Natural products targeting NLRP3 inflammasome for metabolic dysfunction-associated fatty liver disease: the known unknowns

Jiahui Meng , Qiqi Wang , Haopeng Wang , Xuange Shen , Tingting Qin , Wen Zhao , Haixia Li , Ziqiao Yuan

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) : 1036 -1046.

PDF (1960KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) :1036 -1046. DOI: 10.1016/S1875-5364(25)60970-8
Review
research-article

Natural products targeting NLRP3 inflammasome for metabolic dysfunction-associated fatty liver disease: the known unknowns

Author information +
History +
PDF (1960KB)

Abstract

Metabolic dysfunction-associated fatty liver disease (MAFLD), characterized by fatty acid overload, secondary chronic inflammation, and fibrosis, has become the most prevalent chronic liver disease globally. While no effective pharmacotherapy exists for MAFLD, mitigating inflammatory responses represents a promising approach to preventing the progression from steatosis to severe steatohepatitis. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, which detects endogenous danger and stress signals, has emerged as a significant target for inflammatory disease treatment, as transcriptional inactivation of its components demonstrates the therapeutic potential for MAFLD. Natural products targeting NLRP3 inflammasome activation have shown promising efficacy in MAFLD therapy. This review synthesizes the current understanding of NLRP3 inflammasome activation and therapeutic targets for NLRP3 homeostasis. Additionally, natural products reported to inhibit NLRP3 inflammasome for MAFLD improvement are categorized according to their mechanisms of action. The review also addresses limitations and future directions regarding natural products targeting NLRP3 inflammasome in MAFLD treatment. Enhanced understanding of NLRP3 inflammasome activation mechanisms in MAFLD and the identification of novel natural products supported by mechanistic research will significantly advance MAFLD treatment.

Keywords

NLRP3 inflammasome / MAFLD / Natural product

Cite this article

Download citation ▾
Jiahui Meng, Qiqi Wang, Haopeng Wang, Xuange Shen, Tingting Qin, Wen Zhao, Haixia Li, Ziqiao Yuan. Natural products targeting NLRP3 inflammasome for metabolic dysfunction-associated fatty liver disease: the known unknowns. Chinese Journal of Natural Medicines, 2025, 23(9): 1036-1046 DOI:10.1016/S1875-5364(25)60970-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu L, Gao F, Li Y, et al. Role of pattern recognition receptors in the development of MASLD and potential therapeutic applications. Biomed Pharmacother. 2024;175:116724. https://doi.org/10.1016/j.biopha.2024.116724.

[2]

Sundaram B, Tweedell RE, Prasanth Kumar S, et al. The NLR family of innate immune and cell death sensors. Immunity. 2024; 57(4):674-699. https://doi.org/10.1016/j.immuni.2024.03.012.

[3]

de Carvalho Ribeiro M, Szabo G. Role of the inflammasome in liver disease. Annu Rev Pathol. 2022; 17:345-365. http://doi.org/10.1146/annurev-pathmechdis-032521-102529.

[4]

Gaul S, Leszczynska A, Alegre F, et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J Hepatol. 2021; 74(1):156-167. https://doi.org/10.1016/j.jhep.2020.07.041.

[5]

Vande Walle L, Lamkanfi M. Drugging the NLRP 3 inflammasome: from signalling mechanisms to therapeutic targets. Nat Rev Drug Discov. 2024; 23(1):43-66. https://doi.org/10.1038/s41573-023-00822-2.

[6]

Schmidt FI, Lu A, Chen JW, et al. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. J Exp Med. 2016; 213(5):771-790. https://doi.org/10.1084/jem.20151790.

[7]

Hochheiser IV, Behrmann H, Hagelueken G, et al. Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. Sci Adv. 2022; 8(19):eabn7583. https://doi.org/10.1126/sciadv.abn7583.

[8]

Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019; 19(8):477-489. https://doi.org/10.1038/s41577-019-0165-0.

[9]

Zhao N, Li CC, Di B, et al. Recent advances in the NEK7-licensed NLRP3 inflammasome activation: mechanisms, role in diseases and related inhibitors. J Autoimmun. 2020;113:102515. https://doi.org/10.1016/j.jaut.2020.102515.

[10]

He Y, Zeng MY, Yang D, et al. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 2016; 530(7590):354-357. https://doi.org/10.1038/nature16959.

