Identification of natural product-based drug combination (NPDC) using artificial intelligence

Tianle Niu , Yimiao Zhu , Minjie Mou , Tingting Fu , Hao Yang , Huaicheng Sun , Yuxuan Liu , Feng Zhu , Yang Zhang , Yanxing Liu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (11) : 1377 -1390.

PDF (4840KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (11) :1377 -1390. DOI: 10.1016/S1875-5364(25)60942-3
Review
research-article

Identification of natural product-based drug combination (NPDC) using artificial intelligence

Author information +
History +
PDF (4840KB)

Abstract

Natural product-based drug combinations (NPDCs) present distinctive advantages in treating complex diseases. While high-throughput screening (HTS) and conventional computational methods have partially accelerated synergistic drug combination discovery, their applications remain constrained by experimental data fragmentation, high costs, and extensive combinatorial space. Recent developments in artificial intelligence (AI), encompassing traditional machine learning and deep learning algorithms, have been extensively applied in NPDC identification. Through the integration of multi-source heterogeneous data and autonomous feature extraction, prediction accuracy has markedly improved, offering a robust technical approach for novel NPDC discovery. This review comprehensively examines recent advances in AI-driven NPDC prediction, presents relevant data resources and algorithmic frameworks, and evaluates current limitations and future prospects. AI methodologies are anticipated to substantially expedite NPDC discovery and inform experimental validation.

Keywords

Natural product / Drug combination / Artificial intelligence / Traditional Chinese medicine

Cite this article

Download citation ▾
Tianle Niu, Yimiao Zhu, Minjie Mou, Tingting Fu, Hao Yang, Huaicheng Sun, Yuxuan Liu, Feng Zhu, Yang Zhang, Yanxing Liu. Identification of natural product-based drug combination (NPDC) using artificial intelligence. Chinese Journal of Natural Medicines, 2025, 23(11): 1377-1390 DOI:10.1016/S1875-5364(25)60942-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jaaks P, Coker EA, Vis DJ, et al. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature. 2022; 603(7899):166-173. https://doi.org/10.1038/s41586-022-04437-2.

[2]

Pourmousa M, Jain S, Barnaeva E, et al. AI-driven discovery of synergistic drug combinations against pancreatic cancer. Nat Commun. 2025; 16(1): 4020. https://doi.org/10.1038/s41467-025-56818-6.

[3]

Cheng F, Kovács IA, Barabási AL.Network-based prediction of drug combinations. Nat Commun. 2019; 10(1):1197. https://doi.org/10.1038/s41467-019-09186-x.

[4]

Bashi AC, Coker EA, Bulusu KC, et al. Large-scale pan-cancer cell line screening identifies actionable and effective drug combinations. Cancer Discov. 2024; 14(5):846-865. https://doi.org/10.1158/2159-8290.Cd-23-0388.

[5]

Nair NU, Greninger P, Zhang X, et al. A landscape of response to drug combinations in non-small cell lung cancer. Nat Commun. 2023; 14(1): 3830. https://doi.org/10.1038/s41467-023-39528-9.

[6]

Pelaia G, Vatrella A, Maselli R. The potential of biologics for the treatment of asthma. Nat Rev Drug Discov. 2012; 11(12):958-972. https://doi.org/10.1038/nrd3792.

[7]

Chakradhar S. All in one: researchers create combination drugs for diabetes and obesity. Nat Med. 2016; 22(7):694-696. https://doi.org/10.1038/nm0716-694.

[8]

Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 2017; 14(1):57-66. https://doi.org/10.1038/nrclinonc.2016.96.

[9]

Ianevski A, Giri AK, Gautam P, et al. Prediction of drug combination effects with a minimal set of experiments. Nat Mach Intell. 2019; 1(12):568-577. https://doi.org/10.1038/s42256-019-0122-4.

[10]

Mullowney MW, Duncan KR, Elsayed SS, et al. Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov. 2023; 22(11): 895-916. https://doi.org/10.1038/s41573-023-00774-7.

[11]

Skellam E, Rajendran S, Li L. Combinatorial biosynthesis for the engineering of novel fungal natural products. Commun Chem. 2024; 7(1):89. https://doi.org/10.1038/s42004-024-01172-9.

[12]

Newman DJ, Cragg GM.Natural products as sources of new drugs over the nearly four decades from 01/ 1981 to 09/2019. J Nat Prod.2020; 83(3): 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285.

[13]

Feher M, Schmidt JM. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci. 2003; 43(1):218-227. https://doi.org/10.1021/ci0200467.

