Exploring artificial intelligence approaches for predicting synergistic effects of active compounds in traditional Chinese medicine based on molecular compatibility theory

Yiwen Wang , Tong Wu , Xingyu Li , Qilan Xu , Heshui Yu , Shixin Cen , Yi Wang , Zheng Li

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (11) : 1409 -1424.

PDF (5052KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (11) :1409 -1424. DOI: 10.1016/S1875-5364(25)60967-8
Review
research-article

Exploring artificial intelligence approaches for predicting synergistic effects of active compounds in traditional Chinese medicine based on molecular compatibility theory

Author information +
History +
PDF (5052KB)

Abstract

Due to its synergistic effects and reduced side effects, combination therapy has become an important strategy for treating complex diseases. In traditional Chinese medicine (TCM), the “monarch, minister, assistant, envoy” compatibilities theory provides a systematic framework for drug compatibility and has guided the formation of a large number of classic formulas. However, due to the complex compositions and diverse mechanisms of action of TCM, it is difficult to comprehensively reveal its potential synergistic patterns using traditional methods. Synergistic prediction based on molecular compatibility theory provides new ideas for identifying combinations of active compounds in TCM. Compared to resource-intensive traditional experimental methods, artificial intelligence possesses the ability to mine synergistic patterns from multi-omics and structural data, providing an efficient means for modeling and optimizing TCM combinations. This paper systematically reviews the application progress of AI in the synergistic prediction of TCM active compounds and explores the challenges and prospects of its application in modeling combination relationships, thereby contributing to the modernization of TCM theory and methodological innovation.

Keywords

Molecular compatibility theory / Synergy prediction of TCM compounds / Molecular drugs combination prediction / Artificial intelligence

Cite this article

Download citation ▾
Yiwen Wang, Tong Wu, Xingyu Li, Qilan Xu, Heshui Yu, Shixin Cen, Yi Wang, Zheng Li. Exploring artificial intelligence approaches for predicting synergistic effects of active compounds in traditional Chinese medicine based on molecular compatibility theory. Chinese Journal of Natural Medicines, 2025, 23(11): 1409-1424 DOI:10.1016/S1875-5364(25)60967-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dong QF, Bao HL, Wang JG, et al. Liver fibrosis and MAFLD: the exploration of multi-drug combination therapy strategies. Front Med. 2023;10:1120621. https://doi.org/10.3389/fmed.2023.1120621.

[2]

Jia J, Zhu F, Ma XH, et al. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 2009; 8(2):111-128. https://doi.org/10.1038/nrd2683.

[3]

Hamoud R, Zimmermann S, Reichling J, et al. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine. 2014; 21(4):443-447. https://doi.org/10.1016/j.phymed.2013.10.016.

[4]

Pool JL. Is it time to move to multidrug combinations? Am J Hypertens. 2003; 16(S3): 36S-40S. https://doi.org/10.1016/j.amjhyper.2003.07.005.

[5]

Madani TSA, Soltan GL, Manem VSK, et al. Predictive approaches for drug combination discovery in cancer. Brief Bioinform. 2018; 19(2):263-276. https://doi.org/10.1093/bib/bbw104.

[6]

Kong WKX, Midena G, Chen YJ, et al. Systematic review of computational methods for drug combination prediction. Comput Struct Biotechnol J. 2022; 20:2807-2814. https://doi.org/10.1016/j.csbj.2022.05.055.

[7]

Tsigelny IF. Artificial intelligence in drug combination therapy. Brief Bioinform. 2019; 20(4):1434-1448. https://doi.org/10.1093/bib/bby004.

[8]

Rani P, Dutta K, Kumar V. Artificial intelligence techniques for prediction of drug synergy in malignant diseases: past, present, and future. Comput Biol Med. 2022;144:105334. https://doi.org/10.1016/j.compbiomed.2022.105334.

[9]

Pourmousa M, Jain S, Barnaeva E, et al. AI-driven discovery of synergistic drug combinations against pancreatic cancer. Nat Commun. 2025; 16(1):4020. https://doi.org/10.1038/s41467-025-56818-6.

[10]

Peng Z, Ding YL, Zhang PF, et al. Artificial intelligence application for anti-tumor drug synergy prediction. Curr Med Chem. 2024; 31(40):6572-6585. https://doi.org/10.2174/0109298673290777240301071513.

[11]

Kumar V, Dogra N. A comprehensive review on deep synergistic drug prediction techniques for cancer. Arch Comput Methods Eng. 2022; 29(3):1443-1461. https://doi.org/10.1007/s11831-021-09617-3.

[12]

Wang Y, Wang JJ, Liu Y. Deep learning for predicting synergistic drug combinations: state-of-the-arts and future directions. Clin Transl Discov. 2024; 4(3):e317. https://doi.org/10.1002/ctd2.317.

[13]

Pan YC, Ren HT, Lan L, et al. Review of predicting synergistic drug combinations. Life. 2023; 13(9):1878. https://doi.org/10.3390/life13091878.

[14]

Abbasi F, Rousu J. New methods for drug synergy prediction: a mini-review. Curr Opin Struct Biol. 2024;86:102827. https://doi.org/10.1016/j.sbi.2024.102827.

[15]

Chen B, Garmire L, Calvisi DF, et al. Harnessing big ‘omics’ data and AI for drug discovery in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020; 17(4):238-251. https://doi.org/10.1038/s41575-020-0288-6.

[16]

Ali AM, Mohammed MA. A comprehensive review of artificial intelligence approaches in omics data processing: evaluating progress and challenges. IJMSCS. 2024; 2:114-167. https://doi.org/10.59543/ijmscs.v2i.8703.

[17]

Ali H. Artificial intelligence in multi-omics data integration: advancing precision medicine, biomarker discovery and genomic-driven disease interventions. Int J Sci Res Arch. 2023; 8(1):1012-1030. https://doi.org/10.30574/ijsra.2023.8.1.0189.