[11]

Shi H, Wang Y, Li X, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016; 17(3):250-258. https://doi.org/10.1038/ni.3333.

[12]

Xia S, Zhang Z, Magupalli VG, et al.Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature. 2021; 593(7860):607-611. https://doi.org/10.1038/s41586-021-03478-3.

[13]

Barra NG, Henriksbo BD, Anhê FF, et al. The NLRP3 inflammasome regulates adipose tissue metabolism. Biochem J. 2020; 477(6):1089-1107. https://doi.org/10.1042/bcj20190472.

[14]

Zhang SY, Dong YQ, Wang P, et al. Adipocyte-derived lysophosphatidylcholine activates adipocyte and adipose tissue macrophage Nod-like receptor protein 3 inflammasomes mediating homocysteine-induced insulin resistance. EBioMedicine. 2018; 31:202-216. https://doi.org/10.1016/j.ebiom.2018.04.022.

[15]

Wan X, Xu C, Lin Y, et al. Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism. J Hepatol. 2016; 64(4):925-932. https://doi.org/10.1016/j.jhep.2015.11.022.

[16]

Shim DW, Lee KH. Posttranslational regulation of the NLR family pyrin domain-containing 3 inflammasome. Front Immunol. 2018;9:1054. https://doi.org/10.3389/fimmu.2018.01054.

[17]

Gong T, Yang Y, Jin T, et al. Orchestration of NLRP3 inflammasome activation by ion fluxes. Trends Immunol. 2018; 39(5):393-406. https://doi.org/10.1016/j.it.2018.01.009.

[18]

Lee GS, Subramanian N, Kim AI, et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature. 2012; 492(7427):123-127. https://doi.org/10.1038/nature11588.

[19]

Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 2021; 18(9):2114-2127. https://doi.org/10.1038/s41423-021-00740-6.

[20]

Iyer SS, He Q, Janczy JR, et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity. 2013; 39(2):311-323.https://doi.org/10.1016/j.immuni.2013.08.001.

[21]

Subramanian N, Natarajan K, Clatworthy MR, et al. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell. 2013; 153(2):348-361. https://doi.org/10.1016/j.cell.2013.02.054.

[22]

Ichinohe T, Yamazaki T, Koshiba T, et al. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci USA. 2013; 110(44):17963-17968. https://doi.org/10.1073/pnas.1312571110.

[23]

Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011; 469(7329):221-225. https://doi.org/10.1038/nature09663.

[24]

Liu Q, Zhang D, Hu D, et al. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018; 103:115-124. https://doi.org/10.1016/j.molimm.2018.09.010.

[25]

Groß CJ, Mishra R, Schneider KS, et al. K+ efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity. 2016; 45(4):761-773.https://doi.org/10.1016/j.immuni.2016.08.010.

[26]

Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010; 11(2):136-140. https://doi.org/10.1038/ni.1831.

[27]

Xian H, Watari K, Sanchez-Lopez E, et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity. 2022; 55(8):1370-1385.e1378. https://doi.org/10.1016/j.immuni.2022.06.007.

[28]

Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012; 36(3):401-414. https://doi.org/10.1016/j.immuni.2012.01.009.

[29]

Zhong Z, Liang S, Sanchez-Lopez E, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018; 560(7717):198-203. https://doi.org/10.1038/s41586-018-0372-z.

[30]

Murphy MP. Newly made mitochondrial DNA drives inflammation. Nature. 2018; 560(7717):176-177. https://doi.org/10.1038/d41586-018-05764-z.

[31]

Jiang D, Chen S, Sun R, et al. The NLRP3 inflammasome: role in metabolic disorders and regulation by metabolic pathways. Cancer Lett. 2018; 419:8-19. https://doi.org/10.1016/j.canlet.2018.01.034.

[32]

Wolf AJ, Reyes CN, Liang W, et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell. 2016; 166(3):624-636. https://doi.org/10.1016/j.cell.2016.05.076.

[33]

Zhang X, Wang R, Hu D, et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease. Sci Adv. 2020; 6(49):eabb8680. https://doi.org/10.1126/sciadv.abb8680.

[34]

Karasawa T, Kawashima A, Usui-Kawanishi F, et al. Saturated fatty acids undergo intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arterioscler Thromb Vasc Biol. 2018; 38(4):744-756. https://doi.org/10.1161/atvbaha.117.310581.