[14]

Barnes EC, Kumar R, Davis RA. The use of isolated natural products as scaffolds for the generation of chemically diverse screening libraries for drug discovery. Nat Prod Rep. 2016; 33(3):372-381. https://doi.org/10.1039/c5np00121h.

[15]

Dobson PD, Patel Y, Kell DB. ‘Metabolite-likeness’ as a criterion in the design and selection of pharmaceutical drug libraries. Drug Discov Today. 2009; 14(1-2):31-40. https://doi.org/10.1016/j.drudis.2008.10.011.

[16]

Karageorgis G, Foley DJ, Laraia L, et al. Principle and design of pseudo-natural products. Nat Chem. 2020; 12(3): 227-235. https://doi.org/10.1038/s41557-019-0411-x.

[17]

Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021; 20(3): 200-216. https://doi.org/10.1038/s41573-020-00114-z.

[18]

Begnini F, Poongavanam V, Over B, et al. Mining natural products for macrocycles to drug difficult targets. J Med Chem. 2021; 64(2): 1054-1072. https://doi.org/10.1021/acs.jmedchem.0c01569.

[19]

Wang S, Zhang Y, Yu R, et al. Labeled and label-free target identifications of natural products. J Med Chem. 2024; 67(20): 17980-17996. https://doi.org/10.1021/acs.jmedchem.4c01576.

[20]

Shaaban AE, Ali AR, Ayyad SN, et al. Multi-target directed ligands inspired natural products as an effective approach for the treatment of complex chronic health disorders. Bioorg Chem. 2025; 154(1): 108075. https://doi.org/10.1016/j.bioorg.2024.108075.

[21]

He Y, Wang H, Lin S, et al. Advanced effect of curcumin and resveratrol on mitigating hepatic steatosis in metabolic associated fatty liver disease via the PI3K/AKT/mTOR and HIF-1/VEGF cascade. Biomed Pharmacother. 2023; 165(1): 115279. https://doi.org/10.1016/j.biopha.2023.115279.

[22]

Grigalunas M, Burhop A, Zinken S, et al. Natural product fragment combination to performance-diverse pseudo-natural products. Nat Commun. 2021; 12(1): 1883. https://doi.org/10.1038/s41467-021-22174-4.

[23]

Li D, Hu J, Zhang L, et al. Deep learning and machine intelligence: new computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of Traditional Chinese Medicine. Eur J Pharmacol. 2022; 933(1): 175260. https://doi.org/10.1016/j.ejphar.2022.175260.

[24]

Liu H, Fan Z, Lin J, et al. The recent progress of deep-learning-based in silico prediction of drug combination. Drug Discov Today. 2023; 28(7): 103625. https://doi.org/10.1016/j.drudis.2023.103625.

[25]

Soon WW, Hariharan M, Snyder MP. High-throughput sequencing for biology and medicine. Mol Syst Biol. 2013; 9(1): 640. https://doi.org/10.1038/msb.2012.61.

[26]

Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015; 14(2): 111-129. https://doi.org/10.1038/nrd4510.

[27]

Tosh C, Tec M, White JB, et al. A Bayesian active learning platform for scalable combination drug screens. Nat Commun. 2025; 16(1): 156. https://doi.org/10.1038/s41467-024-55287-7.

[28]

Li T, Shetty S, Kamath A, et al. CancerGPT for few shot drug pair synergy prediction using large pretrained language models. npj Digit Med. 2024; 7(1): 40. https://doi.org/10.1038/s41746-024-01024-9.

[29]

Pang K, Wan YW, Choi WT, et al. Combinatorial therapy discovery using mixed integer linear programming. Bioinformatics. 2014; 30(10): 1456-1463. https://doi.org/10.1093/bioinformatics/btu046.

[30]

Thompson PE, Shortt J. Defeating MYC with drug combinations or dual-targeting drugs. Trends Pharmacol Sci. 2024; 45(6): 490-502. https://doi.org/10.1016/j.tips.2024.04.008.

[31]

Holohan C, Longley DB, et al.Van Schaeybroeck S, Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013; 13(10): 714-726. https://doi.org/10.1038/nrc3599.

[32]

He L, Tang J, Andersson EI, et al. Patient-customized drug combination prediction and testing for t-cell prolymphocytic leukemia patients. Cancer Res. 2018; 78(9): 2407-2418. https://doi.org/10.1158/0008-5472.Can-17-3644.

[33]

Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006; 58(3): 621-681. https://doi.org/10.1124/pr.58.3.10.