[18]

Holzinger A, Haibe-Kains B, Jurisica I. Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data. Eur J Nucl Med Mol Imaging. 2019; 46(13):2722-2730. https://doi.org/10.1007/s00259-019-04382-9.

[19]

Baciu C, Xu C, Alim M, et al. Artificial intelligence applied to omics data in liver diseases: enhancing clinical predictions. Front Artif Intell. 2022;5:1050439. https://doi.org/10.3389/frai.2022.1050439.

[20]

Wu Y, Xie L. AI-driven multi-omics integration for multi-scale predictive modeling of causal genotype-environment-phenotype relationships. Comput Struct Biotechnol J. 2025; 27:265-277. https://doi.org/10.1016/j.csbj.2024.12.030.

[21]

Tong L, Shi WQ, Isgut M, et al. Integrating multi-omics data with EHR for precision medicine using advanced artificial intelligence. IEEE Rev Biomed Eng. 2023; 17:80-97. https://doi.org/10.1109/RBME.2023.3324264.

[22]

Nam Y, Kim J, Jung SH, et al. Harnessing artificial intelligence in multimodal omics data integration: paving the path for the next frontier in precision medicine. Annu Rev Biomed Data Sci. 2024; 7(1):225-250. https://doi.org/10.1146/annurev-biodatasci-102523-103801.

[23]

Fawaz A, Ferraresi A, Isidoro C. Systems biology in cancer diagnosis integrating omics technologies and artificial intelligence to support physician decision making. J Pers Med. 2023; 13(11):1590. https://doi.org/10.3390/jpm13111590.

[24]

Wang SP, Hu YY, Tan W, et al. Compatibility art of traditional Chinese medicine: from the perspective of herb pairs. J Ethnopharmacol. 2012; 143(2):412-423. https://doi.org/10.1016/j.jep.2012.07.033.

[25]

Chen SL, Jiang JG. Application of gene differential expression technology in the mechanism studies of nature product-derived drugs. Expert Opin Biol Ther. 2012; 12(7):823-839. https://doi.org/10.1517/14712598.2012.683858.

[26]

Yang Y, Zhang ZQ, Li SP, et al. Synergy effects of herb extracts: pharmacokinetics and pharmacodynamic basis. Fitoterapia. 2014; 92:133-147. https://doi.org/10.1016/j.fitote.2013.10.010.

[27]

Yuan H, Ma QQ, Cui HY, et al. How can synergism of traditional medicines benefit from network pharmacology? Molecules. 2017; 22(7): 1135. https://doi.org/10.3390/molecules22071135.

[28]

Jia W, Gao WY, Yan YQ, et al. The rediscovery of ancient Chinese herbal formulas. Phytother Res. 2004; 18(8): 681-686. https://doi.org/10.1002/ptr.1506.

[29]

Ren X, Yan CX, Zhai RX, et al. Comprehensive survey of target prediction web servers for traditional Chinese medicine. Heliyon. 2023; 9(8):e19151. https://doi.org/10.1016/j.heliyon.2023.e19151.

[30]

Liu YS, Li X, Chen C, et al. Exploration of compatibility rules and discovery of active ingredients in TCM formulas by network pharmacology. Chin Herb Med. 2024; 16(4):572-588. https://doi.org/10.1016/j.chmed.2023.09.008.

[31]

Luo LF, Zhou JR, Liu XN, et al. Development of modern Chinese medicine guided by molecular compatibility theory. J Adv Res. 2024; 73:713-728. https://doi.org/10.1016/j.jare.2024.08.005.

[32]

Zhang GN, Ashby CR, Zhang YK, et al. The reversal of antineoplastic drug resistance in cancer cells by β-elemene. Chin J Cancer. 2015; 34(11):1-8. https://doi.org/10.1186/s40880-015-0048-0.

[33]

Zhai BT, Zhang NN, Han XM, et al. Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: a review. Biomed Pharmacother. 2019;114:108812. https://doi.org/10.1016/j.biopha.2019.108812.

[34]

Jiang XY, Shi LP, Zhu JL, et al. Elemene antitumor drugs development based on “molecular compatibility theory” and clinical application: a retrospective and prospective outlook. Chin J Integr Med. 2024; 30(1):62-74. https://doi.org/10.1007/s11655-023-3714-0.

[35]

Xie T, Wang SL, Zeng ZW, et al.Molecular Compatibility Theory of Modern Chinese Medicine and Systems Biology. Proceedings of the 2014 National Academic Symposium on Traditional Chinese Medicine. 2014;61-64.

[36]

Wang SL, Xie T, Sun M, et al. Theory and practice of molecule compatibility. Chin J Exp Tradit Med Formulae. 2010; 16(15):222-224. https://doi.org/10.13422/j.cnki.syfjx.2010.15.014.

[37]

Dong QQ, Wang SW. Molecular Chinese materia medica and molecular compatibility theory. Electron J Clin Med Lit. 2014; 1(2): 124-127. https://doi.org/10.16281/j.cnki.jocml.2014.02.021.

[38]

Xie T. Elemene antitumor drugs: molecular compatibility theory and its applications in new drug development and clinical practice.1st ed. Amsterdam: Elsevier; 2022.

[39]

Lu LK, Lu TS, Tian CY, et al. AI: bridging ancient wisdom and modern innovation in traditional Chinese medicine. JMIR Med Inform. 2024; 12(1):e58491. https://doi.org/10.2196/58491.

[40]

Li Y, Liu XJ, Zhou JW, et al. Artificial intelligence in traditional Chinese medicine: advances in multi-metabolite multi-target interaction modeling. Front Pharmacol. 2025;16:1541509. https://doi.org/10.3389/fphar.2025.1541509.

[41]

Yao Y, Zhang XD, Wang ZZ, et al. Deciphering the combination principles of traditional Chinese medicine from a systems pharmacology perspective based on Ma-huang Decoction. J Ethnopharmacol. 2013; 150(2):619-638. https://doi.org/10.1016/j.jep.2013.09.018.

