Combining label-free quantitative proteomics and 2D-DIGE to identify the potential targets of Sini Decoction acting on myocardial infarction

Fei Feng , Weiyue Zhang , Yan Cao , Diya Lv , Yifeng Chai , Dandan Guo , Xiaofei Chen

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) : 1016 -1024.

PDF (10964KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) :1016 -1024. DOI: 10.1016/S1875-5364(25)60937-X
Original article
research-article

Combining label-free quantitative proteomics and 2D-DIGE to identify the potential targets of Sini Decoction acting on myocardial infarction

Author information +
History +
PDF (10964KB)

Abstract

Sini Decoction (SNT) is a traditional formula recognized for its efficacy in warming the spleen and stomach and dispersing cold. However, elucidating the mechanism of action of SNT remains challenging due to its complex multiple components. This study utilized a synergistic approach combining two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE)-based drug affinity responsive target stability (DARTS) with label-free quantitative proteomics techniques to identify the direct and indirect protein targets of SNT in myocardial infarction. The analysis identified 590 proteins, with 30 proteins showing significant upregulation and 51 proteins showing downregulation when comparing the SNT group with the model group. Through the integration of 2D-DIGE DARTS with proteomics data and pharmacological assessments, the findings indicate that protein disulfide-isomerase A3 (PDIA3) may serve as a potential protein target through which SNT provides protective effects on myocardial cells during myocardial infarction.

Keywords

Sini Decoction / Myocardial infarction / Drug affinity response target stability / Label-free quantitative proteomics

Cite this article

Download citation ▾
Fei Feng, Weiyue Zhang, Yan Cao, Diya Lv, Yifeng Chai, Dandan Guo, Xiaofei Chen. Combining label-free quantitative proteomics and 2D-DIGE to identify the potential targets of Sini Decoction acting on myocardial infarction. Chinese Journal of Natural Medicines, 2025, 23(8): 1016-1024 DOI:10.1016/S1875-5364(25)60937-X

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tan G, Zhu Z, Jing J, et al. Characterization of constituents in Sini Decoction and rat plasma by high-performance liquid chromatography with diode array detection coupled to time-of-flight mass spectrometry. Biomed Chromatogr. 2011; 25(8):913-924. https://doi.org/10.1002/bmc.1544.

[2]

Chen J, Ding Z.Advances in natural product anti-coronavirus research (2002-2022). Chin Med. 2023; 18(1):13. https://doi.org/10.1186/s13020-023-00715-x.

[3]

Li Y, Lu Y, Nian M, et al. Therapeutic potential and mechanism of Chinese herbal medicines in treating fibrotic liver disease. Chin J Nat Med. 2023; 21(9):643-657. https://doi.org/10.1016/S1875-5364(23)60443-1.

[4]

Wang SM, Ye LF, Wang LH. Traditional Chinese medicine enhances myocardial metabolism during heart failure. Biomed Pharmacother. 2022;146:112538. https://doi.org/10.1016/j.biopha.2021.112538.

[5]

Shu Z, Wu T, Shahen M, et al. System-pharmacology dissection of traditional Chinese herbs Sini Decoction for treatment of cardiovascular diseases. An Acad Bras Cienc. 2019; 91(3):e20180424. https://doi.org/10.1590/0001-3765201920180424.

[6]

Zhang Z, Chen F, Wan J, et al. Potential traditional Chinese medicines with anti-inflammation in the prevention of heart failure following myocardial infarction. Chin Med. 2023; 18(1):28. https://doi.org/10.1186/s13020-023-00732-w.

[7]

Sun S, Chen Q, Ge J, et al. Pharmacokinetic interaction of aconitine, liquiritin and 6-gingerol in a traditional Chinese herbal formula, Sini Decoction. Xenobiotica. 2018; 48(1):45-52. https://doi.org/10.1080/00498254.2017.1278807.

[8]

Ding X, Zhang Y, Pan P, et al. Multiple mitochondria-targeted components screened from Sini Decoction improved cardiac energetics and mitochondrial dysfunction to attenuate doxorubicin-induced cardiomyopathy. Theranostics. 2023; 13(2):510-530. https://doi.org/10.7150/thno.80066.

[9]

Tan G, Zhu Z, Zhang H, et al. Analysis of phenolic and triterpenoid compounds in licorice and rat plasma by high-performance liquid chromatography diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry. Rapid Commun Mass Spectrom. 2010; 24(2):209-218. https://doi.org/10.1002/rcm.4373.

[10]

Gu Y, Fan F, Liu Y, et al. Cell-free protein synthesis system for bioanalysis: advances in methods and applications. Trends Analyt Chem. 2023;161:117015. https://doi.org/10.1016/j.trac.2023.117015.

[11]

Gu Y, Wang R, Chen P, et al. In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography. Acta Pharm Sin B. 2022; 12(9):3682-3693. https://doi.org/10.1016/j.apsb.2022.04.010.