[34]

García-Fuente A, Vázquez F, Viéitez JM, et al. CISNE: an accurate description of dose-effect and synergism in combination therapies. Sci Rep. 2018; 8(1): 4964. https://doi.org/10.1038/s41598-018-23321-6.

[35]

Grigalunas M, Brakmann S, Waldmann H. Chemical evolution of natural product structure. J Am Chem Soc. 2022; 144(8): 3314-3329. https://doi.org/10.1021/jacs.1c11270.

[36]

Koch MA, Schuffenhauer A, Scheck M, et al. Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci USA. 2005; 102(48): 17272-17277. https://doi.org/10.1073/pnas.0503647102.

[37]

Shin SH, Oh SM, Yoon Park JH, et al. OptNCMiner: a deep learning approach for the discovery of natural compounds modulating disease-specific multi-targets. BMC Bioinformatics. 2022; 23(1): 218. https://doi.org/10.1186/s12859-022-04752-5.

[38]

Scheepstra M, Nieto L, Hirsch AK, et al. A natural-product switch for a dynamic protein interface. Angew Chem Int Ed Engl. 2014; 53(25): 6443-6448. https://doi.org/10.1002/anie.201403773.

[39]

Bauer A, Brönstrup M. Industrial natural product chemistry for drug discovery and development. Nat Prod Rep. 2014; 31(1):35-60. https://doi.org/10.1039/c3np70058e.

[40]

Li J, Cai Z, Li XW, et al. Natural product-inspired targeted protein degraders: advances and perspectives. J Med Chem. 2022; 65(20):13533-13560. https://doi.org/10.1021/acs.jmedchem.2c01223.

[41]

Zhang W, Shi H, Chen C, et al. Curcumin enhances cisplatin sensitivity of human NSCLC cell lines through influencing Cu-Sp1-CTR1 regulatory loop. Phytomedicine. 2018; 48(1): 51-61. https://doi.org/10.1016/j.phymed.2018.04.058.

[42]

Lin JH, Chen SY, Lu CC, et al. Ursolic acid promotes apoptosis, autophagy, and chemosensitivity in gemcitabine-resistant human pancreatic cancer cells. Phytother Res. 2020; 34(8):2053-2066. https://doi.org/10.1002/ptr.6669.

[43]

Hu X, Zhang ZY, Wu LW, et al. A natural anthraquinone derivative shikonin synergizes with AZD9291 against wtEGFR NSCLC cells through reactive oxygen species-mediated endoplasmic reticulum stress. Phytomedicine. 2020; 68(1): 153189. https://doi.org/10.1016/j.phymed.2020.153189.

[44]

Baptista Moreno Martin AC, Tomasin R, Luna-Dulcey L, et al. [ 10]-Gingerol improves doxorubicin anticancer activity and decreases its side effects in triple negative breast cancer models. Cell Oncol (Dordr). 2020; 43(5): 915-929. https://doi.org/10.1007/s13402-020-00539-z.

[45]

Qu X, Li Q, Zhang X, et al. Amentoflavone protects the hematopoietic system of mice against γ-irradiation. Arch Pharm Res. 2019; 42(11): 1021-1029. https://doi.org/10.1007/s12272-019-01187-0.

[46]

Chen P, Huang HP, Wang Y, et al. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death. J Exp Clin Cancer Res. 2019; 38(1): 254. https://doi.org/10.1186/s13046-019-1234-8.

[47]

Gangwal A, Lavecchia A. Artificial intelligence in natural product drug discovery: current applications and future perspectives. J Med Chem. 2025; 68(4): 3948-3969. https://doi.org/10.1021/acs.jmedchem.4c01257.

[48]

Butler MS, Buss AD. Natural products--the future scaffolds for novel antibiotics? Biochem Pharmacol. 2006; 71(7): 919-929. https://doi.org/10.1016/j.bcp.2005.10.012.

[49]

Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforsch. 1953; 3(6): 285-290.

[50]

Baeder DY, Yu G, Hozé N, et al. Antimicrobial combinations: bliss independence and Loewe additivity derived from mechanistic multi-hit models. Philos Trans R Soc Lon B Biol Sci. 2016; 371(1695): 20150294. https://doi.org/10.1098/rstb.2015.0294.

[51]

Sühnel J. Zero interaction response surfaces, interaction functions and difference response surfaces for combinations of biologically active agents. Arzneimittelforsch. 1992; 42(10): 1251-1258.

[52]

Yadav B, Wennerberg K, Aittokallio T, et al. Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J. 2015; 13(1): 504-513. https://doi.org/10.1016/j.csbj.2015.09.001.

