Multidrug resistance reversal effect of tenacissoside I through impeding EGFR methylation mediated by PRMT1 inhibition

Donghui Liu , Qian Wang , Ruixue Zhang , Ruixin Su , Jiaxin Zhang , Shanshan Liu , Huiying Li , Zhesheng Chen , Yan Zhang , Dexin Kong , Yuling Qiu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) : 1092 -1103.

PDF (6301KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (9) :1092 -1103. DOI: 10.1016/S1875-5364(25)60956-3
Original article
research-article

Multidrug resistance reversal effect of tenacissoside I through impeding EGFR methylation mediated by PRMT1 inhibition

Author information +
History +
PDF (6301KB)

Abstract

Cancer multidrug resistance (MDR) impairs the therapeutic efficacy of various chemotherapeutics. Novel approaches, particularly the development of MDR reversal agents, are critically needed to address this challenge. This study demonstrates that tenacissoside I (TI), a compound isolated from Marsdenia tenacissima (Roxb.) Wight et Arn, traditionally used in clinical practice as an ethnic medicine for cancer treatment, exhibits significant MDR reversal effects in ABCB1-mediated MDR cancer cells. TI reversed the resistance of SW620/AD300 and KBV200 cells to doxorubicin (DOX) and paclitaxel (PAC) by downregulating ABCB1 expression and reducing ABCB1 drug transport function. Mechanistically, protein arginine methyltransferase 1 (PRMT1), whose expression correlates with poor prognosis and shows positive association with both ABCB1 and EGFR expressions in tumor tissues, was differentially expressed in TI-treated SW620/AD300 cells. SW620/AD300 and KBV200 cells exhibited elevated levels of EGFR asymmetric dimethylarginine (aDMA) and enhanced PRMT1-EGFR interaction compared to their parental cells. Moreover, TI-induced PRMT1 downregulation impaired PRMT1-mediated aDMA of EGFR, PRMT1-EGFR interaction, and EGFR downstream signaling in SW620/AD300 and KBV200 cells. These effects were significantly reversed by PRMT1 overexpression. Additionally, TI demonstrated resistance reversal to PAC in xenograft models without detectable toxicities. This study establishes TI’s MDR reversal effect in ABCB1-mediated MDR human cancer cells through inhibition of PRMT1-mediated aDMA of EGFR, suggesting TI’s potential as an MDR modulator for improving chemotherapy outcomes.

Keywords

Tenacissoside I / Multidrug resistance reversal effect / PRMT1 / Protein methylation / EGFR signaling

Cite this article

Download citation ▾
Donghui Liu, Qian Wang, Ruixue Zhang, Ruixin Su, Jiaxin Zhang, Shanshan Liu, Huiying Li, Zhesheng Chen, Yan Zhang, Dexin Kong, Yuling Qiu. Multidrug resistance reversal effect of tenacissoside I through impeding EGFR methylation mediated by PRMT1 inhibition. Chinese Journal of Natural Medicines, 2025, 23(9): 1092-1103 DOI:10.1016/S1875-5364(25)60956-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H, Ferlay J, Siegel RL, et al.Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin.2021; 71(3):209-249. https://doi.org/10.3322/caac.21660.

[2]

Yang C, Ding Y, Mao Z, et al. Nanoplatform-mediated autophagy regulation and combined anti-tumor therapy for resistant tumors. Int J Nanomed. 2024; 19:917-944. https://doi.org/10.2147/ijn.S445578.

[3]

Shukla S, Chen ZS, Ambudkar SV. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist Updat. 2012; 15(1-2):70-80. https://doi.org/10.1016/j.drup.2012.01.005.

[4]

Szakács G, Paterson JK, Ludwig JA, et al.Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006; 5:219-234. https://doi.org/10.1038/nrd1984.

[5]

Saraswathy M, Gong S. Different strategies to overcome multidrug resistance in cancer. Biotechnol Adv. 2013; 31(8):1397-1407. https://doi.org/10.1016/j.biotechadv.2013.06.004.

[6]

Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002; 2(1):48-58. https://doi.org/10.1038/nrc706.

[7]

Zhang H, Xu H, Jr Ashby CR, et al. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev. 2021; 41(1):525-555. https://doi.org/10.1002/med.21739.

[8]

Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med. 2022;86:101097. https://doi.org/10.1016/j.mam.2022.101097.

[9]

Gao Y, Feng C, Ma J, et al. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol. 2024;221:116048. https://doi.org/10.1016/j.bcp.2024.116048.