[35]

Yang Z, Kahn BB, Shi H, et al. Macrophage alpha1 AMP-activated protein kinase (alpha1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem. 2010; 285(25):19051-19059. https://doi.org/10.1074/jbc.M110.123620.

[36]

Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011; 12(5):408-415. https://doi.org/10.1038/ni.2022.

[37]

Napier BA, Brubaker SW, Sweeney TE, et al. Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity. J Exp Med. 2016; 213(11):2365-2382. https://doi.org/10.1084/jem.20160027.

[38]

Man SM, Karki R, Sasai M, et al.IRGB10 liberates bacterial ligands for sensing by the AIM2 and Caspase-11-NLRP3 inflammasomes. Cell. 2016; 167(2):382-396.e317. https://doi.org/10.1016/j.cell.2016.09.012.

[39]

Rühl S, Broz P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur J Immunol. 2015; 45(10):2927-2936. https://doi.org/10.1002/eji.201545772.

[40]

Gaidt MM, Ebert TS, Chauhan D, et al. Human monocytes engage an alternative inflammasome pathway. Immunity. 2016; 44(4):833-846. https://doi.org/10.1016/j.immuni.2016.01.012.

[41]

He Y, Franchi L, Núñez G. TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J Immunol. 2013; 190(1):334-339. https://doi.org/10.4049/jimmunol.1202737.

[42]

Tall AR, Bornfeldt KE. Inflammasomes and atherosclerosis: a mixed picture. Circ Res. 2023; 132(11):1505-1520. https://doi.org/10.1161/circresaha.123.321637.

[43]

Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol. 2021; 22(5):550-559. https://doi.org/10.1038/s41590-021-00886-5.

[44]

Esser N, L'Homme L, De Roover A, et al. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia. 2013; 56(11):2487-2497. https://doi.org/10.1007/s00125-013-3023-9.

[45]

Stienstra R, van Diepen JA, Tack CJ, et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci USA. 2011; 108(37):15324-15329. https://doi.org/10.1073/pnas.1100255108.

[46]

Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011; 17(2):179-188. https://doi.org/10.1038/nm.2279.

[47]

Harrison SA, Allen AM, Dubourg J, et al. Challenges and opportunities in NASH drug development. Nat Med. 2023; 29(3):562-573. https://doi.org/10.1038/s41591-023-02242-6

[48]

Quek J, Chan KE, Wong ZY, et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2023; 8(1):20-30. https://doi.org/10.1016/s2468-1253(22)00317-x.

[49]

Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell. 2021; 184(10):2537-2564. https://doi.org/10.1016/j.cell.2021.04.015.

[50]

Sharma S, Le Guillou D, Chen JY. Cellular stress in the pathogenesis of nonalcoholic steatohepatitis and liver fibrosis. Nat Rev Gastroenterol Hepatol. 2023; 20(10):662-678. https://doi.org/10.1038/s41575-023-00832-w.

[51]

Mitsuyoshi H, Yasui K, Hara T, et al. Hepatic nucleotide binding oligomerization domain-like receptors pyrin domain-containing 3 inflammasomes are associated with the histologic severity of non-alcoholic fatty liver disease. Hepatol Res. 2017; 47(13):1459-1468. https://doi.org/10.1111/hepr.12883.

[52]

Csak T, Ganz M, Pespisa J, et al. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology. 2011; 54(1):133-144. https://doi.org/10.1002/hep.24341.

[53]

Cai C, Zhu X, Li P, et al. NLRP3 deletion inhibits the non-alcoholic steatohepatitis development and inflammation in Kupffer cells induced by palmitic acid. Inflammation. 2017; 40(6):1875-1883. https://doi.org/10.1007/s10753-017-0628-z.

[54]

Cyr B, Keane RW, de Rivero Vaccari JP. ASC, IL-18 and galectin-3 as biomarkers of non-alcoholic steatohepatitis: a proof of concept study. Int J Mol Sci. 2020; 21(22):8580. https://doi.org/10.3390/ijms21228580.

[55]

Wree A, McGeough MD, Peña CA, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med (Berl). 2014; 92(10):1069-1082. https://doi.org/10.1007/s00109-014-1170-1.

[56]

Mridha AR, Wree A, Robertson AAB, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol. 2017; 66(5):1037-1046. https://doi.org/10.1016/j.jhep.2017.01.022.

