drug development. Pharmaceutics. 2021; 13(5):704. https://doi.org/10.3390/pharmaceutics13050704.

[159]

Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell. 2020; 180(4):688-702. e13. https://doi.org/10.1016/j.cell.2020.01.021.

[160]

Xu Y, Yao H, Lin K. An overview of neural networks for drug discovery and the inputs used. Expert Opin Drug Discov. 2018; 13(12):1091-1102. https://doi.org/10.1080/17460441.2018.1547278.

[161]

Yu TH, Cui HY, Li JC, et al. Enzyme function prediction using contrastive learning. Science. 2023; 379(6639):1358-1363. https://doi.org/10.1126/science.adf2465.

[162]

Wu J, Deng SQ, Yu XY, et al. Identify production area, growth mode, species, and grade of Astragali Radix using metabolomics “big data” and machine learning. Phytomedicine. 2024;123:155201. https://doi.org/10.1016/j.phymed.2023.155201.

[163]

Pereira F. Have marine natural product drug discovery efforts been productive and how can we improve their efficiency? Expert Opin Drug Dis. 2019; 14(8):717-722. https://doi.org/10.1080/17460441.2019.1604675.

[164]

Li WJ, Li L, Zhang C, et al. Investigations into the antibacterial mechanism of action of viridicatumtoxins. Acs Infect Dis. 2020; 6(7):1759. https://doi.org/10.1021/acsinfecdis.0c00031.

[165]

Kapoor R, Saini A, Sharma D. Indispensable role of microbes in anticancer drugs and discovery trends. Appl Microbiol Biotechnol. 2022; 106(13-16):4885-4906. https://doi.org/10.1007/s00253-022-12046-2.

[166]

Chen BR, Gao CL, Liu J, et al. Diversity-oriented synthesis of marine sponge derived hyrtioreticulins and their anti-inflammatory activities. Chin J Nat Med. 2022; 20(1):74-80. https://doi.org/10.1016/S1875-5364(22)60155-9.

[167]

Zhou SX, Xia Y, Zhu CM, et al. Isolation of marine Bacillus sp. with antagonistic and organic-substances-degrading activities and its potential application as a fish probiotic. Mar Drugs. 2018; 16(6):196. https://doi.org/10.3390/md16060196.

[168]

Wan GQ, Ruan LG, Yin Y, et al. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii. IJN, 2016; 11:3789-3800. https://doi.org/10.2147/IJN.S104166.

[169]

Mao J, Yang HB, Cui TT, et al. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur J Pharmacol. 2018; 832:39-49. https://doi.org/10.1016/j.ejphar.2018.05.027.

[170]

Tang S, Liu W, Zhao QQ, et al. Combination of polysaccharides from Astragalus membranaceus and Codonopsis pilosula ameliorated mice colitis and underlying mechanisms. J Ethnopharmacol. 2021;264:113280. https://doi.org/10.1016/j.jep.2020.113280.

[171]

Liu L, Chen Z, Liu W, et al. Cephalosporin C biosynthesis and fermentation in Acremonium chrysogenum. Appl Microbiol Biotechnol. 2022; 106(19):6413-6426. https://doi.org/10.1007/s00253-022-12181-w.

[172]

Clark JA, Burgess DS. Plazomicin: a new aminoglycoside in the fight against antimicrobial resistance. Ther Adv Infect Dis. 2020;7:2049936120952604. https://doi.org/10.1177/2049936120952604.

[173]

Ghannoum M, Arendrup MC, Chaturvedi VP, et al. Ibrexafungerp: a novel oral triterpenoid antifungal in development for the treatment of Candida auris infections. Antibiotics (Basel). 2020; 9(9):539. https://doi.org/10.3390/antibiotics9090539.

[174]

Survase SA, Kagliwal LD, Annapure US, et al.Cyclosporin A — A review on fermentative production, downstream processing and pharmacological applications. Biotechnol Adv. 2011; 29(4):418-435. https://doi.org/10.1016/j.biotechadv.2011.03.004.

[175]

RxReasoner. REZZAYO powder for solution for injection overview. 2023: https://www.rxreasoner.com/monographs/rezzayo.

[176]

Kuang WB, Zhang HL, Wang X, et al. Overcoming Mycobacterium tuberculosis through small molecule inhibitors to break down cell wall synthesis. Acta Pharm Sin B. 2022; 12(8):3201-3214. https://doi.org/10.1016/j.apsb.2022.04.014.

[177]

Xu CR, He W, Lv YQ, et al. Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity. Int J Pharm. 2015; 493(1-2):172-181. https://doi.org/10.1016/j.ijpharm.2015.07.069.

[178]

Yu ZZ, Zhao LW, You QD. Discovery and development of hepatitis c Virus inhibitors targeting the NS5A protein. MRMC. 2015; 15(7):553-581. https://doi.org/10.2174/1389557515666150227100612.

[179]

Li SQ, Jiang WQ, Zheng CX, et al. Oral delivery of bacteria: basic principles and biomedical applications. J Control Release. 2020; 327:801-833. https://doi.org/10.1016/j.jconrel.2020.09.011.

[180]

Chen HY, Liu CC, Chen D, et al. Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy. Mol Pharm. 2015; 12(7):2505-2516. https://doi.org/10.1021/acs.molpharmaceut.5b00053.

[181]

Zhao YC, Guo LY, Xia Y, et al. Isolation, identification of carotenoid-producing Rhodotorula sp. from marine environment and optimization for carotenoid production. Mar Drugs. 2019; 17(3):161. https://doi.org/10.3390/md17030161.

[182]

Ye ZX, Liang LZ, Lu HZ, et al. Nanotechnology-employed bacteria-based delivery strategy for enhanced anticancer therapy. IJN. 2021; 16:8069-8086. https://doi.org/10.2147/IJN.S329855.

[183]

Ma YX, Peng ZR, Pan RB, et al. The bioinformatics analysis of quercetin in octagonal lotus for the screening of breast cancer MYC.CXCL10, CXCL11, and E2F1. Int J Immunopathol Pharmacol. 2021;35:205873842110409. https://doi.org/10.1177/20587384211040903.

[184]

Wang P, Luo J, Wang XB, et al. New indole glucosides as biosynthetic intermediates of camptothecin from the fruits of Camptotheca acuminata. Fitoterapia. 2015; 103:1-8. https://doi.org/10.1016/j.fitote.2015.03.004.

[185]

Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol. 2015; 13(8):509-523. https://doi.org/10.1038/nrmicro3496.

[186]

Hong W, Gao X, Qiu P, et al. Synthesis, construction, and evaluation of self-assembled nano-bacitracin A as an efficient antibacterial agent in vitro and in vivo. IJN. 2017; 12:4691-4708. https://doi.org/10.2147/IJN.S136998.

[187]

Sang H, Liu JL, Zhou F, et al. Target-responsive subcellular catabolism analysis for early-stage antibody-drug conjugates screening and assessment. Acta Pharm Sin B. 2021; 11(12):4020-4031. https://doi.org/10.1016/j.apsb.2021.05.024.

PDF (1237KB)

279

Accesses

0

Citation

Detail

Sections
Recommended

/