[42]

Zhou X, Seto SW, Chang D, et al. Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research. Front Pharmacol. 2016;7:201. https://doi.org/10.3389/fphar.2016.00201.

[43]

Luan X, Zhang LJ, Li XQ, et al. Compound-based Chinese medicine formula: from discovery to compatibility mechanism. J Ethnopharmacol. 2020;254:112687. https://doi.org/10.1016/j.jep.2020.112687.

[44]

Ma SS, Jia CH, Guo J. The metaphor analysis of “monarch, minister, assistant and envoy” in TCM formula based on the concept of “a prescription being astate”. J Beijing Univ Tradit Chin Med. 2019; 42(02):93-98. https://doi.org/10.3969/j.issn.1006-2157.2019.02.001.

[45]

Che CT, Wang ZJ, Chow MSS, et al. Herb-herb combination for therapeutic enhancement and advancement: theory, practice and future perspectives. Molecules. 2013; 18(5):5125-5141. https://doi.org/10.3390/molecules18055125.

[46]

Ma L, Zhang X, Xu XM, et al. Compatibility principle in the Tanyu Tongzhi Formula revealed by a cell-based analysis. J Ethnopharmacol. 2019; 231:507-515. https://doi.org/10.1016/j.jep.2018.11.043.

[47]

Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013; 11(2):110-120. https://doi.org/10.1016/S1875-5364(13)60037-0.

[48]

Wang AY, Peng HY, Wang YD, et al. NP-TCMtarget: a network pharmacology platform for exploring mechanisms of action of traditional Chinese medicine. Brief Bioinform. 2025; 26(1):bbaf078. https://doi.org/10.1093/bib/bbaf078.

[49]

Zhang WZ, Mao XQ, Sun XN, et al. Research progress on molecular compatibility in integrated Chinese and Western medicine to foster synergy and reverse resistance of cancer cells to anticancer drugs. Chin J Clin Oncol. 2021; 48(11):566-570. https://doi.org/10.3969/j.issn.1000-8179.2021.11.371.

[50]

Liu J, Hu XJ, Jin B, et al. β-Elemene induces apoptosis as well as protective autophagy in human non-small-cell lung cancer A549 cells. J Pharm Pharmacol. 2012; 64(1):146-153. https://doi.org/10.1111/j.2042-7158.2011.01371.x.

[51]

Cai SZ, Xiong QW, Zhao LN, et al. β-Elemene triggers ROS-dependent apoptosis in glioblastoma cells through suppressing STAT3 signaling pathway. Pathol Oncol Res. 2021;27:594299. https://doi.org/10.3389/pore.2021.594299.

[52]

Qureshi MZ, Attar R, Romero MA, et al. Regulation of signaling pathways by β‐elemene in cancer progression and metastasis. J Cell Biochem. 2019; 120(8):12091-12100. https://doi.org/10.1002/jcb.28624.

[53]

Jiang ZY, Jacob JA, Loganathachetti DS, et al. β-Elemene: mechanistic studies on cancer cell interaction and its chemosensitization effect. Front. Pharmacol. 2017;8:105. https://doi.org/10.3389/fphar.2017.00105.

[54]

Fang YY Kang YH, Zou H, et al. β-elemene attenuates macrophage activation and proinflammatory factor production via crosstalk with Wnt/β-catenin signaling pathway. Fitoterapia. 2018; 124:92-102. https://doi.org/10.1016/j.fitote.2017.10.015.

[55]

Liu XL, Liu HM. Clinical efficacy and safety of Elemene Injection combined with chemotherapy in the treatment of advanced lung cancer. J Aerosp Med. 2017; 28(6):720-722. https://doi.org/10.3969/j.issn.2095-1434.2017.06.039.

[56]

Zhai BT, Zeng YY, Zeng ZW, et al. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. Int J Nanomed. 2018; 13:6279-6296. https://doi.org/10.2147/IJN.S174527.

[57]

Yan MM, Jiao LM, Feng WZ. Observation on the application effects of β-elemene adjuvant chemotherapy after lung adenocarcinoma surgery. Pract J Clin Integr Tradit Chin West Med. 2025; 25(12):11-14. https://doi.org/10.13638/j.issn.1671-4040.2025.12.004.

[58]

Wang HY, Ma YY. β-Elemene alleviates cisplatin resistance in oral squamous cell carcinoma cell via inhibiting JAK2/STAT3 pathway in vitro and in vivo. Cancer Cell Int. 2022; 22(1):244. https://doi.org/10.1186/s12935-022-02650-7.

[59]

Wang L, Zhou GB, Liu P, et al.Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. PNAS. 2008; 105(12):4826-4831. https://doi.org/10.1073/pnas.0712365105.

[60]

Huang DP, Yang LC, Chen YQ, et al. Long-term outcome of children with acute promyelocytic leukemia: a randomized study of oral versus intravenous arsenic by SCCLG-APL group. Blood Cancer J. 2023; 13(1):178. https://doi.org/10.1038/s41408-023-00949-w.

[61]

Chen SY, Chen ZJ Wang Y, et al. Targeted delivery of Chinese herb pair-based berberine/tannin acid self-assemblies for the treatment of ulcerative colitis. J Adv Res. 2022; 40:263-276. https://doi.org/10.1016/j.jare.2021.11.017.

[62]

Ji S, He DD, Su ZY, et al. P450 enzymes-based metabolic interactions between monarch drugs and the other constituent herbs: a strategy to explore compatibility mechanism of Sangju-Yin. Phytomedicine. 2019;58:152866. https://doi.org/10.1016/j.phymed.2019.152866.

[63]

Li X, Liu ZQ, Liao J, et al. Network pharmacology approaches for research of traditional Chinese medicines. Chin J Nat Med. 2023; 21(5):323-332. https://doi.org/10.1016/S1875-5364(23)60429-7.