[12]

Chai X, Gu Y, Lv L, et al. Screening of immune cell activators from Astragali Radix using a comprehensive two-dimensional NK-92MI cell membrane chromatography/C18 column/time-of-flight mass spectrometry system. J Pharm Anal. 2022; 12(5):725-732. https://doi.org/10.1016/j.jpha.2022.05.006.

[13]

Chen X, Cao Y, Zhang H, et al. Comparative normal/failing rat myocardium cell membrane chromatographic analysis system for screening specific components that counteract doxorubicin-induced heart failure from Acontium carmichaeli. Anal Chem. 2014; 86(10):4748-4757. https://doi.org/10.1021/ac500287e.

[14]

Chen S, Wu S, Li W, et al. Investigation of the therapeutic effectiveness of active components in Sini Decoction by a comprehensive GC/LC-MS based metabolomics and network pharmacology approaches. Mol Biosyst. 2014; 10(12):3310-3321. https://doi.org/10.1039/C4MB00048J.

[15]

Feng F, Zhang W, Chai Y, et al. Label-free target protein characterization for small molecule drugs: recent advances in methods and applications. J Pharm Biomed Anal. 2023;223:115107. https://doi.org/10.1016/j.jpba.2022.115107.

[16]

Xia D, Liu B, Xu X, et al. Drug target discovery by magnetic nanoparticles coupled mass spectrometry. J Pharm Anal. 2021; 11(1):122-127. https://doi.org/10.1016/j.jpha.2020.02.002.

[17]

Hwang HY, Kim TY, Szász MA, et al. Profiling the protein targets of unmodified bio-active molecules with drug affinity responsive target stability and liquid chromatography/tandem mass spectrometry. Proteomics. 2020; 20(9):e1900325. https://doi.org/10.1002/pmic.201900325.

[18]

Chen S, Jiang H, Cao Y, et al. Drug target identification using network analysis: taking active components in Sini Decoction as an example. Sci Rep. 2016;6:24245. https://doi.org/10.1038/srep24245.

[19]

Severino A, Campioni M, Straino S, et al. Identification of protein disulfide isomerase as a cardiomyocyte survival factor in ischemic cardiomyopathy. J Am Coll Cardiol. 2007; 50(11):1029-1037. https://doi.org/10.1016/j.jacc.2007.06.006.

[20]

Jia C, Wu W, Lu H, et al. Fibrinogen to HDL-cholesterol ratio as a predictor of mortality risk in patients with acute myocardial infarction. Lipids Health Dis. 2024; 23(1):86. https://doi.org/10.1186/s12944-024-02071-7.

[21]

Mannila MN, Lovely RS, Kazmierczak SC, et al. Elevated plasma fibrinogen γ concentration is associated with myocardial infarction: effects of variation in fibrinogen genes and environmental factors. J Thromb Haemost. 2007; 5(4):766-773. https://doi.org/10.1111/j.1538-7836.2007.02406.x.

[22]

Mjelva ØR, Svingen GFT, Pedersen EKR, et al. Fibrinogen and neopterin is associated with future myocardial infarction and total mortality in patients with stable coronary artery disease. Thromb Haemost. 2018; 118(4):778-790. https://doi.org/10.1055/s-0038-1629912.

[23]

Ke J, Zhu C, Zhang Y, et al. Anti-arrhythmic effects of linalool via Cx43 expression in a rat model of myocardial infarction. Front Pharmacol. 2020;11:926. https://doi.org/10.3389/fphar.2020.00926.

[24]

Martins-Marques T, Ribeiro-Rodrigues T, de Jager SC, et al. Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Sci Alliance. 2020; 3(12):e202000821. https://doi.org/10.26508/lsa.202000821.

[25]

Assinder SJ, Stanton JA, Prasad PD. Transgelin: an actin-binding protein and tumour suppressor. Int J Biochem Cell Biol. 2009; 41(3):482-486. https://doi.org/10.1016/j.biocel.2008.02.011.

[26]

Sahasrabuddhe NA, Barbhuiya MA, Bhunia S, et al. Identification of prosaposin and transgelin as potential biomarkers for gallbladder cancer using quantitative proteomics. Biochem Biophys Res Commun. 2014; 446(4):863-869. https://doi.org/10.1016/j.bbrc.2014.03.017.

[27]

Son NH, Ananthakrishnan R, Yu S, et al. Cardiomyocyte aldose reductase causes heart failure and impairs recovery from ischemia. PLoS One. 2012; 7(9):e46549. https://doi.org/10.1371/journal.pone.0046549.

[28]

Wang K, Li H, Chen R, et al. Combination of CALR and PDIA3 is a potential prognostic biomarker for non-small cell lung cancer. Oncotarget. 2017; 8(57):96945-96957. https://doi.org/10.18632/oncotarget.18547.

[29]

Chichiarelli S, Altieri F, Paglia G, et al. ERp57/PDIA3: new insight. Cell Mol Biol Lett. 2022; 27(1):12. https://doi.org/10.1186/s11658-022-00315-x.