[57]

Thomas H. NAFLD: A critical role for the NLRP3 inflammasome in NASH. Nat Rev Gastroenterol Hepatol. 2017; 14(4):197. https://doi.org/10.1038/nrgastro.2017.21.

[58]

Dixon LJ, Berk M, Thapaliya S, et al. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab Invest. 2012; 92(5):713-723. https://doi.org/10.1038/labinvest.2012.45.

[59]

Chen Y, Sun H, Bai Y, et al. Gut dysbiosis-derived exosomes trigger hepatic steatosis by transiting HMGB1 from intestinal to liver in mice. Biochem Biophys Res Commun. 2019; 509(3):767-772. https://doi.org/10.1016/j.bbrc.2018.12.180.

[60]

Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018; 68(2):280-295. https://doi.org/10.1016/j.jhep.2017.11.014.

[61]

de Sant'Ana LP, Ribeiro DJS, Martins AMA, et al. Absence of the Caspases 1/11 modulates liver global lipid profile and gut microbiota in high-fat-diet-induced obese mice. Front Immunol. 2019;10:2926. https://doi.org/10.3389/fimmu.2019.02926.

[62]

Drummer Ct, Saaoud F, Jhala NC, et al. Caspase-11 promotes high-fat diet-induced NAFLD by increasing glycolysis, OXPHOS, and pyroptosis in macrophages. Front Immunol. 2023;14:1113883. https://doi.org/10.3389/fimmu.2023.1113883.

[63]

Xu B, Jiang M, Chu Y, et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J Hepatol. 2018; 68(4):773-782. https://doi.org/10.1016/j.jhep.2017.11.040.

[64]

Mirea AM, Stienstra R, Kanneganti TD, et al. Mice deficient in the IL-1β activation genes Prtn3, Elane, and Casp1 are protected against the development of obesity-induced NAFLD. Inflammation. 2020; 43(3):1054-1064. https://doi.org/10.1007/s10753-020-01190-4.

[65]

Kamari Y, Shaish A, Vax E, et al. Lack of interleukin-1α or interleukin-1β inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice. J Hepatol. 2011; 55(5):1086-1094. https://doi.org/10.1016/j.jhep.2011.01.048.

[66]

Yamanishi K, Maeda S, Kuwahara-Otani S, et al. Interleukin-18-deficient mice develop dyslipidemia resulting in nonalcoholic fatty liver disease and steatohepatitis. Transl Res. 2016; 173:101-114.e107. https://doi.org/10.1016/j.trsl.2016.03.010.

[67]

Mullard A. Roche snaps up another NLRP3 contender. Nat Rev Drug Discov. 2020; 19(11):744. https://doi.org/10.1038/d41573-020-00179-w.

[68]

Li H, Guan Y, Liang B, et al. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur J Pharmacol. 2022;928:175091. https://doi.org/10.1016/j.ejphar.2022.175091.

[69]

Chen S. Biosynthesis of natural products from medicinal plants: challenges, progress and prospects. Chin Herb Med. 2024; 16(1):1-2. https://doi.org/10.1016/j.chmed.2024.01.001.

[70]

Bao S, Wang X, Ma Q, et al. Mongolian medicine in treating type 2 diabetes mellitus combined with nonalcoholic fatty liver disease via FXR/LXR-mediated P2X7R/NLRP3/NF-κB pathway activation. Chin Herb Med. 2022; 14(3):367-375. https://doi.org/10.1016/j.chmed.2022.06.003.

[71]

Vargas-Pozada EE, Ramos-Tovar E, Rodriguez-Callejas JD, et al. Caffeine inhibits NLRP3 inflammasome activation by downregulating TLR4/MAPK/NF-κB signaling pathway in an experimental NASH model. Int J Mol Sci. 2022; 23(17):9954. https://doi.org/10.3390/ijms23179954.

[72]

Oh S, Son M, Byun KA, et al. Attenuating effects of dieckol on high-fat diet-induced nonalcoholic fatty liver disease by decreasing the NLRP3 inflammasome and pyroptosis. Mar Drugs. 2021; 19(6):318. https://doi.org/10.3390/md19060318.

[73]

Gao X, Zhao X, Liu M, et al. Lycopene prevents non-alcoholic fatty liver disease through regulating hepatic NF-κB/NLRP3 inflammasome pathway and intestinal microbiota in mice fed with high-fat and high-fructose diet. Front Nutr. 2023;10:1120254. https://doi.org/10.3389/fnut.2023.1120254.