[53]

Lehár J, Zimmermann GR, Krueger AS, et al. Chemical combination effects predict connectivity in biological systems. Mol Syst Biol. 2007; 3(1): 80. https://doi.org/10.1038/msb4100116.

[54]

Berenbaum MC. What is synergy? Pharmacol Rev. 1989; 41(2): 93-141.

[55]

Julkunen H, Cichonska A, Gautam P, et al. Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects. Nat Commun. 2020; 11(1): 6136. https://doi.org/10.1038/s41467-020-19950-z.

[56]

Sorokina M, Steinbeck C. Review on natural products databases: where to find data in 2020. J Cheminform. 2020; 12(1): 20. https://doi.org/10.1186/s13321-020-00424-9.

[57]

Kim S, Chen J, Cheng T, et al.PubChem 2025 update. Nucleic Acids Res.2025; 53(D1): D1516-D1525. https://doi.org/10.1093/nar/gkae1059.

[58]

Zdrazil B, Felix E, Hunter F, et al. The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 2024; 52(D1): D1180-D1192. https://doi.org/10.1093/nar/gkad1004.

[59]

Knox C, Wilson M, Klinger CM, et al. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res. 2024; 52(D1): D1265-D1275. https://doi.org/10.1093/nar/gkad976.

[60]

Zeng X, Zhang P, He W, et al. NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res. 2018; 46(D1): D1217-D1222. https://doi.org/10.1093/nar/gkx1026.

[61]

Lv Q, Chen G, He H, et al. TCMBank: bridges between the largest herbal medicines, chemical ingredients, target proteins, and associated diseases with intelligence text mining. Chem Sci. 2023; 14(39): 10684-10701. https://doi.org/10.1039/d3sc02139d.

[62]

Banerjee P, Erehman J, Gohlke BO, et al. Super Natural II--a database of natural products. Nucleic Acids Res. 2015; 43(D1): D935-D939. https://doi.org/10.1093/nar/gku886.

[63]

Poynton EF, van Santen JA, Pin M, et al. The Natural Products Atlas 3.0:extending the database of microbially derived natural products. Nucleic Acids Res. 2025; 53(D1): D691-D699. https://doi.org/10.1093/nar/gkae1093.

[64]

Sorokina M, Merseburger P, Rajan K, et al. COCONUT online: collection of open natural products database. J Cheminform. 2021; 13(1): 2. https://doi.org/10.1186/s13321-020-00478-9.

[65]

Sun X, Zhang Y, Zhou Y, et al. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Res. 2022; 50(D1): D1324-D1333. https://doi.org/10.1093/nar/gkab913.

[66]

Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1, 000, 000 profiles. Cell. 2017; 171(6): 1437-1452. e17. https://doi.org/10.1016/j.cell.2017.10.049.

[67]

Barretina J, Caponigro G, Stransky N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483(7391): 603-607. https://doi.org/10.1038/nature11003.

[68]

Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019; 569(7757): 503-508. https://doi.org/10.1038/s41586-019-1186-3.

[69]

Li H, Ning S, Ghandi M, et al. The landscape of cancer cell line metabolism. Nat Med. 2019; 25(5): 850-860. https://doi.org/10.1038/s41591-019-0404-8.

[70]

Nusinow DP, Szpyt J, Ghandi M, et al. Quantitative proteomics of the cancer cell line encyclopedia. Cell. 2020; 180(2): 387-402. e16. https://doi.org/10.1016/j.cell.2019.12.023.

[71]

Clough E, Barrett T, Wilhite SE, et al. NCBI GEO: archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Res. 2024; 52(D1): D138-D144. https://doi.org/10.1093/nar/gkad965.

[72]

Moore JE, Purcaro MJ, Pratt HE, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2022; 605(7909): E3. https://doi.org/10.1038/s41586-021-04226-3.

[73]

Milacic M, Beavers D, Conley P, et al. The Reactome pathway knowledgebase 2024. Nucleic Acids Res. 2024; 52(D1): D672-D678. https://doi.org/10.1093/nar/gkad1025.

[74]

Kanehisa M, Furumichi M, Sato Y, et al. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 2025; 53(D1): D672-D677. https://doi.org/10.1093/nar/gkae909.

[75]

Del Toro N, Shrivastava A, Ragueneau E, et al. The IntAct database: efficient access to fine-grained molecular interaction data. Nucleic Acids Res. 2022; 50(D1): D648-D653. https://doi.org/10.1093/nar/gkab1006.

