Dimeric sesquiterpenoids with anti-inflammatory activities from Inula britannica

Juan Zhang , Jiankun Yan , Hongjun Dong , Rui Zhang , Jing Chang , Yanli Feng , Xinrong Xu , Wei Li , Feng Qiu , Chengpeng Sun

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) : 961 -971.

PDF (10426KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) :961 -971. DOI: 10.1016/S1875-5364(25)60931-9
Original article
research-article

Dimeric sesquiterpenoids with anti-inflammatory activities from Inula britannica

Author information +
History +
PDF (10426KB)

Abstract

In continuation of research aimed at identifying anti-inflammatory agents from natural sesquiterpenoids, an activity-guided fractionation approach utilizing lipopolysaccharide (LPS)-mediated RAW264.7 cells was employed to investigate chemical constituents from Inula Britannica (I. britannica). Seven novel sesquiterpenoid dimers inulabritanoids A−G (1−7) and two novel sesquiterpenoid monomers inulabritanoids H (8) and I (9) were isolated from I. britannica together with eighteen known compounds (10−27). The structural elucidation was accomplished through comprehensive analysis of 1D and 2D nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), and electronic circular dichroism (ECD) spectra, complemented by quantum chemical calculations. Compounds 1, 2, 12, 16, 19, and 26 demonstrated inhibitory effects on NO production, with IC50 values of 3.65, 5.48, 3.29, 6.91, 3.12, and 5.67 μmol·L−1, respectively. Mechanistic studies revealed that compound 1 inhibited IκB kinase β (IKKβ) phosphorylation, thereby blocking nuclear factor κB (NF-κB) nuclear translocation, and activated the kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signal pathway, leading to decreased expression of NADPH oxidase 2 (NOX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), IL-1β, and IL-1α and increased expression of NAD(P)H: quinone oxidoreductase 1 (NQO-1) and heme oxygenase-1 (HO-1), thus exhibiting anti-inflammatory effects in vitro. These results indicate that dimeric sesquiterpenoids may serve as promising candidates for anti-inflammatory drug development.

Keywords

Inula britannica / Sesquiterpenoid dimers / Anti-inflammatory effects / Mechanism / Keap1-Nrf2

Cite this article

Download citation ▾
Juan Zhang, Jiankun Yan, Hongjun Dong, Rui Zhang, Jing Chang, Yanli Feng, Xinrong Xu, Wei Li, Feng Qiu, Chengpeng Sun. Dimeric sesquiterpenoids with anti-inflammatory activities from Inula britannica. Chinese Journal of Natural Medicines, 2025, 23(8): 961-971 DOI:10.1016/S1875-5364(25)60931-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun CP, Jia ZL, Huo XK, et al. Medicinal Inula species: phytochemistry, biosynthesis, and bioactivities. Am J Chin Med. 2021; 49(2):315-358. https://doi.org/10.1142/S0192415X21500166.

[2]

Zhao WY, Yan JJ, Zhang M, et al. Natural soluble epoxide hydrolase inhibitors from Inula britanica and their potential interactions with soluble epoxide hydrolase: insight from inhibition kinetics and molecular dynamics. Chem Biol Interact. 2021;345:109571. https://doi.org/10.1016/j.cbi.2021.109571.

[3]

Yang L, Wang X, Hou A, et al. A review of the botany, traditional uses, phytochemistry, and pharmacology of the Flos Inulae. J Ethnopharmacol. 2021;276:114125. https://doi.org/10.1016/j.jep.2021.114125.

[4]

The Pharmacopoeia of the People’s Republic of China. Beijing: The Medicine Science and echnology Press of China, 2020.

[5]

Hong CR, Lee EH, Jung YH, et al. Development and characterization of Inula britannica extract-loaded liposomes: potential as anti-inflammatory functional food ingredients. Antioxidants (Basel). 2023; 12(8):1636. https://doi.org/10.3390/antiox12081636.

[6]

Lee NK, Jeewanthi RK, Park EH, et al. Short communication: physicochemical and antioxidant properties of cheddar-type cheese fortified with Inula britannica extract. J Dairy Sci. 2016; 99(1):83-88. https://doi.org/10.3168/jds.2015-9935.