[74]

Deng YF, Xu QQ, Chen TQ, et al. Kinsenoside alleviates inflammation and fibrosis in experimental NASH mice by suppressing the NF-κB/NLRP3 signaling pathway. Phytomedicine. 2022;104:154241. https://doi.org/10.1016/j.phymed.2022.154241.

[75]

Huang Y, Wan T, Pang N, et al. Cannabidiol protects livers against nonalcoholic steatohepatitis induced by high-fat high cholesterol diet via regulating NF-κB and NLRP3 inflammasome pathway. J Cell Physiol. 2019; 234(11):21224-21234. https://doi.org/10.1002/jcp.28728.

[76]

Cabrera D, Wree A, Povero D, et al. Andrographolide ameliorates inflammation and fibrogenesis and attenuates inflammasome activation in experimental non-alcoholic steatohepatitis. Sci Rep. 2017; 7(1):3491. https://doi.org/10.1038/s41598-017-03675-z.

[77]

Lu Z, Liu L, Zhao S, et al. Apigenin attenuates atherosclerosis and non-alcoholic fatty liver disease through inhibition of NLRP3 inflammasome in mice. Sci Rep. 2023; 13(1):7996. https://doi.org/10.1038/s41598-023-34654-2.

[78]

Wang Q, Ou Y, Hu G, et al. Naringenin attenuates non-alcoholic fatty liver disease by down-regulating the NLRP3/NF-κB pathway in mice. Br J Pharmacol. 2020; 177(8):1806-1821. https://doi.org/10.1111/bph.14938.

[79]

Xiao J, Wang F, Liong EC, et al. Lycium barbarum polysaccharides improve hepatic injury through NF-κB and NLRP3/6 pathways in a methionine choline deficient diet steatohepatitis mouse model. Int J Biol Macromol. 2018; 120(Pt B):1480-1489. https://doi.org/10.1016/j.ijbiomac.2018.09.151.

[80]

Yue SR, Tan YY, Zhang L, et al. Gynostemma pentaphyllum polysaccharides ameliorate non-alcoholic steatohepatitis in mice associated with gut microbiota and the TLR2/NLRP3 pathway. Front Endocrinol (Lausanne). 2022;13:885039. https://doi.org/10.3389/fendo.2022.885039.

[81]

Onishi M, Yamano K, Sato M, et al. Molecular mechanisms and physiological functions of mitophagy. Embo J. 2021; 40(3):e104705. https://doi.org/10.15252/embj.2020104705.

[82]

Meng Z, Gao M, Wang C, et al. Apigenin alleviated high-fat-diet-induced hepatic pyroptosis by mitophagy-ROS-CTSB-NLRP3 pathway in mice and AML12 cells. J Agric Food Chem. 2023; 71(18):7032-7045. https://doi.org/10.1021/acs.jafc.2c07581.

[83]

Wang F, Park JS, Ma Y, et al. Ginseng saponin enriched in Rh1 and Rg2 ameliorates nonalcoholic fatty liver disease by inhibiting inflammasome activation. Nutrients. 2021; 13(3):856. https://doi.org/10.3390/nu13030856.

[84]

Li W, Cai Z, Schindler F, et al. Elevated PINK1/Parkin-dependent mitophagy and boosted mitochondrial function mediate protection of HepG2 cells from excess palmitic acid by hesperetin. J Agric Food Chem. 2024; 72(23):13039-13053. https://doi.org/10.1021/acs.jafc.3c09132.

[85]

Li X, Shi Z, Zhu Y, et al. Cyanidin-3-O-glucoside improves non-alcoholic fatty liver disease by promoting PINK1-mediated mitophagy in mice. Br J Pharmacol. 2020; 177(15):3591-3607. https://doi.org/10.1111/bph.15083.

[86]

Mai W, Xu Y, Xu J, et al. Berberine inhibits Nod-like receptor family pyrin domain containing 3 inflammasome activation and pyroptosis in nonalcoholic steatohepatitis via the ROS/TXNIP axis. Front Pharmacol. 2020;11:185. https://doi.org/10.3389/fphar.2020.00185.

[87]

Zou K, Li Z, Zhang Y, et al. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol Sin. 2017; 38(2):157-167. https://doi.org/10.1038/aps.2016.125.