[76]

Oughtred R, Rust J, Chang C, et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021; 30(1): 187-200. https://doi.org/10.1002/pro.3978.

[77]

Szklarczyk D, Nastou K, Koutrouli M, et al. The STRING database in 2025:protein networks with directionality of regulation. Nucleic Acids Res. 2025; 53(D1): D730-D737. https://doi.org/10.1093/nar/gkae1113.

[78]

Mangal M, Sagar P, Singh H, et al. NPACT: naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res. 2013; 41(D1): D1124-D1129. https://doi.org/10.1093/nar/gks1047.

[79]

Fang S, Dong L, Liu L, et al. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021; 49(D1): D1197-D1206. https://doi.org/10.1093/nar/gkaa1063.

[80]

Zhang Y, Li X, Shi Y, et al. ETCM v2.0: an update with comprehensive resource and rich annotations for traditional Chinese medicine. Acta Pharm Sin B. 2023; 13(6): 2559-2571. https://doi.org/10.1016/j.apsb.2023.03.012.

[81]

Diallo BN, Glenister M, Musyoka TM, et al. SANCDB: an update on South African natural compounds and their readily available analogs. J Cheminform. 2021; 13(1): 37. https://doi.org/10.1186/s13321-021-00514-2.

[82]

Ntie-Kang F, Telukunta KK, Döring K, et al. NANPDB: a resource for natural products from northern African sources. J Nat Prod. 2017; 80(7): 2067-2076. https://doi.org/10.1021/acs.jnatprod.7b00283.

[83]

Pilón-Jiménez BA, Saldívar-González FI, Díaz-Eufracio BI, et al. BIOFACQUIM: a Mexican compound database of natural products. Biomolecules. 2019; 9(1): 31. https://doi.org/10.3390/biom9010031.

[84]

Pilon AC, Valli M, Dametto AC, et al. NuBBE(DB): an updated database to uncover chemical and biological information from Brazilian biodiversity. Sci Rep. 2017; 7(1): 7215. https://doi.org/10.1038/s41598-017-07451-x.

[85]

Nguyen-Vo TH, Le T, Pham D, et al. VIETHERB: a database for Vietnamese herbal species. J Chem Inf Model. 2019; 59(1): 1-9. https://doi.org/10.1021/acs.jcim.8b00399.

[86]

Chawana TD, Walsh SR, Stranix-Chibanda L, et al. Pharmacokinetic interaction assessment of an HIV broadly neutralizing monoclonal antibody VRC07-523 LS: a cross-protocol analysis of three phase 1 trials in people without HIV. BMC Immunology. 2025; 26(1): 1-14. https://doi.org/10.1186/s12865-025-00687-7.

[87]

Jeske L, Placzek S, Schomburg I, et al. BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res. 2019; 47(D1): D542-D549. https://doi.org/10.1093/nar/gky1048.

[88]

Zhou Y, Zhang Y, Zhao D, et al. TTD: therapeutic target database describing target druggability information. Nucleic Acids Res. 2024; 52(D1): D1465-D1477. https://doi.org/10.1093/nar/gkad751.

[89]

Mistry J, Chuguransky S, Williams L, et al. Pfam:the protein families database in 2021. Nucleic Acids Res. 2021; 49(D1): D412-D419. https://doi.org/10.1093/nar/gkaa913.

[90]

Yin J, Chen Z, You N, et al. VARIDT 3.0: the phenotypic and regulatory variability of drug transporter. Nucleic Acids Res. 2024; 52(D1): D1490-D1502. https://doi.org/10.1093/nar/gkad818.

[91]

Bairoch A. The Cellosaurus, a cell-line knowledge resource. J Biomol Tech. 2018; 29(2): 25-38. https://doi.org/10.7171/jbt.18-2902-002.

[92]

Saier MH, Reddy VS, Moreno-Hagelsieb G, et al. The transporter classification database (TCDB):2021 update. Nucleic Acids Res. 2021; 49(D1): D461-D467. https://doi.org/10.1093/nar/gkaa1004.

[93]

Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019; 47(D1): D155-D162. https://doi.org/10.1093/nar/gky1141.

[94]

Liu H, Zhang W, Zou B, et al. DrugCombDB: a comprehensive database of drug combinations toward the discovery of combinatorial therapy. Nucleic Acids Res. 2020; 48(D1): D871-D881. https://doi.org/10.1093/nar/gkz1007.

[95]

Holbeck SL, Camalier R, Crowell JA, et al. The National Cancer Institute ALMANAC: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res. 2017; 77(13): 3564-3576. https://doi.org/10.1158/0008-5472.Can-17-0489.

