New tetrahydroanthraquinones and γ-butenolides from the fungus Auxarthron umbrinum DSM3193

Ling Tian , Bingyu Liu , Qian Wei , Chen Zhang , Jiamin Shang , Xiaoxue Li , Xiuying Yang , Jinhua Wang , Youcai Hu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) : 951 -960.

PDF (10083KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (8) :951 -960. DOI: 10.1016/S1875-5364(25)60930-7
Original article
research-article

New tetrahydroanthraquinones and γ-butenolides from the fungus Auxarthron umbrinum DSM3193

Author information +
History +
PDF (10083KB)

Abstract

Nine novel compounds, comprising seven tetrahydroanthraquinones (auxarthrolones A−G, 1−7), a γ-butenolide glycoside (malfilamentoside E, 26), and a γ-butenolide (auxarthrolide A, 27), together with eighteen known compounds (8−25) were isolated from rice-based solid culture of Auxarthron umbrinum (A. umbrinum) DSM3193 using the one strain many compounds (OSMAC) approach. The structural elucidation of these compounds was accomplished through nuclear magnetic resonance (NMR), mass spectrometry (MS), and NMR calculation combined with DP4+ analysis or MAEΔΔδ parameter, while the absolute configurations of new compounds were established through single-crystal X-ray diffraction, electronic circular dichroism (ECD) spectroscopic data analysis and/or chemical derivatization. Austrocortilutein (10) and auxarthrol H (14) demonstrated moderate cytotoxicity against U87 and U251 [half maximal inhibitory concentration (IC50) 3.5−12.1 μmol·L−1]. Additionally, auxarthrolone A (1), auxarthrol H (14), eupolyphagin B (15), and 7-hydroxy-2-(2-hydroxypropyl)-5-methylchromone (17) exhibited torsional effects on fibroblast proliferation challenges induced by oleic acid, thus demonstrating fibroblast proliferation-promoting activity.

Keywords

Auxarthron umbrinum / One strain many compounds (OSMAC) / Tetrahydroanthraquinone / γ-Butenolide / Cytotoxicity / Fibroblast proliferation

Cite this article

Download citation ▾
Ling Tian, Bingyu Liu, Qian Wei, Chen Zhang, Jiamin Shang, Xiaoxue Li, Xiuying Yang, Jinhua Wang, Youcai Hu. New tetrahydroanthraquinones and γ-butenolides from the fungus Auxarthron umbrinum DSM3193. Chinese Journal of Natural Medicines, 2025, 23(8): 951-960 DOI:10.1016/S1875-5364(25)60930-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Du FX, Guo XM, Yang L, et al. Natural medicinal products of fungal origin. Microbiol China. 2019; 46(9):2411-2418. https://doi.org/10.13344/j.microbiol.china.180928.

[2]

Li S, Li Z, Qian L, et al. Fumigaclavine I, a new alkaloid isolated from endophyte Aspergillus Terreus. Chin J Nat Med. 2015; 13(12):937-941. https://doi.org/10.1016/S1875-5364(15)30101-1.

[3]

Luo ZW, Yin FC, Kong LY, et al. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024; 22(3):195-211. https://doi.org/10.1016/S1875-5364(24)60582-0.

[4]

Zhong BF, Wan J, Shang CH, et al. Biosynthesis of rumbrins and inspiration for discovery of HIV inhibitors. Acta Pharm Sin B. 2022; 12(11):4193-4203. https://doi.org/10.1016/j.apsb.2022.02.005.

[5]

Isaka M, Chinthanom P, Rachtawee P, et al. Cytotoxic hydroanthraquinones from the mangrove-derived fungus Paradictyoarthrinium diffractum BCC 8704. J Antibiot (Tokyo). 2015; 68(5):334-338. https://doi.org/10.1038/ja.2014.153.

[6]

Clark B, Capon RJ, Lacey E, et al. Roquefortine E, a diketopiperazine from an Australian isolate of Gymnoascus reessii. J Nat Prod. 2005; 68(11):1661-1664. https://doi.org/10.1021/np0503101.