[30]

Sakai J, Ishikawa H, Kojima S, et al. Proteomic analysis of rat heart in ischemia and ischemia-reperfusion using fluorescence two-dimensional difference gel electrophoresis. Proteomics. 2003; 3(7):1318-1324. https://doi.org/10.1002/pmic.200300432.

[31]

Tian F, Zhou X, Wikström J, et al. Protein disulfide isomerase increases in myocardial endothelial cells in mice exposed to chronic hypoxia: a stimulatory role in angiogenesis. Am J Physiol Heart Circ Physiol. 2009; 297(3):H1078-H1086. https://doi.org/10.1152/ajpheart.00937.2008.

[32]

Toldo S, Boccellino M, Rinaldi B, et al. Altered oxido-reductive state in the diabetic heart: loss of cardioprotection due to protein disulfide isomerase. Mol Med. 2011; 17(9-10):1012-1021. https://doi.org/10.2119/molmed.2011.00100.

[33]

Toldo S, Severino A, Abbate A, et al. The role of PDI as a survival factor in cardiomyocyte ischemia. Methods Enzymol. 2011; 489:47-65. https://doi.org/10.1016/B978-0-12-385116-1.00003-0.

[34]

Xiong B, Jha V, Min JK, et al. Protein disulfide isomerase in cardiovascular disease. Exp Mol Med. 2020; 52(3):390-399. https://doi.org/10.1038/s12276-020-0401-5.

[35]

Cho J. Protein disulfide isomerase in thrombosis and vascular inflammation. J Thromb Haemost. 2013; 11(12):2084-2091. https://doi.org/10.1111/jth.12413.

[36]

Aslam B, Basit M, Nisar MA, et al.Proteomics: technologies and their applications. J Chromatogr Sci. 2017; 55(2):182-196. https://doi.org/10.1093/chromsci/bmw167.

[37]

Kaur U, Meng H, Lui F, et al. Proteome-wide structural biology: an emerging field for the structural analysis of proteins on the proteomic scale. J Proteome Res. 2018; 17(11):3614-3627. https://doi.org/10.1021/acs.jproteome.8b00341.

[38]

Lomenick B, Hao R, Jonai N, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci U S A. 2009; 106(51):21984-21989. https://doi.org/10.1073/pnas.0910040106.

[39]

Lomenick B, Olsen RW, Huang J. Identification of direct protein targets of small molecules. ACS Chem Biol. 2011; 6(1):34-46. https://doi.org/10.1021/cb100294v.

[40]

Gong F, Peng X, Sang Y, et al. Dichloroacetate induces protective autophagy in LoVo cells: involvement of cathepsin D/thioredoxin-like protein 1 and Akt-mTOR-mediated signaling. Cell Death Dis. 2013; 4(11):e913. https://doi.org/10.1038/cddis.2013.438.

[41]

Pai MY, Lomenick B, Hwang H, et al. Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods Mol Biol. 2015; 1263:287-298. https://doi.org/10.1007/978-1-4939-2269-7_22.

[42]

Dal Piaz F, Vera Saltos MB, Franceschelli S, et al. Drug affinity responsive target stability (DARTS) identifies laurifolioside as a new clathrin heavy chain modulator. J Nat Prod. 2016; 79(10):2681-2692. https://doi.org/10.1021/acs.jnatprod.6b00627.

[43]

Ren YS, Li HL, Piao XH, et al. Drug affinity responsive target stability (DARTS) accelerated small molecules target discovery: principles and application. Biochem Pharmacol. 2021;194:114798. https://doi.org/10.1016/j.bcp.2021.114798.

[44]

Kim D, Hwang HY, Kim JY, et al. FK506, an immunosuppressive drug, induces autophagy by binding to the V-ATPase catalytic subunit A in neuronal cells. J Proteome Res. 2017; 16(1):55-64. https://doi.org/10.1021/acs.jproteome.6b00638.

[45]

Gotsbacher MP, Cho SM, Kim NH, et al. Reverse chemical proteomics identifies an unanticipated human target of the antimalarial artesunate. ACS Chem Biol. 2019; 14(4):636-643. https://doi.org/10.1021/acschembio.8b01004.

[46]

Cho SM, Lee HK, Liu Q, et al. A guanidine-based synthetic compound suppresses angiogenesis via inhibition of acid ceramidase. ACS Chem Biol. 2019; 14(1):11-19. https://doi.org/10.1021/acschembio.8b00558.

[47]

Jia D, Liu C, Zhu Z, et al. Novel transketolase inhibitor oroxylin A suppresses the non-oxidative pentose phosphate pathway and hepatocellular carcinoma tumour growth in mice and patient-derived organoids. Clin Transl Med. 2022; 12(11):e1095. https://doi.org/10.1002/ctm2.1095.

PDF (10964KB)

55

Accesses

0

Citation

Detail

Sections
Recommended

/