[64]

Tang YP, Xu DQ, Yue SJ, et al. Modern research thoughts and methods on bio-active components of TCM formulae. Chin J Nat Med. 2022; 20(7):481-493. https://doi.org/10.1016/S1875-5364(22)60206-1.

[65]

Wu T, Lin RM, Cui PD, et al. Deep learning-based drug screening for the discovery of potential therapeutic agents for Alzheimer’s disease. J Pharm Anal. 2024; 14(10):101022. https://doi.org/10.1016/j.jpha.2024.101022.

[66]

Bliss CI.The toxicity of poisons applied jointly 1. Ann Appl Biol. 1939; 26(3):585-615. https://doi.org/10.1111/j.1744-7348.1939.tb06990.x.

[67]

Loewe S. The problem of synergism and antagonism of combined drugs. Arzneim-Forsch. 1953; 3(6):285-290.

[68]

Wu LL, Wen YQ, Leng DJ, et al. Machine learning methods, databases and tools for drug combination prediction. Brief Bioinform. 2022; 23(1):bbab355. https://doi.org/10.1093/bib/bbab355.

[69]

Preuer K, Lewis RP, Hochreiter S, et al. DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics. 2018; 34(9):1538-1546. https://doi.org/10.1093/bioinformatics/btx806.

[70]

Kuru HI, Tastan O, Cicek AE. MatchMaker: a deep learning framework for drug synergy prediction. IEEE/ACM Trans Comput Biol Bioinf. 2021; 19(4):2334-2344. https://doi.org/10.1109/TCBB.2021.3086702.

[71]

Liu Q, Xie L. TranSynergy: mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. PLoS Comput Biol. 2021; 17(2):e1008653. https://doi.org/10.1371/journal.pcbi.1008653.

[72]

Cokol-Cakmak M, Cetiner S, Erdem N, et al. Guided screen for synergistic three-drug combinations. PLoS One. 2020; 15(7):e0235929. https://doi.org/10.1371/journal.pone.0235929.

[73]

She SN, Chen HW, Ji W, et al. Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies. Front Pharmacol. 2022;13:1032875. https://doi.org/10.3389/fphar.2022.1032875.

[74]

Liu JL, Liu JJ, Shen FX, et al. Systems pharmacology analysis of synergy of TCM: an example using saffron formula. Sci Rep. 2018; 8(1):380. https://doi.org/10.1038/s41598-017-18764-2.

[75]

Zhou E, Shen Q, Hou Y. Integrating artificial intelligence into the modernization of traditional Chinese medicine industry: a review. Front Pharmacol. 2024;15:1181183. https://doi.org/10.3389/fphar.2024.1181183.

[76]

Li MY, Zhang J. A focus on harnessing big data and artificial intelligence: revolutionizing drug discovery from traditional Chinese medicine sources. Chem Sci. 2023; 14(39):10628-10630. https://doi.org/10.1039/D3SC90185H.

[77]

Wang YY, Liu MX, Jafari M, et al. A critical assessment of traditional Chinese medicine databases as a source for drug discovery. Front Pharmacol. 2024;15:1303693. https://doi.org/10.3389/fphar.2024.1303693.

[78]

Fan MY, Jin C, Li DP, et al. Multi-level advances in databases related to systems pharmacology in traditional Chinese medicine: a 60-year review. Front Pharmacol. 2023;14:1289901. https://doi.org/10.3389/fphar.2023.1289901.

[79]

Guo R, Luo XL, Liu JJ, et al. Omics strategies decipher therapeutic discoveries of traditional Chinese medicine against different diseases at multiple layers molecular-level. Pharmacol Res. 2020;152:104627. https://doi.org/10.1016/j.phrs.2020.104627.

[80]

Wen XH, Wang YR, Su C, et al. Integrating multi-omics technologies with traditional Chinese medicine to enhance cancer research and treatment. QJM. 2025; hcaf103. https://doi.org/10.1093/qjmed/hcaf103.

[81]

Shi YL, Liu J, Guan S, et al. Syn-COM: a multi-level predictive synergy framework for innovative drug combinations. Pharmaceuticals. 2024; 17(9):1230. https://doi.org/10.3390/ph17091230.

[82]

Bhat GR, Sethi I, Rah B, et al. Innovative in silico approaches for characterization of genes and proteins. Front Genet. 2022;13:865182. https://doi.org/10.3389/fgene.2022.865182.

[83]

Feehley T, O’Donnell CW, Mendlein J, et al. Drugging the epigenome in the age of precision medicine. Clin Epigenetics. 2023; 15(1):6. https://doi.org/10.1186/13148-022-01419-z.

[84]

Cui K, Wu WW, Diao QY. Application and research progress on transcriptomics. Biotechnol Bull. 2019; 35(7):1-9. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2019-0374.

[85]

Zhang QP, Huang QJ, Cheng ZP, et al. Exploring the mechanism of Xiaoaiping Injection inhibiting autophagy in prostate cancer based on proteomics. Chin J Nat Med. 2025; 23(1):64-76. https://doi.org/10.1016/S1875-5364(25)60804-1.

[86]

Xu MD, Zhao XW, Wang JY, et al. DFFNDDS: prediction of synergistic drug combinations with dual feature fusion networks. J Cheminf. 2023; 15(1):33. https://doi.org/10.1186/s13321-023-00690-3.

[87]

Wang JC, Tian CY, Zhang F, et al. Application of metabolomics in the study of active components and mechanism of action of traditional Chinese medicine. Chin J Ethnomed Ethnopharm. 2024; 33(14):76-80. https://doi.org/10.3969/j.issn.1007-8517.2024.14.rqrmjnyz202414014.

[88]

Zhang LQ, Qin YF, Chen M. SMILESynergy: anticancer drug synergy prediction based on transformer pre-trained model. J Biomed Eng. 2023; 40(3):544-551. https://doi.org/10.7507/1001-5515.202209043.