[96]

Liu Y, Wei Q, Yu G, et al. DCDB 2.0:a major update of the drug combination database. Database (Oxford). 2014; 2014(1): bau124. https://doi.org/10.1093/database/bau124.

[97]

Xu P, Zhu X, Clifton DA. Multimodal learning with transformers: a survey. IEEE Trans Pattern Anal Mach Intell. 2023; 45(10): 12113-12132. https://doi.org/10.1109/tpami.2023.3275156.

[98]

Lipkova J, Chen RJ, Chen B, et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell. 2022; 40(10): 1095-1110. https://doi.org/10.1016/j.ccell.2022.09.012.

[99]

Ramachandram D, Taylor GW. Deep multimodal learning: a survey on recent advances and trends. IEEE Signal Proc Mag. 2017; 34(6): 96-108. https://doi.org/10.1109/MSP.2017.2738401.

[100]

Huang SC, Pareek A, Seyyedi S, et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. npj Digit Med. 2020;3: 136. https://doi.org/10.1038/s41746-020-00341-z.

[101]

Baltrušaitis T, Ahuja C, Morency LP. Multimodal machine learning: a survey and taxonomy. IEEE TPAMI. 2019; 41(2): 423-443. https://doi.org/10.1109/TPAMI.2018.2798607.

[102]

Zhang Y, Yuan H, Liu Y, et al. MMGCSyn: explainable synergistic drug combination prediction based on multimodal fusion. FGCS. 2025; 168(1): 107784. https://doi.org/https://doi.org/10.1016/j.future.2025.107784.

[103]

Xue Q, Ni J, Ji C, et al. HGCLsynergy: heterogeneous graph contrastive learning for drug synergy prediction. Proceedings of the 2025 5th International Conference on Bioinformatics and Intelligent Computing. 2025; 94-100.

[104]

Rigatti SJ. Random forest. J Insur Med. 2017; 47(1): 31-39. https://doi.org/10.17849/insm-47-01-31-39.1.

[105]

Smith LA, Cahill JA, Lee JH, et al. Equitable machine learning counteracts ancestral bias in precision medicine. Nat Commun. 2025; 16(1): 2144. https://doi.org/10.1038/s41467-025-57216-8.

[106]

Zhang S, Zhang Y, Ouyang X, et al. Random forest algorithm for predicting postoperative hypotension in oral cancer resection and free flap reconstruction surgery. Sci Rep. 2025; 15(1): 5452. https://doi.org/10.1038/s41598-025-89621-w.

[107]

Menden MP, Wang D, Mason MJ, et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun. 2019; 10(1): 2674. https://doi.org/10.1038/s41467-019-09799-2.

[108]

Gayvert KM, Aly O, Platt J, et al. A computational approach for identifying synergistic drug combinations. PLoS Comput Biol. 2017; 13(1): e1005308. https://doi.org/10.1371/journal.pcbi.1005308.

[109]

Li H, Hu S, Neamati N, et al. TAIJI: approaching experimental replicates-level accuracy for drug synergy prediction. Bioinformatics. 2019; 35(13): 2338-2339. https://doi.org/10.1093/bioinformatics/bty955.

[110]

Sun J, Ni Q, Jiang F, et al. Discovery and validation of traditional Chinese and western medicine combination antirheumatoid arthritis drugs based on machine learning (Random Forest model). Biomed Res Int. 2023; 2023(1): 16. https://doi.org/10.1155/2023/6086388.

[111]

Malic L, Zhang PGY, Plant PJ, et al. A machine learning and centrifugal microfluidics platform for bedside prediction of sepsis. Nat Commun. 2025; 16(1): 4442. https://doi.org/10.1038/s41467-025-59227-x.

[112]

Zhong J, Sun Y, Peng W, et al. XGBFEMF: an XGBoost-based framework for essential protein prediction. IEEE T Nanobiosci. 2018; 17(3): 243-250. https://doi.org/10.1109/tnb.2018.2842219.

[113]

Sheridan RP, Wang WM, Liaw A, et al. Extreme gradient boosting as a method for quantitative structure-activity relationships. J Chem Inf Model. 2016; 56(12): 2353-2360. https://doi.org/10.1021/acs.jcim.6b00591.

[114]

Meng F, Li F, Liu JX, et al. NEXGB: a network embedding framework for anticancer drug combination prediction. Int J Mol Sci. 2022; 23(17): 9838. https://doi.org/10.3390/ijms23179838.