[10]

El-Khoueiry AB, Clarke J, Neff T, et al. Phase 1 study of GSK3368715, a type I PRMT inhibitor, in patients with advanced solid tumors. Br J Cancer. 2023; 129(2):309-317. https://doi.org/10.1038/s41416-023-02276-0.

[11]

Shen S, Zhou H, Xiao Z, et al. PRMT1 in human neoplasm: cancer biology and potential therapeutic target. Cell Commun Signal. 2024; 22(1):102. https://doi.org/10.1186/s12964-024-01506-z.

[12]

Hwang JW, Cho Y, Bae GU, et al. Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med. 2021; 53(5):788-808. https://doi.org/10.1038/s12276-021-00613-y.

[13]

Wang H, Huang ZQ, Xia L, et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science. 2001; 293(5531):853-857. https://doi.org/10.1126/science.1060781.

[14]

Liu W, Wang Y, Xia L, et al. Research Progress of Plant-Derived Natural Products against Drug-Resistant Cancer. Nutrients. 2024; 16(6):797. https://doi.org/10.3390/nu16060797.

[15]

Han SY, Zhao W, Sun H, et al. Marsdenia tenacissima extract enhances gefitinib efficacy in non-small cell lung cancer xenografts. Phytomedicine. 2015; 22(5):560-567. https://doi.org/10.1016/j.phymed.2015.03.001.

[16]

Li X, He S, Liang W, et al. Marsdenia tenacissima injection induces the apoptosis of prostate cancer by regulating the AKT/GSK3β/STAT3 signaling axis. Chin J Nat Med. 2023; 21(2):113-126. https://doi.org/10.1016/s1875-5364(23)60389-9.

[17]

Yao S, To KK, Wang YZ, et al. Polyoxypregnane steroids from the stems of Marsdenia tenacissima. J Nat Prod. 2014; 77(9):2044-2053. https://doi.org/10.1021/np500385b.

[18]

Dong J, Qian Y, Zhang W, et al. Tenacissoside H repressed the progression of glioblastoma by inhibiting the PI3K/Akt/mTOR signaling pathway. Eur J Pharmacol. 2024;968:176401. https://doi.org/10.1016/j.ejphar.2024.176401.

[19]

Wang K, Liu W, Xu Q, et al. Tenacissoside G synergistically potentiates inhibitory effects of 5-fluorouracil to human colorectal cancer. Phytomedicine. 2021;86:153553. https://doi.org/10.1016/j.phymed.2021.153553.

[20]

Hu J, Hu Y, Zhang X, et al. Tenacissoside G reverses paclitaxel resistance by inhibiting Src/PTN/P-gp signaling axis activation in ovarian cancer cells. J Nat Med. 2025; 79(3):621-638. https://doi.org/10.1007/s11418-025-01879-6.

[21]

Zhao C, Hao H, Zhao H, et al. Marsdenia tenacissima extract promotes gefitinib accumulation in tumor tissues of lung cancer xenograft mice via inhibiting ABCG2 activity. J Ethnopharmacol. 2020;255:112770. https://doi.org/10.1016/j.jep.2020.112770.

[22]

Zhao C, Han LY, Ren W, et al. Metabolic profiling of tenacigenin B, tenacissoside H and tenacissoside I using UHPLC-ESI-Orbitrap MS/MS. Biomed Chromatogr. 2016; 30(11):1757-1765. https://doi.org/10.1002/bmc.3750.

[23]

Ji N, Li H, Zhang Y, et al. Lansoprazole (LPZ) reverses multidrug resistance (MDR) in cancer through impeding ATP-binding cassette (ABC) transporter-mediated chemotherapeutic drug efflux and lysosomal sequestration. Drug Resist Updat. 2024;76:101100. https://doi.org/10.1016/j.drup.2024.101100.

[24]

Ren Z, Su R, Liu D, et al. Yes-associated protein indispensably mediates hirsutine-induced inhibition on cell growth and Wnt/β-catenin signaling in colorectal cancer. Phytomedicine. 2024;135:156156. https://doi.org/10.1016/j.phymed.2024.156156.

[25]

Peng X, Huang X, Lulu TB, et al. A novel pan-PI3K inhibitor KTC1101 synergizes with anti-PD-1 therapy by targeting tumor suppression and immune activation. Mol Cancer. 2024; 23(1):54. https://doi.org/10.1186/s12943-024-01978-0.