[7]

Miyashita K, Yagi T, Kagaya N, et al. Identification of compounds that preferentially suppress the growth of T-cell acute lymphoblastic leukemia-derived cells. Cancer Sci. 2023; 114(10):4032-4040. https://doi.org/10.1111/cas.15918.

[8]

Elsebai MF, Rempel V, Schnakenburg G, et al. Identification of a potent and selective cannabinoid CB 1 receptor antagonist from Auxarthron reticulatum. ACS Med Chem Lett. 2011; 2(11):866-869. https://doi.org/10.1021/ml200183z.

[9]

Rangel-Grimaldo M, Macías-Rubalcava ML, González-Andrade M, et al. α-Glucosidase and protein tyrosine phosphatase 1B inhibitors from Malbranchea circinata. J Nat Prod. 2020; 83(3):675-683. https://doi.org/10.1021/acs.jnatprod.9b01108.

[10]

Xu HX, Yang T, Zhang LP, et al. Ocauxarthrol A from Auxarthron umbrinum SCSIO 40432 and configurational reassignment of chrysoqueen and auxarthrols. Tetrahedron Lett. 2021;66:152842. https://doi.org/10.1016/j.tetlet.2021.152842.

[11]

Yamagishi Y, Matsuoka M, Odagawa A, et al. A new cytoprotective substanci produced by Auxarthron umbrinum I. Taxonomy, production, isolation and biological activities. J Antibiot (Tokyo). 1993; 46(6):884-887. https://doi.org/10.7164/antibiotics.46.884.

[12]

Xu H, Wang L, Zhang L, et al. Configurational assignment of malfilamentoside A and a new furanone glycoside malfilamentoside D. Chin J Org Chem. 2022; 42(4):1229-1234. https://doi.org/10.6023/cjoc202110038.

[13]

Gerke J, Bayram Ö, Feussner K, et al. Breaking the silence : protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus Nidulans. Appl Environ Microbiol. 2012; 78(23): 8234-8244. https://doi.org/10.1128/AEM.01808-12.

[14]

Entwistle R, Bruno KS. Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans isresponsible for microperfuranone biosynthesis. Appl Microbiol Biotechnol. 2013; 96(3):739-748. https://doi.org/10.1007/s00253-012-4098-9.

[15]

Dong G, Chen ZL, Yan S, et al. Steroids and dihydroisocoumarin glycosides from Xylaria sp. by the one strain many compounds strategy and their bioactivities. Chin J Nat Med. 2023; 21;(2):154-160. https://doi.org/10.1016/S1875-5364(23)60394-2.

[16]

Bode HB, Bethe B, Höfs R, et al. Big effects from small changes: possible ways to explore nature’s chemical diversity. Chem Bio Chem. 2002; 3(7):619-627.3.0.CO;2-9" https://doi.org/10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-. doi: 10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-.

[17]

Alvi KA, Rabenstein J. Auxarthrol A and auxarthrol B: two new tetrahydoanthraquinones from Auxarthron umbrinum. J Ind Microbiol Biotechnol. 2004; 31(1):11-15. https://doi.org/10.1007/s10295-003-0106-5.

[18]

Ge X, Sun C, Feng Y, et al. Anthraquinone derivatives from a marine-derived fungus Sporendonema casei HDN16-802. Mar Drugs. 2019; 17(6):334. https://doi.org/10.3390/md17060334.

[19]

Ivanova VB, Hoshino Y, Yazawa K, et al. Isolation and structure elucidation of two new antibacterial compounds produced by Chrysosporium queenslandicum. J Antibiot (Tokyo). 2002; 55(10):914-918. https://doi.org/10.7164/antibiotics.55.914.

[20]

Matsumori N, Kaneno D, Murata M, et al. Stereochemical determination of acyclic structures based on carbon-proton spin-coupling constants. A method of configuration analysis for natural products. J Org Chem. 1999; 64(3):866-876. https://doi.org/10.1021/jo981810k.

[21]

Yan HJ, Li XM, Li CS, et al. Alkaloid and anthraquinone derivatives produced by the marine-derived endophytic fungus Eurotium rubrum. Helv Chim Acta. 2012; 95(1):163-168. https://doi.org/10.1002/hlca.201100255.