[115]

He L, Bulanova D, Oikkonen J, et al. Network-guided identification of cancer-selective combinatorial therapies in ovarian cancer. Brief Bioinform. 2021; 22(6): 1. https://doi.org/10.1093/bib/bbab272.

[116]

Xu M, Zhao X, Wang J, et al. DFFNDDS: prediction of synergistic drug combinations with dual feature fusion networks. J Cheminform. 2023; 15(1): 33. https://doi.org/10.1186/s13321-023-00690-3.

[117]

Tu H, Liu H, Pan T, et al. Deep empirical neural network for optical phase retrieval over a scattering medium. Nat Commun. 2025; 16(1): 1369. https://doi.org/10.1038/s41467-025-56522-5.

[118]

Li X, Shen B, Feng F, et al. Dual-view jointly learning improves personalized drug synergy prediction. Bioinformatics. 2024; 40(10):10. https://doi.org/10.1093/bioinformatics/btae604.

[119]

Alsherbiny MA, Radwan I, Moustafa N, et al. Trustworthy deep neural network for inferring anticancer synergistic combinations. IEEE J Biomed Health Inform. 2023; 27(4): 1691-1700. https://doi.org/10.1109/jbhi.2021.3126339.

[120]

El Khili MR, Memon SA, Emad A. MARSY: a multitask deep-learning framework for prediction of drug combination synergy scores. Bioinformatics. 2023; 39(4): btad177. https://doi.org/10.1093/bioinformatics/btad177.

[121]

Chen Z, Zhao M, You L, et al. Developing an artificial intelligence method for screening hepatotoxic compounds in traditional Chinese medicine and Western medicine combination. Chin Med. 2022; 17(1): 58. https://doi.org/10.1186/s13020-022-00617-4.

[122]

Chen M, Suzuki A, Thakkar S, et al. DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today. 2016; 21(4): 648-653. https://doi.org/10.1016/j.drudis.2016.02.015.

[123]

Hoofnagle JH, Serrano J, Knoben JE, et al. LiverTox: a website on drug-induced liver injury. Hepatology. 2013; 57(3): 873-874. https://doi.org/10.1002/hep.26175.

[124]

Movahedi F, Coyle JL, Sejdic E. Deep belief networks for electroencephalography: a review of recent contributions and future outlooks. IEEE J Biomed Health Inform. 2018; 22(3): 642-652. https://doi.org/10.1109/jbhi.2017.2727218.

[125]

Arango-Argoty G, Kipkogei E, Stewart R, et al. Pretrained transformers applied to clinical studies improve predictions of treatment efficacy and associated biomarkers. Nat Commun. 2025; 16(1): 2101. https://doi.org/10.1038/s41467-025-57181-2.

[126]

Fernandes AC, Souto M. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. N Engl J Med. 2023; 388(25): 2399-2400. https://doi.org/10.1056/NEJMc2305286.

[127]

Chen L, Fan Z, Chang J, et al. Sequence-based drug design as a concept in computational drug design. Nat Commun. 2023; 14(1): 4217. https://doi.org/10.1038/s41467-023-39856-w.

[128]

Bera P, Mondal J. Accurate prediction of the kinetic sequence of physicochemical states using generative artificial intelligence. Chem Sci. 2025; 16(20): 8735-8751. https://doi.org/10.1039/d5sc00108k.

[129]

Steurer B, Vanhaelen Q, Zhavoronkov A. Multimodal transformers and their applications in drug target discovery for aging and age-related diseases. J Gerontol A Biol Sci Med Sci. 2024; 79(9): glae006. https://doi.org/10.1093/gerona/glae006.

[130]

Krzyzanowski A, Pickett SD, Pogány P. Exploring BERT for reaction yield prediction: evaluating the impact of tokenization, molecular representation, and pretraining data augmentation. J Chem Inf Model. 2025; 65(9): 4381-4402. https://doi.org/10.1021/acs.jcim.5c00359.

[131]

Cheng N, Wang L, Liu Y, et al. HANSynergy: heterogeneous graph attention network for drug synergy prediction. J Chem Inf Model. 2024; 64(10): 4334-4347. https://doi.org/10.1021/acs.jcim.4c00003.

[132]

Hu J, Gao J, Fang X, et al. DTSyn: a dual-transformer-based neural network to predict synergistic drug combinations. Brief Bioinform. 2022; 23(5): bbac302. https://doi.org/10.1093/bib/bbac302.