[7]

Bae WY, Kim HY, Kim KT, et al. Inhibitory effects of Inula britannica extract fermented by Lactobacillus plantarum KCCM 11613P on coagulase activity and growth of Staphylococcus aureus including methicillin-resistant strains. J Food Biochem. 2019; 43(4):e12785. https://doi.org/10.1111/jfbc.12785.

[8]

Zheng S, Li L, Li N, et al. 1,6-O,O-Diacetylbritannilactone from Inula britannica induces anti-tumor effect on oral squamous cell carcinoma via miR-1247-3p/LXRalpha/ABCA1 signaling. Onco Targets Ther. 2020; 13:11097-11109. https://doi.org/10.2147/OTT.S263014.

[9]

Zhang C, Song YG, Sun XY, et al. Photoredox-catalyzed reaction as a powerful tool for rapid natural product gem-dimethylation modification: discovery of potent anti-cancer agents with improved druggability. Acta Mater Med. 2023; 2:400-408. https://doi.org/10.15212/AMM-2023-0032.

[10]

Zhang J, Liu J, Liu JW, et al. Targeting Keap1 with Inulae Herba activated the Nrf2 receptor to alleviate LPS-mediated acute lung injury. J Ethnopharmacol. 2024; 319(Pt 3):117358. https://doi.org/10.1016/j.jep.2023.117358.

[11]

Zhang J, Zhang M, Zhang WH, et al. Total flavonoids of Inula japonica alleviated the inflammatory response and oxidative stress in LPS-induced acute lung injury via inhibiting the sEH activity: insights from lipid metabolomics. Phytomedicine. 2022;107:154380. https://doi.org/10.1016/j.phymed.2022.154380.

[12]

Zhang J, Zhang M, Zhang WH, et al. Total terpenoids of Inula japonica activated the Nrf2 receptor to alleviate the inflammation and oxidative stress in LPS-induced acute lung injury. Phytomedicine. 2022;107:154377. https://doi.org/10.1016/j.phymed.2022.154377.

[13]

Zhang M, Zhang J, Zhu QM, et al. Inula japonica ameliorated the inflammation and oxidative stress in LPS-induced acute lung injury through the MAPK/NF-kappaB and Keap1/Nrf2 signalling pathways. J Pharm Pharmacol. 2023; 75(2):287-299. https://doi.org/10.1093/jpp/rgac084.

[14]

Guo C, Geng HJ, Wang WJ, et al. Dimerized sesquiterpenoid [4 + 2] adducts with ferroptosis-promoting activity from Inula britannica Linn Phytochemistry. 2024;218:113951. https://doi.org/10.1016/j.phytochem.2023.113951.

[15]

Tang JJ, Guo C, Peng XN, et al. Chemical characterization and multifunctional neuroprotective effects of sesquiterpenoid-enriched Inula britannica flowers extract. Bioorg Chem. 2021;116:105389. https://doi.org/10.1016/j.bioorg.2021.105389.

[16]

Cai YS, Wu Z, Wang JR, et al. Spiroalanfurantones A-D, four eudesmanolide-furan sesquiterpene adducts with a pentacyclic 6/6/5/5/5 skeleton from Inula helenium. Org Lett. 2019; 21(23):9478-9482. https://doi.org/10.1021/acs.orglett.9b03676.

[17]

Jin Q, Lee JW, Jang H, et al. Dimeric- and trimeric sesquiterpenes from the flower of Inula japonica. Phytochemistry. 2018; 155:107-113. https://doi.org/10.1016/j.phytochem.2018.07.008.

[18]

Lee IS, Lee YR, Sim JH, et al.The effects of 1-O-acetylbritannilactone isolated from Inula britannica flowers on human neutrophil elastase and inflammation of RAW 264.7 cells and Zebrafish Larvae. Molecules. 2023; 28(11):4320. https://doi.org/10.3390/molecules28114320.

[19]

Hong JY, Kim H, Lee J, et al. Neurotherapeutic effect of Inula britannica var. chinensis against H2O2-induced oxidative stress and mitochondrial dysfunction in cortical neurons. Antioxidants (Basel). 2021; 10(3):375. https://doi.org/10.3390/antiox10030375.