[26]

Peng X, Huang X, Zhang S, et al. Sequential inhibition of PARP and BET as a rational therapeutic strategy for glioblastoma. Adv Sci (Weinh). 2024; 11(30):e2307747. https://doi.org/10.1002/advs.202307747.

[27]

Wu Q, Schapira M, Arrowsmith CH, et al. Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov. 2021; 20(7):509-530. https://doi.org/10.1038/s41573-021-00159-8.

[28]

Liao HW, Hsu JM, Xia W, et al. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response. J Clin Invest. 2015; 125(12):4529-4543. https://doi.org/10.1172/jci82826.

[29]

Hu B, Zou T, Qin W, et al. Inhibition of EGFR overcomes acquired lenvatinib resistance driven by STAT3-ABCB1 signaling in hepatocellular carcinoma. Cancer Res. 2022; 82(20):3845-3857. https://doi.org/10.1158/0008-5472.Can-21-4140.

[30]

Zhu Y, Xia T, Chen DQ, et al. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance. Drug Resist Updat. 2024;72:101016. https://doi.org/10.1016/j.drup.2023.101016.

[31]

Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett. 2016; 380(1):205-215. https://doi.org/10.1016/j.canlet.2015.07.044.

[32]

Wu Q, Yang Z, Nie Y, et al. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett. 2014; 347(2):159-166. https://doi.org/10.1016/j.canlet.2014.03.013.

[33]

Lei Y, Han P, Tian D. Protein arginine methyltransferases and hepatocellular carcinoma: a review. Transl Oncol. 2021; 14(11):101194. https://doi.org/10.1016/j.tranon.2021.101194.

[34]

Liu A, Yu C, Qiu C, et al. PRMT5 methylating SMAD4 activates TGF-β signaling and promotes colorectal cancer metastasis. Oncogene. 2023; 42(19):1572-1584. https://doi.org/10.1038/s41388-023-02674-x.

[35]

Liu LM, Tang Q, Hu X, et al. Arginine methyltransferase PRMT1 regulates p53 activity in breast cancer. Life (Basel). 2021; 11(8):789. https://doi.org/10.3390/life11080789.

[36]

Ge L, Wang H, Xu X, et al. PRMT5 promotes epithelial-mesenchymal transition via EGFR-β-catenin axis in pancreatic cancer cells. J Cell Mol Med. 2020; 24(2):1969-1979. https://doi.org/10.1111/jcmm.14894.

[37]

Wang Z, Li R, Hou N, et al. PRMT5 reduces immunotherapy efficacy in triple-negative breast cancer by methylating KEAP1 and inhibiting ferroptosis. J Immunother Cancer. 2023; 11(6):e006890. https://doi.org/10.1136/jitc-2023-006890.

[38]

Liu J, Bu X, Chu C, et al. PRMT1 mediated methylation of cGAS suppresses anti-tumor immunity. Nat Commun. 2023; 14(1):2806. https://doi.org/10.1038/s41467-023-38443-3.

[39]

Srour N, Villarreal OD, Hardikar S, et al. PRMT7 ablation stimulates anti-tumor immunity and sensitizes melanoma to immune checkpoint blockade. Cell Rep. 2022; 38(13):110582. https://doi.org/10.1016/j.celrep.2022.110582.

[40]

Shi Y, Niu Y, Yuan Y, et al. PRMT3-mediated arginine methylation of IGF2BP1 promotes oxaliplatin resistance in liver cancer. Nat Commun. 2023; 14(1):1932. https://doi.org/10.1038/s41467-023-37542-5.

[41]

Yamamoto T, Hayashida T, Masugi Y, et al. PRMT1 sustains de novo fatty acid synthesis by methylating PHGDH to drive chemoresistance in triple-negative breast cancer. Cancer Res. 2024; 84(7):1065-1083. https://doi.org/10.1158/0008-5472.Can-23-2266.

[42]

Hong XL, Huang CK, Qian H, et al. Positive feedback between arginine methylation of YAP and methionine transporter SLC43A2 drives anticancer drug resistance. Nat Commun. 2025; 16(1):87. https://doi.org/10.1038/s41467-024-55769-8.

[43]

Yao B, Gui T, Zeng X, et al. PRMT1-mediated H4R3me2a recruits SMARCA4 to promote colorectal cancer progression by enhancing EGFR signaling. Genome Med. 2021; 13(1):58. https://doi.org/10.1186/s13073-021-00871-5.

PDF (6301KB)

126

Accesses

0

Citation

Detail

Sections
Recommended

/