[22]

Lauro G, Das P, Riccio R, et al. DFT/NMR Approach for the configuration assignment of groups of stereoisomers by the combination and comparison of experimental and predicted sets of data. J Org Chem. 2020; 85(5):3297-3306. https://doi.org/10.1021/acs.joc.9b03129.

[23]

Kim JW, Son S, Kim GS, et al. Aromatic butenolides produced by a soil ascomycete Auxarthron sp. KCB15F070 derived from a volcanic island. Tetrahedron Lett. 2019; 60(45):151227. https://doi.org/10.1016/j.tetlet.2019.151227.

[24]

Gill M, Smrdel AF, Strauch RJ, et al. Pigments of fungi. Part 12. Structure and absolute stereochemistry of antibiotic tetrahydroanthraquinones from the fungus Dermocybe splendida Horak. X-Ray structure determination of austrocortirubin phenylboronate and austrocortilutein acetonide. J Chem Soc Perkin Transact. 1990;1:1583. https://doi.org/10.1039/p19900001583.

[25]

Jiang HL, Luo XH, Wang XZ, et al. New isocoumarins and alkaloid from Chinese insect medicine, Eupolyphaga Sinensis Walker. Fitoterapia. 2012; 83(7):1275-1280. https://doi.org/10.1016/j.fitote.2012.06.005.

[26]

Khamthong N, Rukachaisirikul V, Tadpetch K, et al. Tetrahydroanthraquinone and xanthone derivatives from the marine-derived fungus Trichoderma aureoviride PSU-F95. Arch Pharm Res. 2012; 35(3):461-468. https://doi.org/10.1007/s12272-012-0309-2.

[27]

Hosoe T, Iizuka T, Komai SI, et al. 4-Benzyl-3-phenyl-5H-furan-2-one, a vasodilator isolated from Malbranchea filamentosa IFM 41300. Phytochemistry. 2005; 66(23):2776-2779. https://doi.org/10.1016/j.phytochem.2005.08.014.

[28]

Lin Y, Li H, Jiang G, et al. A novel γ-lactone, eutypoid-A and other metabolites from marine fungus Eutypa sp. (#424) from the South China Sea. Indian J Chem. 2002; 41(7):1542-1544. https://doi.org/10.1002/chin.200245200.

[29]

Parker AN, Lock MJ, Hutchison JM, et al. Synthesis of 4-benzyl-3-phenylbutenolide natural products. Tetrahedron Lett. 2013; 54(39):5322-5324. https://doi.org/10.1016/j.tetlet.2013.07.101.

[30]

Wakana D, Hosoe T, Itabashi T, et al. Two new furanone glycosides, malfilamentosides A and B, from Malbranchea filamentosa. Mycotoxins. 2008; 58(1):1-6. https://doi.org/10.2520/myco.58.1.

[31]

Chen K, Zhou J, Dun B, et al. Onygenaleosides A-F, 6/5 bicyclic ring skeleton triterpene glycosides with insecticidal activity from Onygenales sp. YX1425. J Nat Prod. 2023; 86(12):2621-2629. https://doi.org/10.1021/acs.jnatprod.3c00243.

[32]

Jiao SG, Huang H, Wang L, et al. Alashanines A-C, three quinone-terpenoid alkaloids from Syringa pinnatifolia with cytotoxic potential by activation of ERK. J Org Chem. 2023; 88(11):7096-7103. https://doi.org/10.1021/acs.joc.3c00369.

[33]

Grimblat N, Zanardi MM, Sarotti AM. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem. 2015; 80(24):12526-12534. https://doi.org/10.1021/acs.joc.5b02396.

[34]

Zanardi MM, Sarotti AM. Sensitivity analysis of DP4+ with the probability distribution terms: development of a universal and customizable method. J Org Chem. 2021; 86(12):8544-8548. https://doi.org/10.1021/acs.joc.1c00987.

[35]

Ren LW, Li W, Zheng XJ, et al. Benzimidazoles induce concurrent apoptosis and pyroptosis of human glioblastoma cells via arresting cell cycle. Acta Pharmacol Sin. 2022; 43(1):194-208. https://doi.org/10.1038/s41401-021-00752-y.

PDF (10083KB)

94

Accesses

0

Citation

Detail

Sections
Recommended

/