[89]

Eckhart L, Lenhof K, Herrmann L, et al. How to predict effective drug combinations-moving beyond synergy scores. iScience. 2025; 28(6):112622. https://doi.org/10.1016/j.isci.2025.112622.

[90]

Bao F, Li L, Hammerlindl H, et al. Transitive prediction of small-molecule function through alignment of high-content screening resources. Nat Biotechnol. 2025;1-11. https://doi.org/10.1038/s41587-025-02729-2.

[91]

Li ZG, Wu Q, Xing YR. Key concepts in traditional Chinese medicine II. Singapore: Palgrave Macmillan. 2021.

[92]

Liu BY, Zhou XZ, Wang YH, et al. Data processing and analysis in real‐world traditional Chinese medicine clinical data: challenges and approaches. Stat Med. 2012; 31(7):653-660. https://doi.org/10.1002/sim.4417.

[93]

Long H, Zhu Y, Jia LR, et al. An ontological framework for the formalization, organization and usage of TCM-Knowledge. BMC Med Inf Decis Making. 2019; 19(Suppl 2):53. https://doi.org/10.1186/s12911-019-0760-9.

[94]

Ru JL, Li P, Wang JN, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminf. 2014; 6:1-6. https://doi.org/10.1186/1758-2946-6-13.

[95]

KongR X, Liu C, Zhang ZZ, et al. BATMAN-TCM 2.0:an enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins. Nucleic Acids Res. 2024; 52(D1):D1110-D1120. https://doi.org/10.1093/nar/gkad926.

[96]

Zhang YQ, Li X, Shi YL, et al. ETCM v2.0: an update with comprehensive resource and rich annotations for traditional Chinese medicine. Acta Pharm Sin B. 2023; 13(6):2559-2571. https://doi.org/10.1016/j.apsb.2023.03.012.

[97]

Fang SS, Dong L, Liu L, et al. HERB: a high-throughput experiment-and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021; 49(D1):D1197-D1206. https://doi.org/10.1093/nar/gkaa1063.

[98]

Zhang RZ, Yu SJ, Bai H, et al. TCM-Mesh: the database and analytical system for network pharmacology analysis for TCM preparations. Sci Rep. 2017; 7(1):2821. https://doi.org/10.1038/s41598-017-03039-7.

[99]

Zhu X, Yao Q, Yang PS, et al. Multi-omics approaches for in-depth understanding of therapeutic mechanism for traditional Chinese medicine. Front Pharmacol. 2022;13:1031051. https://doi.org/10.3389/fphar.2022.1031051.

[100]

Huang L, Xie DL, Yu YR, et al. TCMID 2.0: a comprehensive resource for TCM. NAR. 2018; 46(D1):D1117-D1120. https://doi.org/10.1093/nar/gkx1028.

[101]

Lv QJ, Chen GX, He HH, et al. TCMBank: bridges between the largest herbal medicines, chemical ingredients, target proteins, and associated diseases with intelligence text mining. Chem sci. 2023; 14(39):10684-10701. https://doi.org/10.1039/D3SC02139D.

[102]

Wu Y, Zhang FL, Yang K, et al. SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res. 2019; 47(D1):D1110-D1117. https://doi.org/10.1093/nar/gky1021.

[103]

Yan DY, Zheng GH, Wang CC, et al. HIT 2.0: an enhanced platform for herbal ingredients’ targets. Nucleic Acids Res. 2022; 50(D1):D1238-D1243. https://doi.org/10.1093/nar/gkab1011.

[104]

Knox C, Wilson M, Klinger CM, et al. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res. 2024; 52(D1):D1265-D1275. https://doi.org/10.1093/nar/gkad976.

[105]

Irwin JJ, Shoichet BK. ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005; 45(1):177-182. doi: https://doi.org/10.1021/ci049714+.

[106]

Wang YL, Xiao JW, Suzek TO, et al. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009; 37(suppl_2):W623-W633. https://doi.org/10.1093/nar/gkp456.

[107]

Szklarczyk D, Santos A, Von Mering C, et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016; 44(D1):D380-D384. https://doi.org/10.1093/nar/gkv1277.

[108]

Liu TQ, Lin Y, Wen X, et al. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007; 35(suppl_1):D198-D201. https://doi.org/10.1093/nar/gkl999.

[109]

Consortium U. UniProt: a hub for protein information. Nucleic Acids Res. 2014;43(Database issue):D204-D212. https://doi.org/10.1093/nar/gku989.

[110]

Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015; 43(D1):D447-D452. https://doi.org/10.1093/nar/gku1003.

[111]

Zanzoni A, Montecchi-Palazzi L, Quondam M, et al. MINT: a molecular INTeraction database. FEBS lett. 2002; 513(1):135-140. https://doi.org/10.1016/s0014-5793(01)03293-8.

[112]

Hermjakob H, Montecchi‐Palazzi L, Lewington C, et al. IntAct: an open source molecular interaction database. Nucleic Acids Res. 2004; 32(suppl_1):D452-D455. https://doi.org/10.1093/nar/gkh052.

[113]

Oughtred R, Rust J, Chang C, et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021; 30(1):187-200. https://doi.org/10.1002/pro.3978.

[114]

Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2016; 45(D1):D833-D839. https://doi.org/10.1093/nar/gkw943.

[115]

Davis AP, Wiegers TC, Johnson RJ, et al. Comparative toxicogenomics database (CTD):update 2023. Nucleic Acids Res. 2023; 51(D1):D1257-D1262. https://doi.org/10.1093/nar/gkac833.

[116]

Yang W, Soares J, Greninger P, et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2012; 41(D1):D955-D961. https://doi.org/10.1093/nar/gks1111.

[117]

Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019; 569(7757):503-508. https://doi.org/10.1038/s41586-019-1186-3.

