Diketopiperazines with anti-skin inflammation from marine-derived endophytic fungus Aspergillus sp. and configurational reassignment of aspertryptanthrins

Jin Yang , Xianmei Xiong , Lizhi Gong , Fengyu Gan , Hanling Shi , Bin Zhu , Haizhen Wu , Xiujuan Xin , Lingyi Kong , Faliang An

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) : 980 -989.

PDF (10534KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) :980 -989. DOI: 10.1016/S1875-5364(25)60933-2
Original article
research-article

Diketopiperazines with anti-skin inflammation from marine-derived endophytic fungus Aspergillus sp. and configurational reassignment of aspertryptanthrins

Author information +
History +
PDF (10534KB)

Abstract

Two novel diketopiperazines (1 and 5), along with ten known compounds (2−4, 6−12) demonstrating significant skin inflammation inhibition, were isolated from a marine-derived fungus identified as Aspergillus sp. FAZW0001. The structural elucidation and configurational reassessments of compounds 1−5 were established through comprehensive spectral analyses, with their absolute configurations determined via single crystal X-ray diffraction using Cu Kα radiation, Marfey’s method, and comparison between experimental and calculated electronic circular dichroism (ECD) spectra. Compounds 1, 2, and 8 exhibited significant anti-inflammatory activities in Propionibacterium acnes (P. acnes)-induced human monocyte cell lines. Compound 8 demonstrated the ability to down-regulate interleukin-1β (IL-1β) expression by inhibiting Toll-like receptor 2 (TLR2) expression and modulating the activation of myeloid differentiation factor 88 (MyD88), mitogen-activated protein kinase (MAPK), and nuclear factor κB (NF-κB) signaling pathways, thus reducing the cellular inflammatory response induced by P. acnes. Additionally, compound 8 showed the capacity to suppress mitochondrial reactive oxygen species (ROS) production and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation, thereby reducing IL-1β maturation and secretion. A three-dimensional quantitative structure-activity relationships (3D-QSAR) model was applied to compounds 5−12 to analyze their anti-inflammatory structure-activity relationships.

Keywords

Diketopiperazines / Aspergillus sp. / Configurational reassignment / Anti-skin inflammation

Cite this article

Download citation ▾
Jin Yang, Xianmei Xiong, Lizhi Gong, Fengyu Gan, Hanling Shi, Bin Zhu, Haizhen Wu, Xiujuan Xin, Lingyi Kong, Faliang An. Diketopiperazines with anti-skin inflammation from marine-derived endophytic fungus Aspergillus sp. and configurational reassignment of aspertryptanthrins. Chinese Journal of Natural Medicines, 2025, 23(8): 980-989 DOI:10.1016/S1875-5364(25)60933-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Heng AHS, Chew FT. Systematic review of the epidemiology of acne vulgaris. Sci Rep. 2020; 10(1):5754. https://doi.org/10.1038/s41598-020-62715-3.

[2]

Singam V, Rastogi S, Patel KR, et al. The mental health burden in acne vulgaris and rosacea: an analysis of the US national inpatient sample. Clin Exp Dermatol. 2019; 44(7):766-772. https://doi.org/10.1111/ced.13919.

[3]

Kanwar IL, Haider T, Kumari A, et al. Models for acne: a comprehensive study. Drug Discov Ther. 2018; 12(6):329-340. https://doi.org/10.5582/ddt.2018.01079.

[4]

Kircik L. Advances in the understanding of the pathogenesis of inflammatory acne. J Drugs Dermatol. 2016; 15(1):s7-s10.

[5]

Contassot E, French LE. New insights into acne pathogenesis: Propionibacterium acnes activates the inflammasome. J Invest Dermatol. 2014; 134(2):310-313. https://doi.org/10.1038/jid.2013.505.

[6]

Mohsin N, Hernandez LE, Martin MR, et al. Acne treatment review and future perspectives. Dermatol Ther. 2022; 35(9):e15719. https://doi.org/10.1111/dth.15719.

[7]

Luo Z, Yin F, Wang XB, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024, 22(3): 195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[8]

Hong Q, Guo MM, Yang J, et al. Four previously undescribed diketopiperazines from marine fungus Aspergillus puniceus FAHY0085 and their effects on liver X receptor α. Phytochemistry. 2023;214:113816. https://doi.org/10.1016/j.phytochem.2023.113816.

[9]

Guo JC, Yang J, Wang P, et al. Anti-vibriosis bioactive molecules from Arctic Penicillium sp. Z2230. Bioresour Bioprocess. 2023; 10(1):11. https://doi.org/10.1186/s40643-023-00628-5.

[10]

Ding Y, Jiang Y, Xu SJ, et al. Perpyrrospirone A, an unprecedented hirsutellone peroxide from the marine-derived Penicillium citrinum. Chin Chem Lett. 2023; 34(2):107562. https://doi.org/10.1016/j.cclet.2022.05.076.

[11]

Yang J, Gong LZ, Guo MM, et al. Bioactive indole diketopiperazine alkaloids from the marine endophytic fungus Aspergillus sp. YJ191021. Mar Drugs. 2021; 19(3):157. https://doi.org/10.3390/md19030157.