[88]

Zheng T, Yang X, Li W, et al. Salidroside attenuates high-fat diet-induced nonalcoholic fatty liver disease via AMPK-dependent TXNIP/NLRP3 pathway. Oxid Med Cell Longev. 2018;2018:8597897. https://doi.org/10.1155/2018/8597897.

[89]

Wang W, Wang C, Ding XQ, et al. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. Br J Pharmacol. 2013; 169(6):1352-1371. https://doi.org/10.1111/bph.12226.

[90]

Ding C, Zhao Y, Shi X, et al. New insights into salvianolic acid A action: regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways ameliorates HFD-induced NAFLD in rats. Sci Rep. 2016;6:28734. https://doi.org/10.1038/srep28734.

[91]

Zhang J, Zhang H, Deng X, et al. Baicalin protects AML-12 cells from lipotoxicity via the suppression of ER stress and TXNIP/NLRP3 inflammasome activation. Chem Biol Interact. 2017; 278:189-196. https://doi.org/10.1016/j.cbi.2017.10.010.

[92]

Li YM, Zhao SY, Zhao HH, et al. Procyanidin B2 alleviates palmitic acid-induced injury in HepG2 cells via endoplasmic reticulum stress pathway. Evid Based Complement Alt. 2021;2021:8920757. https://doi.org/10.1155/2021/8920757.

[93]

Yen IC, Tu QW, Chang TC, et al. 4-Acetylantroquinonol B ameliorates nonalcoholic steatohepatitis by suppression of ER stress and NLRP3 inflammasome activation. Biomed Pharmacother. 2021;138:111504. https://doi.org/10.1016/j.biopha.2021.111504.

[94]

Liu H, Zhan X, Xu G, et al. Cryptotanshinone specifically suppresses NLRP3 inflammasome activation and protects against inflammasome-mediated diseases. Pharmacol Res. 2021;164:105384. https://doi.org/10.1016/j.phrs.2020.105384.

[95]

Xu SM, Xu Y, Cheng XG, et al. Tilianin protects against nonalcoholic fatty liver disease in early obesity mice. Biol Pharm Bull. 2023; 46(3):419-426. https://doi.org/10.1248/bpb.b22-00700.

[96]

Xu C, Wan X, Xu L, et al. Xanthine oxidase in non-alcoholic fatty liver disease and hyperuricemia: one stone hits two birds. J Hepatol. 2015; 62(6):1412-1419. https://doi.org/10.1016/j.jhep.2015.01.019.

[97]

Lv Y, Gao X, Luo Y, et al. Apigenin ameliorates HFD-induced NAFLD through regulation of the XO/NLRP3 pathways. J Nutr Biochem. 2019; 71:110-121. https://doi.org/10.1016/j.jnutbio.2019.05.015.

[98]

Yang G, Jang JH, Kim SW, et al. Sweroside prevents non-alcoholic steatohepatitis by suppressing activation of the NLRP3 inflammasome. Int J Mol Sci. 2020; 21(8):2790. https://doi.org/10.3390/ijms21082790.

[99]

Yong Z, Ruiqi W, Hongji Y, et al. Mangiferin ameliorates HFD-induced NAFLD through regulation of the AMPK and NLRP3 inflammasome signal pathways. J Immunol Res. 2021;2021:4084566. https://doi.org/10.1155/2021/4084566.

[100]

Shen Q, Chen Y, Shi J, et al. Asperuloside alleviates lipid accumulation and inflammation in HFD-induced NAFLD via AMPK signaling pathway and NLRP3 inflammasome. Eur J Pharmacol. 2023;942:175504. https://doi.org/10.1016/j.ejphar.2023.175504.

[101]

Wang MY, Zhang SS, An MF, et al. Neferine ameliorates nonalcoholic steatohepatitis through regulating AMPK pathway. Phytomedicine. 2023;114:154798. https://doi.org/10.1016/j.phymed.2023.154798.

[102]

Xu Y, Yang C, Zhang S, et al. Ginsenoside Rg 1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation. Biol Pharm Bull. 2018; 41(11):1638-1644. https://doi.org/10.1248/bpb.b18-00132.

[103]

Zhou W, Yan X, Zhai Y, et al. Phillygenin ameliorates nonalcoholic fatty liver disease via TFEB-mediated lysosome biogenesis and lipophagy. Phytomedicine. 2022;103:154235. https://doi.org/10.1016/j.phymed.2022.154235.

[104]

Zhao J, Liu H, Hong Z, et al. Tanshinone I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC. Mol Med. 2023; 29(1):84. https://doi.org/10.1186/s10020-023-00671-0.