[20]

Zhang J, Yang FY, Zhu QM, et al. Inhibition effect of 1-acetoxy-6α-(2-methylbutyryl)eriolanolide toward soluble epoxide hydrolase: multispectral analysis, molecular dynamics simulation, biochemical, and in vitro cell-based studies. Int J Biol Macromol. 2023;235:123911. https://doi.org/10.1016/j.ijbiomac.2023.123911.

[21]

Zhang J, Zhang M, Huo XK, et al. Macrophage inactivation by small molecule wedelolactone via targeting sEH for the treatment of LPS-induced acute lung injury. ACS Cent Sci. 2023; 9(3):440-456. https://doi.org/10.1021/acscentsci.2c01424.

[22]

Zhang J, Zhang M, Zhu QM, et al. Allosteric regulation of Keap1 by 8β-hydroxy-α-cyclocostunolide for the treatment of acute lung injury. Acta Pharm Sin B. 2024; 9:4174-4178. https://doi.org/10.1016/j.apsb.2024.06.025.

[23]

Jin HZ, Lee D, Lee JH, et al. New sesquiterpene dimers from Inula britannica inhibit NF-κB activation and NO and TNF-α production in LPS-stimulated RAW264.7 cells. Planta Med. 2006; 72(1):40-45. https://doi.org/10.1055/s-2005-873189.

[24]

Wu RF, Wang WQ, Zhou BD, et al. Anti-inflammatory sesquiterpene dimers and diterpenes from the aerial part of Inula japonica. J Asian Nat Prod Res. 2022; 24(4):328-335. https://doi.org/10.1080/10286020.2021.1923012.

[25]

Qin JJ, Jin HZ, Fu JJ, et al. Japonicones A-D, bioactive dimeric sesquiterpenes from Inula japonica Thunb. Bioorg Med Chem Lett. 2009; 19(3):710-713. https://doi.org/10.1016/j.bmcl.2008.12.043.

[26]

Xu XY, Sun P, Guo DA, et al. Cytotoxic sesquiterpene lactone dimers isolated from Inula japonica. Fitoterapia. 2015; 101:218-223. https://doi.org/10.1016/j.fitote.2015.01.011.

[27]

Dong S, Tang JJ, Zhang CC, et al.Semisynthesis and in vitro cytotoxic evaluation of new analogues of 1-O-acetylbritannilactone, a sesquiterpene from Inula britannica. Eur J Med Chem. 2014; 80:71-82. https://doi.org/10.1016/j.ejmech.2014.04.028.

[28]

Qin JJ, Jin HZ, Zhu JX, et al. New sesquiterpenes from Inula japonica Thunb. with their inhibitory activities against LPS-induced NO production in RAW264.7 macrophages. Tetrahedron. 2010; 66(1):9379-9388. https://doi.org/10.1016/j.tet.2010.09.091.

[29]

Yang C, Wang CM, Jia ZJ. Sesquiterpenes and other constituents from the aerial parts of Inula japonica. Planta Med. 2003; 69(7):662-666. https://doi.org/10.1055/s-2003-41123.

[30]

Wu XD, Ding LF, Tu WC, et al. Bioactive sesquiterpenoids from the flowers of Inula japonica. Phytochemistry. 2016; 129:68-76. https://doi.org/10.1016/j.phytochem.2016.07.008.

[31]

Locksley HD, Fayez MBE, Radwan AS, et al. Constituents of local plants XXV, constitution of the antispasmodic principle of Cymbopogon proximus. Planta Med. 1982;46:20-22.

[32]

Park EJ, Kim J. Cytotoxic sesquiterpene lactones from Inula britannica. Planta Med. 1998; 64(8):752-754. https://doi.org/10.1055/s-2006-957573.

[33]

Cardona ML, Fernández I, García B, et al. Revision of the structure of an eudesmanolide isolated from Lasiolaena santosii. J Nat Prod. 1990; 53:1042-1045. https://doi.org/10.1021/np50070a051.