[118]

Forbes S, Clements J, Dawson E, et al. COSMIC 2005. Br J cancer. 2006; 94(2):318-322. https://doi.org/10.1038/sj.bjc.6602928.

[119]

Zhang JJ, Bajari R, Andric D, et at. The international cancer genome consortium data portal. Nat Biotechnol. 2019; 37(4):367-369. https://doi.org/10.1038/s41587-019-0055-9.

[120]

Tomczak K, Czerwińska P, Wiznerowicz M. Review the cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015; 19(1A):A68-A77. https://doi.org/10.5114/wo.2014.47136.

[121]

Diamant I, Clarke DJ, Evangelista JE, et al. Harmonizome 3.0: integrated knowledge about genes and proteins from diverse multi-omics resources. Nucleic Acids Res. 2025; 53(D1):D1016-D1028. https://doi.org/10.1093/nar/gkae1080.

[122]

Yang ZW, Kotoge R, Piao XH, et al. MLomics: cancer multi-omics database for machine learning. Sci Data. 2025; 12(1):1-9. https://doi.org/10.1038/s41597-025-05235-x.

[123]

Li YY, Zhou LW, Qian FC, et al. scImmOmics: a manually curated resource of single-cell multi-omics immune data. Nucleic Acids Res. 2025; 53(D1):D1162-D1172. https://doi.org/10.1093/nar/gkae985.

[124]

Yang GX, Liu XH, Shi JY, et al. TCM-GPT: efficient pre-training of large language models for domain adaptation in traditional Chinese medicine. Comput Methods Programs Biomed Update. 2024;6:100158. https://doi.org/10.1016/j.cmpbup.2024.100158.

[125]

Dai YZ, Shao X, Zhang JL, et al. TCMChat: a generative large language model for traditional Chinese medicine. Pharmacol Res. 2024;210:107530. https://doi.org/10.1016/j.phrs.2024.107530.

[126]

Yang S, Zhao H, Zhu S, et al. Zhongjing: enhancing the Chinese medical capabilities of large language model through expert feedback and real-world multi-turn dialogue. AAAI'24/IAAI'24/EAAI'24:Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence. 2024;19368-19376. https://doi.org/10.1609/aaai.v38i17.29907.

[127]

Chen Z, Wang H, Li CX, et al. Large language models in traditional Chinese medicine: a systematic review. Acupunct Herb Med. 2025; 5(1):57-67. https://doi.org/10.1097/HM9.0000000000000143.

[128]

Zhang L, Dong X, Jia S, et al. Node2Vec-DGI-EL: a hierarchical graph representation learning model for ingredient-disease association prediction. arXiv preprint. 250500236 https://doi.org/10.48550/arXiv.2505.00236.

[129]

Tanvir F, Saifuddin KM, Hossain T, et al. HeTriNet:Heterogeneous graph triplet attention network for drug-target-disease interaction. ICDEW: Proceedings of the 2023 IEEE 39th International Conference on Data Engineering Workshops. 2023;1503-1516. https://doi.org/10.1109/ICDE55515.2023.00119.

[130]

Li WJ, Ma WJ, Yang MY, et al. Drug repurposing based on the DTD-GNN graph neural network: revealing the relationships among drugs, targets and diseases. BMC Genomics. 2024; 25(1):584. https://doi.org/10.1186/s12864-024-10499-5.

[131]

Zheng X, Wu H, Jin H, et al. FMCHS: advancing traditional Chinese medicine herb recommendation with fusion of multiscale correlations of herbs and symptoms. arXiv preprint. 250305167. https://doi.org/10.48550/arXiv.2503.

[132]

Cui YD, Gao B, Liu LH, et al. AMFormulaS: an intelligent retrieval system for traditional Chinese medicine formulas. BMC Med Inform Decis Mak. 2021;21:56. https://doi.org/10.1186/s12911-021-01419-8.

[133]

Foucquier J, Guedj M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect. 2015; 3(3):e00149. https://doi.org/10.1002/prp2.149.

[134]

Yadav B, Wennerberg K, Aittokallio T, et al. Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comp Struct Biotechnol J. 2015; 13:504-513. https://doi.org/10.1016/j.csbj.2015.09.001.

[135]

Noble WS. What is a support vector machine? Nat Biotechnol. 2006; 24(12):1565-1567. https://doi.org/10.1038/nbt1206-1565.

[136]

Wang TY, Chen L, Zhao X. Prediction of drug combinations with a network embedding method. Comb Chem High Throughput Screen. 2018; 21(10):789-797. https://doi.org/10.2174/1386207322666181226170140.

[137]

Xu Q, Xiong Y, Dai H, et al. PDC-SGB: prediction of effective drug combinations using a stochastic gradient boosting algorithm. J Theor Biol. 2017; 417:1-7. https://doi.org/10.1016/j.jtbi.2017.01.019.

[138]

Sun JJ, Ni QH, Jiang FY, et al. Discovery and validation of traditional Chinese and western medicine combination antirheumatoid arthritis drugs based on machine learning (random forest model). Biomed Res Int. 2023; 2023(1): 6086388. https://doi.org/10.1155/2023/6086388.

[139]

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436-444. https://doi.org/10.1038/nature14539.

[140]

Gawehn E, Hiss JA, Schneider G.Deep learning in drug discovery. Mol Inform. 2016; 35(1):3-14. https://doi.org/10.1002/minf.201501008.

[141]

Zhang T, Zhang L, Payne PR, et al. Synergistic drug combination prediction by integrating multiomics data in deep learning models. Methods Mol Biol. 2021; 2194:223-238. https://doi.org/10.1007/978-1-0716-0849-4_12.

[142]

Movahedi F, Coyle JL, Sejdić E. Deep belief networks for electroencephalography: a review of recent contributions and future outlooks. IEEE J Biomed Health Inform. 2017; 22(3):642-652. https://doi.org/10.1109/JBHI.2017.2727218.