[105]

Wu C, Bian Y, Lu B, et al. Rhubarb free anthraquinones improved mice nonalcoholic fatty liver disease by inhibiting NLRP3 inflammasome. J Transl Med. 2022; 20(1):294. https://doi.org/10.1186/s12967-022-03495-4.

[106]

Jang JH, Yang G, Seok JK, et al. Loganin prevents hepatic steatosis by blocking NLRP3 inflammasome activation. Biomol Ther (Seoul). 2023; 31(1):40-47. https://doi.org/10.4062/biomolther.2022.077.

[107]

Li Q, Feng H, Wang H, et al.Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7-NLRP3 interaction. EMBO Rep. 2022; 23(2):e53499. https://doi.org/10.15252/embr.202153499.

[108]

Ćurčić IB, Kizivat T, Petrović A, et al. Therapeutic perspectives of IL1 family members in liver diseases: an update. J Clin Transl Hepatol. 2022; 10(6):1186-1193. https://doi.org/10.14218/jcth.2021.00501.

[109]

Senolt L, Vencovský J, Pavelka K, et al. Prospective new biological therapies for rheumatoid arthritis. Autoimmun Rev. 2009; 9(2):102-107. https://doi.org/10.1016/j.autrev.2009.03.010.

[110]

Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012; 11(8):633-652. https://doi.org/10.1038/nrd3800.

[111]

Wei S, Wang L, Evans PC, et al. NAFLD and NASH: etiology, targets and emerging therapies. Drug Discov Today. 2024; 29(3):103910. https://doi.org/10.1016/j.drudis.2024.103910.

[112]

Wu Y, Zhou J, Zuo X, et al. Yanggan Jiangmei Formula alleviates hepatic inflammation and lipid accumulation in non-alcoholic steatohepatitis by inhibiting the NF-κB/NLRP3 signaling pathway. Chin J Nat Med. 2024; 22(3):224-234. https://doi.org/10.1016/s1875-5364(24)60595-9.

[113]

Biao Y, Chen J, Liu C, et al. Protective effect of Danshen Zexie decoction against non-alcoholic fatty liver disease through inhibition of ROS/NLRP3/IL-1β pathway by Nrf2 signaling activation. Front Pharmacol. 2022;13:877924. https://doi.org/10.3389/fphar.2022.877924.

[114]

Han R, Qiu H, Zhong J, et al. Si Miao Formula attenuates non-alcoholic fatty liver disease by modulating hepatic lipid metabolism and gut microbiota. Phytomedicine. 2021;85:153544. https://doi.org/10.1016/j.phymed.2021.153544.

[115]

Hou X, Sun M, Bao T, et al. Recent advances in screening active components from natural products based on bioaffinity techniques. Acta Pharm Sin B. 2020; 10(10):1800-1813. https://doi.org/10.1016/j.apsb.2020.04.016.

[116]

Chen L, Lv D, Wang S, et al. Surface plasmon resonance-based membrane protein-targeted active ingredients recognition strategy: construction and implementation in ligand screening from herbal medicines. Anal Chem. 2020; 92(5):3972-3980. https://doi.org/10.1021/acs.analchem.9b05479.

[117]

Lv D, Xu J, Qi M, et al. A strategy of screening and binding analysis of bioactive components from traditional Chinese medicine based on surface plasmon resonance biosensor. J Pharm Anal. 2022; 12(3):500-508. https://doi.org/10.1016/j.jpha.2021.11.006.

[118]

Li P, Wang L, Di LJ. Applications of protein fragment complementation assays for analyzing biomolecular interactions and biochemical networks in living cells. J Proteome Res. 2019; 18(8):2987-2998. https://doi.org/10.1021/acs.jproteome.9b00154.

[119]

Liu Y, Zhang X, Zhang P, et al. A high-throughput Gaussia luciferase reporter assay for screening potential gasdermin E activators against pancreatic cancer. Acta Pharm Sin B. 2023; 13(10):4253-4272. https://doi.org/10.1016/j.apsb.2023.07.018.

[120]

Wang J, Gao L, Lee YM, et al. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches. Pharmacol Ther. 2016; 162:10-22. https://doi.org/10.1016/j.pharmthera.2016.01.010.

PDF (1960KB)

378

Accesses

0

Citation

Detail

Sections
Recommended

/