[34]

Eiroa JL, Triana J, Pérez FJ, et al. Secondary metabolites from two Hispaniola Ageratina species and their cytotoxic activity. Med Chem Res. 2018; 27:1792-1799. https://doi.org/10.1007/s00044-018-2192-y.

[35]

Sun CP, Zhou JJ, Yu ZL, et al. Kurarinone alleviated Parkinson’s disease via stabilization of epoxyeicosatrienoic acids in animal model. Proc Natl Acad Sci U S A. 2022; 119(9):e2118818119. https://doi.org/10.1073/pnas.2118818119.

[36]

Zhang J, Luan ZL, Huo XK, et al. Direct targeting of sEH with alisol B alleviated the apoptosis, inflammation, and oxidative stress in cisplatin-induced acute kidney injury. Int J Biol Sci. 2023; 19(1):294-310. https://doi.org/10.7150/ijbs.78097.

[37]

Zhang J, Zhang WH, Morisseau C, et al. Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase attenuated particulate matter 2.5 exposure mediated lung injury. J Hazard Mater. 2023;458:131890. https://doi.org/10.1016/j.jhazmat.2023.131890.

[38]

Yang L, Xu HH, Hong Q, et al. Crocus sativus L. produces anti-inflammatory effects and regulates NLRP3-NF-κB pathway. Acup Herb Med. 2024; 4(3):375-385. https://doi.org/10.1097/HM9.0000000000000088.

[39]

Yang M, Oppong MB, Di J, et al. Steroidal saponins with anti-inflammatory activity from Tribulus terrestris L. Acup Herb Med. 2022; 2:41-48. https://doi.org/10.1097/HM9.0000000000000026.

[40]

Zhang J, Zhang R, Li W, et al. IkappaB kinase beta (IKKβ): structure, transduction mechanism, biological function, and discovery of its inhibitors. Int J Biol Sci. 2023; 19(13):4181-4203. https://doi.org/10.7150/ijbs.85158.

[41]

Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 2016; 8(3):227-241. https://doi.org/10.1002/wsbm.1331.

[42]

Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004; 10(11):549-557. https://doi.org/10.1016/j.molmed.2004.09.003.

[43]

Wang C, Huo XK, Luan ZL, et al. Alismanin A, a triterpenoid with a C34 skeleton from Alisma orientale as a natural agonist of human pregnane X receptor. Org Lett. 2017; 19(20):5645-5648. https://doi.org/10.1021/acs.orglett.7b02738.

[44]

Liang JH, Luan ZL, Tian XG, et al. Uncarialins A-I, monoterpenoid indole alkaloids from Uncaria rhynchophylla as natural agonists of the 5-HT(1A) receptor. J Nat Prod. 2019; 82(12):3302-3310. https://doi.org/10.1021/acs.jnatprod.9b00532.

[45]

Chen J, Zhang Q, Guo J, et al. Single-cell transcriptomics reveals the ameliorative effect of rosmarinic acid on diabetic nephropathy-induced kidney injury by modulating oxidative stress and inflammation. Acta Pharm Sin B. 2024; 14(4):1661-1676. https://doi.org/10.1016/j.apsb.2024.01.003.

[46]

Liu H, Wang H, Li Q, et al. LPS adsorption and inflammation alleviation by polymyxin B-modified liposomes for atherosclerosis treatment. Acta Pharm Sin B. 2023; 13(9):3817-3833. https://doi.org/10.1016/j.apsb.2023.06.005.

[47]

Wei W, Zeng Q, Wang Y, et al. Discovery and identification of EIF2AK2 as a direct key target of berberine for anti-inflammatory effects. Acta Pharm Sin B. 2023; 13(5):2138-2151. https://doi.org/10.1016/j.apsb.2022.12.009.

[48]

Wang W, Xiong LL, Wu YL, et al. New lathyrane diterpenoid hybrids have anti-inflammatory activity through the NF-κB signaling pathway and autophagy. Acta Mater Med. 2022; 1:224-243. https://doi.org/10.15212/AMM-2022-0008.

PDF (10426KB)

81

Accesses

0

Citation

Detail

Sections
Recommended

/