[143]

Chen GC, Tsoi A, Xu H, et al. Predict effective drug combination by deep belief network and ontology fingerprints. J Biomed Inform. 2018; 85:149-154. https://doi.org/10.1016/j.jbi.2018.07.024.

[144]

Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015; 61:85-117. https://doi.org/10.1016/j.neunet.2014.09.003.

[145]

Jain S, Srivastava R. Multi-modality NDE fusion using encoder-decoder networks for identify multiple neurological disorders from EEG signals. Technol Health Care. 2025; 33(5): 2431-2451.https://doi.org/10.1177/09287329241291334.

[146]

Zhang P, Tu SK, Zhang W, et al. Predicting cell line-specific synergistic drug combinations through a relational graph convolutional network with attention mechanism. Brief Bioinform. 2022; 23(6):bbac403. https://doi.org/10.1093/bib/bbac403.

[147]

Kumar N, Srivastava R. Deep learning in structural bioinformatics: current applications and future perspectives. Brief Bioinform. 2024; 25(3): bbae042. https://doi.org/10.1093/bib/bbae042.

[148]

Dwivedi VP, Schlegel V, Liu AT, et al. Representation learning of structured data for medical foundation models. arXiv preprint. 241013351. https://doi.org/10.48550/arXiv.2410.13351.

[149]

Parmar N, Vaswani A, Uszkoreit J, et al. Image transformer. 2018; 4055-4064.

[150]

Jiang J, Chen L, Ke L, et al. A review of transformers in drug discovery and beyond. J Pharm Anal. 2024; 15(6): 101081. https://doi.org/10.1016/j.jpha.2024.101081.

[151]

Edwards C, Naik A, Khot T, et al. SynerGPT: in-context learning for personalized drug synergy prediction and drug design. COLM'24:Proceedings of the First Conference on Language Modeling. 2024. https://openreview.net/forum?id=Aaz6R4Tlwv.

[152]

Liu TY, Chu TY, Luo X, et al. Building a unified model for drug synergy analysis powered by large language models. Nat Commun. 2025;16: 4537. https://doi.org/10.1038/s41467-025-59822-y.

[153]

Corso G, Stark H, Jegelka S, et al.Graph neural networks. Nat Rev Method Prim. 2024; 4(1): 17. https://doi.org/10.1038/s43586-024-00294-7.

[154]

Gu LM, Ma YN, Liu SJ, et al. Prediction of herbal compatibility for colorectal adenoma treatment based on graph neural networks. Chin Med. 2025; 20(1): 1-12. https://doi.org/10.1186/s13020-025-01082-5.

[155]

Samek W, Montavon G, Lapuschkin S, et al. Explaining deep neural networks and beyond: a review of methods and applications. Proc IEEE 2021; 109(3): 247-278. https://doi.org/10.1109/JPROC.2021.3060483.

[156]

Zhang ZH, Chen LF, Zhong FS, et al. Graph neural network approaches for drug-target interactions. Curr Opin Struct Biol. 2022;73: 102327. https://doi.org/10.1016/j.sbi.2021.102327.

[157]

Veličković P, Cucurull G, Casanova A, et al.Graph attention networks.ICLR'18:Proceedings of the International Conference on Learning Representations. 2018. https://openreview.net/forum?id=rJXMpikCZ.

[158]

Wang J, Liu X, Shen S, et al. DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations. Brief Bioinform. 2022; 23(1): bbab390. https://doi.org/10.1093/bib/bbab390.

[159]

Li XL, Shen BH, Feng F, et al. Dual-view jointly learning improves personalized drug synergy prediction. Bioinformatics. 2024; 40(10): btae604. https://doi.org/10.1093/bioinformatics/btae604.

[160]

Li HJ, Zou L, Kowah JA, et al. Predicting drug synergy and discovering new drug combinations based on a graph autoencoder and convolutional neural network. Interdiscip Sci. 2023; 15(2): 316-330. https://doi.org/10.1007/s12539-023-00558-y.

[161]

Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017; 1025-1035. https://doi.org/10.5555/3294771.3294869.

[162]

Liu X, Song CZ, Liu SC, et al. Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction. Bioinformatics. 2022; 38(20): 4782-4789. https://doi.org/10.1093/bioinformatics/btac579.

[163]

Li L, GD, Zheng CH, et al. MHCLSyn: multi-view hypergraph contrastive learning for synergistic drug combination prediction. Big Data Min Anal. 2024; 7(4): 1273-1286. https://doi.org/10.26599/BDMA.2024.9020054.

[164]

Hogan A, Blomqvist E, Cochez M, et al. Knowledge graphs. ACM Comput Surv. 2021; 54(4): 1-37. https://doi.org/10.1145/3447772.

[165]

Ma T, Lin X, Song B, et al. Kg-mtl: knowledge graph enhanced multi-task learning for molecular interaction. IEEE Trans Knowl Data Eng. 2022; 35(7): 7068-7081. https://doi.org/10.1109/TKDE.2022.3188154.

[166]

Zhang G, Gao ZJ, Yan CK, et al. KGANSynergy: knowledge graph attention network for drug synergy prediction. Brief Bioinform. 2023; 24(3): bbad167. https://doi.org/10.1093/bib/bbad167.

[167]

He J, Guo Y, Lam L K, et al. Opentcm: a graphrag-empowered llm-based system for traditional Chinese medicine knowledge retrieval and diagnosis. arXiv preprint. 250420118. https://doi.org/10.48550/arXiv.2504.20118.

[168]

Liu Z, Yang T, Wang J, et al. Tianyi: A traditional Chinese medicine all-rounder language model and its real-world clinical practice. Inf Fusion. 2026;126:103663. https://doi.org/10.1016/j.inffus.2025.103663.

[169]

Zhou XZ, Dong X, Li CH, et al. TCM-FTP: fine-tuning large language models for herbal prescription prediction. 2024 IEEE International Conference on Bioinformatics and Biomedicine. 2024; 4092-4097. https://doi.org/10.1109/BIBM62325.2024.10822451.