[133]

Liu T, Chu T, Luo X, et al. Building a unified model for drug synergy analysis powered by large language models. Nat Commun. 2025; 16(1): 4537. https://doi.org/10.1038/s41467-025-59822-y.

[134]

Zhou J, Cui G, Hu S, et al. Graph neural networks: a review of methods and applications. AI Open. 2020; 1(1): 57-81. https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001.

[135]

Therrien F, Sargent EH, Voznyy O. Using GNN property predictors as molecule generators. Nat Commun. 2025; 16(1): 4301. https://doi.org/10.1038/s41467-025-59439-1.

[136]

Wang T, Wang R, Wei L. AttenSyn: an attention-based deep graph neural network for anticancer synergistic drug combination prediction. J Chem Inf Model. 2024; 64(7): 2854-2862. https://doi.org/10.1021/acs.jcim.3c00709.

[137]

Yang F, Zhang S, Pan W, et al. Signaling repurposable drug combinations against COVID-19 by developing the heterogeneous deep herb-graph method. Brief Bioinform. 2022; 23(5): bbac124. https://doi.org/10.1093/bib/bbac124.

[138]

Cao Y, Geddes TA, Yang JYH, et al.Ensemble deep learning in bioinformatics. Nat Mach Intell. 2020; 2(9): 500-508. https://doi.org/10.1038/s42256-020-0217-y.

[139]

Sharma N, Dev J, Mangla M, et al. A heterogeneous ensemble forecasting model for disease prediction. New Gener Comput. 2021; 39(3-4): 701-715. https://doi.org/10.1007/s00354-020-00119-7.

[140]

Ganie SM, Pramanik PKD, Zhao Z. Ensemble learning with explainable AI for improved heart disease prediction based on multiple datasets. Sci Rep. 2025; 15(1): 13912. https://doi.org/10.1038/s41598-025-97547-6.

[141]

Kuncheva LI, Skurichina M, Duin RPW. An experimental study on diversity for bagging and boosting with linear classifiers. Inform Fusion. 2002; 3(4): 245-258. https://doi.org/10.1016/S1566-2535(02)00093-3.

[142]

Zhu X, Hu J, Xiao T, et al. An interpretable stacking ensemble learning framework based on multi-dimensional data for real-time prediction of drug concentration: the example of olanzapine. Front Pharmacol. 2022; 13(1):975855. https://doi.org/10.3389/fphar.2022.975855.

[143]

Chen S, Gao N, Li C, et al. DrugSK: a stacked ensemble learning framework for predicting drug combinations of multiple diseases. J Chem Inf Model. 2024; 64(13): 5317-5327. https://doi.org/10.1021/acs.jcim.4c00296.

[144]

Mehmood A, Kaushik AC, Wei DQ. DDSBC: a Stacking ensemble classifier-based approach for breast cancer drug-pair cell synergy prediction. J Chem Inf Model. 2024; 64(16): 6421-6431. https://doi.org/10.1021/acs.jcim.4c01101.

[145]

Baptista D, Ferreira PG, Rocha M. A systematic evaluation of deep learning methods for the prediction of drug synergy in cancer. PLoS Comput Biol. 2023; 19(3): e1010200. https://doi.org/10.1371/journal.pcbi.1010200.

[146]

Liu Y, Zhang P, Che C, et al. SDDSynergy: learning important molecular substructures for explainable anticancer drug synergy prediction. J Chem Inf Model. 2024; 64(24): 9551-9562. https://doi.org/10.1021/acs.jcim.4c00177.

[147]

Taneja SB, Callahan TJ, Paine MF, et al. Developing a knowledge graph for pharmacokinetic natural product-drug interactions. J Biomed Inform. 2023; 140(1): 104341. https://doi.org/10.1016/j.jbi.2023.104341.

[148]

Wooten DJ, Meyer CT, Lubbock ALR, et al. MuSyC is a consensus framework that unifies multi-drug synergy metrics for combinatorial drug discovery. Nat Commun. 2021; 12(1): 4607. https://doi.org/10.1038/s41467-021-24789-z.

[149]

Huusari R, Wang T, Szedmak S, et al. Scaling up drug combination surface prediction. Brief Bioinform. 2025; 26(2):bbaf099. https://doi.org/10.1093/bib/bbaf099.

[150]

Chen Z, Li Z, Shen X, et al. DualSyn: a dual-level feature interaction method to predict synergistic drug combinations. Expert Syst Appl. 2024; 257(1): 125065. https://doi.org/10.1016/j.eswa.2024.125065.

PDF (4840KB)

97

Accesses

0

Citation

Detail

Sections
Recommended

/