[12]

He WW, Xu YC, Fu P, et al. Cytotoxic indolyl diketopiperazines from the Aspergillus sp. GZWMJZ-258, endophytic with the medicinal and edible plant Garcinia multiflora. J Agric Food Chem. 2019; 67(38):10660-10666. https://doi.org/10.1021/acs.jafc.9b04254.

[13]

Lhamo S, Wang XB, Li TX, et al. Three unusual indole diketopiperazine alkaloids from a terrestrial-derived endophytic fungus, Aspergillus sp. Tetrahedron Lett. 2015; 56(21):2823-2826. https://doi.org/10.1016/j.tetlet.2015.04.058.

[14]

Kato H, Yoshida T, Tokue T, et al. Notoamides A-D: prenylated indole alkaloids isolated from a marine-derived fungus, Aspergillus sp. Angew Chem Int Ed. 2007; 46(13):2254-2256. https://doi.org/10.1002/anie.200604381.

[15]

Afiyatullov SS, Zhuravleva OI, Antonov AS, et al. Prenylated indole alkaloids from co-culture of marine-derived fungi Aspergillus sulphureus and Isaria felina. J Antibiot. 2018; 71(10):846-853. https://doi.org/10.1038/s41429-018-0072-9.

[16]

Whyte AC, Gloer JB, Wicklow DT, et al. Sclerotiamide: a new member of the paraherquamide class with potent antiinsectan activity from the sclerotia of Aspergillus sclerotiorum. J Nat Prod. 1996; 59(11):1093-1095. https://doi.org/10.1021/np960607m.

[17]

Tsukamoto S, Kato H, Samizo M, et al. Notoamides F-K, prenylated indole alkaloids isolated from a marine-derived Aspergillus sp. J Nat Prod. 2008; 71(12):2064-2067. https://doi.org/10.1021/np800471y.

[18]

Tsukamoto S, Umaoka H, Yoshikawa K, et al. Notoamide O, a structurally unprecedented prenylated indole alkaloid, and notoamides P-R from a marine-derived fungus, Aspergillus sp. J Nat Prod. 2010; 73(8):1438-1440. https://doi.org/10.1021/np1002498.

[19]

Sugimoto K, Sadahiro Y, Kagiyama I, et al.Isolation of amoenamide A and five antipodal prenylated alkaloids from Aspergillus amoenus NRRL 35600. Tetrahedron Lett. 2017; 58(29):2797-2800. https://doi.org/10.1016/j.tetlet.2017.05.057.

[20]

Pretre V, Papadopoulos D, Regard J, et al. Interleukin-1 (IL-1) and the inflammasome in cancer. Cytokine. 2022;153:155850. https://doi.org/10.1016/j.cyto.2022.155850.

[21]

Kim J. Review of the innate immune response in acne vulgaris: activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatol. 2005; 211(3):193-198. https://doi.org/10.1159/000087011.

[22]

Beylot C, Auffret N, Poli F, et al. Propionibacterium acnes: an update on its role in the pathogenesis of acne. J Eur Acad Dermatol Venereol. 2014; 28(3):271-278. https://doi.org/10.1111/jdv.12224.

[23]

Gambero M, Teixeira D, Butin L, et al. Propionibacterium acnes induces an adjuvant effect in B-1 cells and affects their phagocyte differentiation via a TLR2-mediated mechanism. Immunobiology. 2016; 221(9):1001-1011. https://doi.org/10.1016/j.imbio.2016.03.003.

[24]

Chiu A, Chon SY, Kimball AB. The response of skin disease to stress: changes in the severity of acne vulgaris as affected by examination stress. Arch Dermatol. 2003; 139(7):897-900. https://doi.org/10.1001/archderm.139.7.897.

[25]

Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020; 180(6):1044-1066. https://doi.org/10.1016/j.cell.2020.02.041.

[26]

Chang L, Karin M.Mammalian MAP kinase signalling cascades. Nature. 2001; 410(6824):37-40. https://doi.org/10.1038/35065000.

[27]

Barnabei L, Laplantine E, Mbongo W, et al. NF-κB: at the borders of autoimmunity and inflammation. Front Immunol. 2021;12:716469. https://doi.org/10.3389/fimmu.2021.716469.

[28]

Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009; 183(2):787-791. https://doi.org/10.4049/jimmunol.0901363.

[29]

Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019; 20(13):3328. https://doi.org/10.3390/ijms20133328.

[30]

Zhou RB, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011; 469(7329):221-225. https://doi.org/10.1038/nature09663.

[31]

Wang YW, Guo YF, Qiang SJ, et al. 3D-QSAR, molecular docking, and MD simulations of anthraquinone derivatives as PGAM1 inhibitors. Front Pharmacol. 2021;12:764351. https://doi.org/10.3389/fphar.2021.764351.

[32]

Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc. 1988; 110(18):5959-5967. https://doi.org/10.1021/ja00226a005.

[33]

Guo M, An F, Yu H, et al. Comparative effects of schisandrin A, B, and C on Propionibacterium acnes-induced, NLRP3 inflammasome activation-mediated IL-1β secretion and pyroptosis. Biomed Pharmacother. 2017; 96:129-136. https://doi.org/10.1016/j.biopha.2017.09.097.

PDF (10534KB)

91

Accesses

0

Citation

Detail

Sections
Recommended

/