[170]

Hua R, Dong X, Wei Y, et al. Lingdan: enhancing encoding of traditional Chinese medicine knowledge for clinical reasoning tasks with large language models. J Am Med Inform Assoc. 2024; 31(9): 2019-2029. https://doi.org/10.1093/jamia/ocae087.

[171]

Tang YC, Gottlieb A. SynPathy: predicting drug synergy through drug-associated pathways using deep learning. Mol Cancer Res. 2022; 20(5): 762-769. https://doi.org/10.1158/1541-7786.MCR-21-0735.

[172]

Ying Z, Bourgeois D, You J, et al. Gnnexplainer: generating explanations for graph neural networks. Adv Neural Inf Process Syst. 2019;32:9240-9251.

[173]

Li Y, Wang JH, Lin F, et al. A methodology for cancer therapeutics by systems pharmacology-based analysis: a case study on breast cancer-related traditional Chinese medicines. PLoS One. 2017; 12(1): e0169363. https://doi.org/10.1371/journal.pone.0169363.

[174]

Zhai Y, Liu L, Zhang F, et al. Network pharmacology: a crucial approach in traditional Chinese medicine research. Chin Med. 2025; 20(1): 8. https://doi.org/10.1186/s13020-024-01056-z.

[175]

Zeng JQ, Jia XB. Quantifying compatibility mechanisms in traditional Chinese medicine with interpretable graph neural networks. J Pharm Anal. 2025; 101342. https://doi.org/10.1016/j.jpha.2025.101342.

[176]

Xu H. Building a new system of TCM syndrome differentiation and treatment of “Formula-Disease-Syndrome”. Chin J Integr Tradit West Med. 2024; 44(12): 1503-1506. https://doi.org/10.13193/j.issn.1673-7717.2019.05.017.

[177]

Liu Q, Liu L, Fan Y. Strategies and approaches on exploring compatibilities of Chinese herbs and prescriptions. Chin Arch Tradit Chin Med. 2019; 37(5): 1092-1095. https://doi.org/10.13193/j.issn.1673-7717.2019.05.017.

[178]

Zheng YX, Wang YY, Wang L, et al. Modern research and thinking on compatibility mechanism of reducing toxicity of traditional Chinese medicine. Chin Tradit Herb Drugs. 2023; 54(2): 386-395. https://doi.org/10.7501/j.issn.2357-2020.0005.

[179]

Steven LCT, Yi GX. Discussion on relevance and studies of prescription compatibility in Chinese medicine. Chin J Integr Med. 2021; 27(10):788-793. https://doi.org/10.1007/s11655-020-3217-1.

[180]

Zhou MM, Hong YL, Lin X, et al. Recent pharmaceutical evidence on the compatibility rationality of traditional Chinese medicine. J Ethnopharmacol. 2017; 206: 363-375. https://doi.org/10.1016/j.jep.2017.06.007.

[181]

Wu WH, Sun HL. On the variation law of the proportion of dosages in prescriptions of treatise on febrile and miscellaneous diseases. Acta Chin Med Pharmacol. 1994;(1): 12-14. https://doi.org/10.19664/j.cnki.1002-2392.1994.01.005.

[182]

Song Z, Chen G, Chen CY. AI empowering traditional Chinese medicine? Chem Sci. 2024; 15(41): 16844-16886. https://doi.org/10.1039/D4SC04107K.

[183]

Yang K, Yu ZC, Su X, et al. PrescDRL: deep reinforcement learning for herbal prescription planning in treatment of chronic diseases. Chin Med. 2024; 19(1): 144. https://doi.org/10.1186/s13020-024-01005-w.

[184]

Yang Q, Huang ZZ, Xu G, et al. Progress in the application of artificial intelligence in traditional Chinese medicine research. Chin Tradit Pat Med. 2024; 46(10): 3529-3532. https://doi.org/10.3969/j.issn.1001-1528.2024.10.058.

[185]

Zhang WJ, Huai Y, Miao ZP, et al. Systems pharmacology for investigation of the mechanisms of action of traditional Chinese medicine in drug discovery. Front Pharmacol. 2019;10: 743. https://doi.org/10.1016/j.drudis.2006.11.008.

[186]

Wang SM, Long SQ, Wu WY. Application of traditional Chinese medicines as personalized therapy in human cancers. Am J Chin Med. 2018; 46(5): 953-970. https://doi.org/10.1142/S0192415X18500507.

[187]

Zhang QR, Kong XJ, Xu HY, et al. Progress of studies on traditional Chinese medicine based on complex network analysis. World J Trad Chin Med. 2017; 3(3): 28-37. https://doi.org/10.15806/j.issn.2311-8571.2016.0045.

[188]

Hu YF, Wang ZL, Ni K, et al. Challenges in traditional Chinese medicine clinical trials: how to balance personalized treatment and standardized research? Therap Clin Risk Manag. 2025; 21:1085-1094. https://doi.org/10.2147/TCRM.S523279.

[189]

Li DN, Hu J, Zhang L, et al. Deep learning and machine intelligence: new computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of traditional Chinese medicine. Eur J Pharmacol. 2022;933:175260. https://doi.org/10.1016/j.ejphar.2022.175260.

[190]

Qu XL, Tian ZW, Cui JM, et al. A review of knowledge graph in traditional Chinese medicine: analysis, construction, application and prospects. CMC-Comput Mat Contin. 2024; 81(3):3583-3616. https://doi.org/10.32604/cmc.2024.055671.

[191]

Wang X, Wang ZY, Zheng JH, et al. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin J Nat Med. 2021; 19(1):1-11. https://doi.org/10.1016/S1875-5364(21)60001-8.

PDF (5052KB)

168

Accesses

0

Citation

Detail

Sections
Recommended

/